Domination in Circulant Graphs

Nader Jafari Rad

Abstract

A graph G with no isolated vertex is total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of G - v is less than the total domination number of G. We call these graphs γ_t -critical. In this paper, we determine the domination and the total domination number in the Circulant graphs $C_n \langle 1, 3 \rangle$, and then study γ -criticality and γ_t -criticality in these graphs. Finally, we provide answers to some open questions.

1 Introduction

A vertex in a graph G dominates itself and its neighbors. A set of vertices S in a graph G is a dominating set, if each vertex of G is dominated by some vertex of S. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. A dominating set S is called a *total dominating* set if each vertex v of G is dominated by some vertex $u \neq v$ of S. The *total domination number* of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a total dominating set of G.

We denote the open neighborhood of a vertex v of G by $N_G(v)$, or just N(v), and its closed neighborhood by N[v]. For a vertex set $S \subseteq V(G)$, $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = \bigcup_{v \in S} N[v]$. So, a set of vertices S in G is a dominating set, if N[S] = V(G). Also, S is a total dominating set, if N(S) = V(G). For notation and graph theory terminology in general we follow [3].

An *end-vertex* in a graph G is a vertex of degree one and a support vertex is one that is adjacent to an end-vertex. We call a dominating set of cardinality

·

Key Words: Domination; total domination; Circulant graph.

Mathematics Subject Classification: 05C69. Received: November, 2008

Accepted: April, 2009

 $\gamma(G)$, a $\gamma_t(G)$ -set, and a total dominating set of cardinality $\gamma_t(G)$, a $\gamma_t(G)$ -set. We also let S(G) be the set of all support vertices of G.

For many graph parameters, criticality is a fundamental question. A graph G is called *vertex domination critical* if $\gamma(G - v) < \gamma(G)$, for every vertex v in G. For references on vertex domination critical graphs see [1, 2, 3].

Goddard, et. al., [2], introduced total domination vertex critical graphs. A graph G is total domination vertex critical, or just γ_t -critical, if for every vertex $v \in V(G) \setminus S(G)$, $\gamma_t(G-v) < \gamma_t(G)$. If G is γ_t -critical, and $\gamma_t(G) = k$, then G is called $k - \gamma_t$ -critical. They posed the following open question:

Question 1([2]): Which graphs are γ -critical and γ_t -critical or one but not the other?

Let $\Delta(G)$ be the maximum degree of vertices in a graph G. Mojdeh, et. al., [4], studied γ_t -critical graphs G of order $\Delta(G)(\gamma_t(G) - 1) + 1$ and posed the following question:

Question 2([4]): Does there exist a $k - \gamma_t$ -critical graph of order $(\gamma_t(G) - 1) \triangle(G) + 1$ for all odd $k \ge 3$?

Let $n \ge 4$ be a positive integer. The Circulant graph $C_n(1,3)$ is the graph with vertex set $\{v_0, v_1, ..., v_{n-1}\}$, and edge set $\{\{v_i, v_{i+j}\} : i \in \{0, 1, ..., n-1\}$ and $j \in \{1,3\}\}$. All arithmetic on the indices is assumed to be modulo n.

In this paper, we first determine the domination number and the total domination number in the Circulant graphs $C_n\langle 1,3\rangle$ for any integer n, and then study γ -criticality and γ_t -criticality in these class of graphs. We then provide an answer to Question 1, and an answer to Question 2.

For a subset $S \subseteq V(G)$, we denote by G[S] the subgraph of G induced by S. Also for two vertices x and y in a graph G we denote the distance between x and y by $d_G(x, y)$, or just d(x, y).

2 Domination and total domination

Let $n \geq 4$ be a positive integer, and let $G = C_n \langle 1, 3 \rangle$. Let Cycle C = C(G)be the subgraph with vertex set $\{v_0, v_1, ..., v_{n-1}\}$ and edge set $\{\{v_i, v_{i+1}\} : i \in \{0, 1, ..., n-1\}$. For a subset $S \subseteq V(G)$ with at least three vertices, we say that $x, y \in S$ are *consecutive* if there is no vertex $z \in S$ such that z lies between x and y in C. For two consecutive vertices x, y in a subset of vertices S, we define $|x - y| = d_C(x, y)$. So, |x - y| equals to the number of edges in a shortest path between x and y in the cycle C.

In this section, we determine the domination number and the total domination number in the Circulant graphs $G = C_n \langle 1, 3 \rangle$, for any integer $n \ge 4$.

2.1 Domination number

It is obvious that $C_4\langle 1,3\rangle = C_4$ and $C_5\langle 1,3\rangle = K_5$. So $\gamma(C_4\langle 1,3\rangle) = 2$ and $\gamma(C_5\langle 1,3\rangle) = 1$. For $n \ge 6$ we have the following result.

Theorem 1 For any integer $n \ge 6$, $\gamma(G) = \begin{cases} \left\lceil \frac{n}{5} \right\rceil, & n \not\equiv 4 \pmod{5} \\ \left\lceil \frac{n}{5} \right\rceil + 1, & n \equiv 4 \pmod{5} \end{cases}$

Proof. Let $G = C_n \langle 1, 3 \rangle$ and let S be a $\gamma(G)$ -set. Any vertex of S dominates five vertices of G including itself, so $|S| \ge \left\lceil \frac{n}{5} \right\rceil$. We proceed with the following fact.

Fact A. If $n \equiv 4 \pmod{5}$, then $|S| \ge \left\lceil \frac{n}{5} \right\rceil + 1$.

To see this, assume to the contrary that $n \equiv 4 \pmod{5}$, and $|S| = \left\lceil \frac{n}{5} \right\rceil$. There are two consecutive vertices $v_k, v_{k'} \in S$ such that |k - k'| < 5. Let $v_{k''} \neq v_k$ is a consecutive vertex of $v_{k'}$. Without loss of generality assume that |k'' - k| = 9. Then there are eight possibilities for $v_{k'}$ to lies between v_k and $v_{k''}$. In each possibility there exists a vertex between v_k and $v_{k''}$ which is not dominated by $\{v_k, v_{k'}, v_{k''}\}$, a contradiction. Hence, for $n \equiv 4 \pmod{5}$, $|S| \ge \left\lceil \frac{n}{5} \right\rceil + 1$.

Now, it is sufficient to define a dominating set of required cardinality. We consider the following cases:

Case 1. $n \equiv 0 \pmod{5}$. We define $S = \{v_{5k} : 0 \le k < \frac{n}{5}\}.$

Case 2. $n \equiv 1 \pmod{5}$. For n = 6 we define $S = \{v_0, v_3\}$ and for n > 6 we define $S = \{v_{5k} : 0 \le k < \lfloor \frac{n}{5} \rfloor\} \cup \{v_{n-1}\}.$

Case 3. $n \equiv 2 \pmod{5}$. For n = 7 we define $S = \{v_0, v_1\}$ and for n > 7 we define $S = \{v_{5k} : 0 \le k < \left|\frac{n}{5}\right|\} \cup \{v_{n-2}\}.$

Case 4. $n \equiv 3 \pmod{5}$. For n = 8 we define $S = \{v_0, v_3\}$ and for n > 8 we define $S = \{v_{5k} : 0 \le k < \lfloor \frac{n}{5} \rfloor\} \cup \{v_{n-3}\}.$

Case 5. $n \equiv 4 \pmod{5}$. For n = 9 we define $S = \{v_0, v_1, v_5\}$ and for n > 9 we define $S = \{v_{5k} : 0 \le k \le \lfloor \frac{n}{5} \rfloor \} \cup \{v_{n-2}\}.$

In each of the above cases S is a dominating set for $C_n\langle 1,3\rangle$ of cardinality $\left\lceil \frac{n}{5} \right\rceil + 1$ when $n \equiv 4 \pmod{5}$, and of cardinality $\left\lceil \frac{n}{5} \right\rceil$ when $n \not\equiv 4 \pmod{5}$. Hence, the result follows.

2.2Total domination number

Here we study total domination numbers in $C_n(1,3)$ for $k \ge 4$. We need the following lemmas.

Lemma 2 Let S be a subset of vertices of G and G[S] has no isolated vertices. If |S| is even, then S dominates at most 4|S| vertices of G.

Proof. Let S be subset of vertices with |S| = m, where m is even. Any two adjacent vertices of S dominate eight vertices of G including themselves. So S dominates at most $8\left(\frac{|S|}{2}\right) = 4|S|$ vertices of G.

Lemma 3 Let S be a subset of vertices of $G = C_n(1,3)$ and G[S] has no isolated vertices. If |S| is odd, then S dominates at most 4|S| - 1 vertices of G.

Proof. Let S be a subset of vertices with |S| = m, where m is odd. Without loss of generality we may assume that G[S] has $k = \frac{|S|-3}{2} + 1$ components $G_1, G_2, ..., G_k$, where $|V(G_1)| = 3$ and $|V(G_i)| = 2$ for i = 2, 3, ..., k. Let $V(G_1) = \{a, b, c\}$, then $\{a, b, c\}$ dominates at most 11 vertices of G. So S dominates at most $8(\frac{|S|-3}{2}) + 11 = 4m - 1$ vertices of G. Now, we determine the total domination numbers in G, by the following.

Theorem 4 For any integer $n \ge 4$, $\gamma_t(G) = \begin{cases} \left\lceil \frac{n}{4} \right\rceil + 1, & n \equiv 2, 4 \pmod{8} \\ \left\lceil \frac{n}{4} \right\rceil, & Otherwise \end{cases}$.

Proof. The result is trivial for $n \leq 7$. So, we let $n \geq 8$. Let $G = C_n \langle 1, 3 \rangle$ and let S be a total dominating set for G. It follows from Lemma 2 and Lemma 3 that $|S| \geq \left|\frac{n}{4}\right|$.

Claim 1. If $n \equiv 2 \pmod{8}$ and S is a total dominating set for G, then $|S| \ge \left|\frac{n}{4}\right| + 1.$

Proof of Claim 1. Let $n \equiv 2 \pmod{8}$ and let S be a total dominating set for G. Assume to the contrary that $|S| = \left\lceil \frac{n}{4} \right\rceil$. Let n = 8k + 2, where k is a positive integer. Since $|S| = \lfloor \frac{n}{4} \rfloor$, then |S| = 2k + 1 is an odd number. So, the induced subgraph G[S] has a component H with at least three vertices. We proceed with Fact B and Fact C.

Fact B. Any component of G[S] has at most three vertices.

To see this, assume to the contrary that G_1 is a component of G[S] and G_1 has at least 4 vertices. Without loss of generality assume that G_1 has 4 vertices. Then S dominates at most $14 + 8(\frac{|S|-4-3}{2}) + 11 = 8k + 1$ vertices of G, a contradiction.

Fact C. *H* is the only odd component of G[S].

To see this, assume to the contrary that $H' \neq H$ is a component of G[S] with |V(H')| odd. It follows from Fact B that |V(H')| = 3. Since |S| is odd, there is another component H" with three vertices. Now S dominates at most 8k + 1 vertices of G, a contradiction.

Let $V(H) = \{v_i, v_j, v_l\}$ where i < j < l. Let $v_{i'}$ be a consecutive vertex of v_i with $i' \neq j$ and $v_{l'}$ be a consecutive vertex of v_l with $l' \neq j$. Since Sdominates $11 + 8(\frac{|S|-3}{2}) = 8k + 3$ vertices of G, then there is a vertex x of G which has two neighbors in S. Now $\min\{|i-j|, |l-j|\} \neq 2$, and we can assume that x is adjacent to both v_l and $v_{l'}$. Let $x = v_t$ where t < l'. If |l'-t| = 1, then v_{t-1} is not dominated by S which is a contradiction. So |l'-t| = 4. But then v_{t+1} is not dominated by S, a contradiction. Hence $|S| \geq \lfloor \frac{n}{4} \rfloor + 1$. This completes the proof of Claim 1. \Box

With a similar manner as in the proof of Claim 1, the following Claim is verified, and we left the proof.

Claim 2. If $n \equiv 2$ or 4 (mod 8) and S is a total dominating set for G, then $|S| \ge \left\lceil \frac{n}{4} \right\rceil + 1$.

Now, it is sufficient to define a total dominating set S of required cardinality.

For $n \equiv 0 \pmod{8}$, we define $S = \{v_{8k}, v_{8k+3} : 0 \le k < \frac{n}{8}\}$. For $n \equiv 1 \pmod{8}$, we define $S = \{v_0, v_3, v_6\}$ if n = 9, and define $S = \{v_{8k}, v_{8k+3} : 0 \le k < \frac{n-1}{8} - 1\} \cup \{v_{n-3}, v_{n-6}, v_{n-9}\}$ if n > 9.

For $n \equiv 2 \pmod{8}$, we define $S = \{v_{8k}, v_{8k+3} : 0 \le k < \left\lfloor \frac{n}{8} \right\rfloor\} \cup \{v_{n-3}, v_{n-4}\}.$

For $n \equiv 3 \pmod{8}$, we define $S = \{v_{8k}, v_{8k+3} : 0 \le k < \lfloor \frac{n}{8} \rfloor\} \cup \{v_{n-5}\}.$

For $n \equiv 4 \pmod{8}$, we define $S = \{v_{8k}, v_{8k+3} : 0 \le k < \left\lfloor \frac{n}{8} \right\rfloor\} \cup \{v_{n-3}, v_{n-4}\}.$

For $n \equiv 5 \pmod{8}$, we define $S = \{v_{8k}, v_{8k+3} : 0 \le k < \lfloor \frac{n}{8} \rfloor \} \cup \{v_{n-4}, v_{n-5}\}.$

For $n \equiv 6 \pmod{8}$, we define $S = \{v_{8k}, v_{8k+3} : 0 \le k < \lfloor \frac{n}{8} \rfloor\} \cup \{v_{n-5}, v_{n-6}\}.$

For $n \equiv 7 \pmod{8}$, we define $S = \{v_{8k}, v_{8k+1} : 0 \le k \le \lfloor \frac{n}{8} \rfloor\}.$

Then S is a total dominating set of cardinality $\left\lceil \frac{n}{4} \right\rceil + 1$ when $n \equiv 2, 4 \pmod{8}$, and of cardinality $\left\lceil \frac{n}{4} \right\rceil$ when $n \neq 2, 4 \pmod{8}$.

3 Criticality of domination and total domination

In this section, we study γ -criticality and γ_t -criticality in Circulant graphs $G = C_n \langle 1, 3 \rangle$, for any integer $n \geq 4$. This leads us to provide answers to Question 1 and Question 2.

Theorem 5 For $n \ge 6$, the Circulant graph $G = C_n \langle 1, 3 \rangle$ is γ -critical if and only if $n \equiv 4 \pmod{5}$.

Proof. First we show that G is γ -critical for $n \equiv 4 \pmod{5}$. Let x be a vertex of $G = C_{5n+4}\langle 1,3 \rangle$ for some positive integer n. Since G is vertex transitive, we assume that $x = v_{n-2}$. It is easy to see that $S = \{v_{5k} : 0 \le k \le \lfloor \frac{n}{5} \rfloor\}$ is a dominating set for G - x, concluding that $\gamma(G - x) \le \lceil \frac{n}{5} \rceil < \lceil \frac{n}{5} \rceil + 1 = \gamma(G)$. Hence, G is γ -critical.

Suppose now, that $n \not\equiv 4 \pmod{5}$. We Show that G is not γ -critical. By Theorem 1, $\gamma(G) = \left\lceil \frac{n}{5} \right\rceil$. We show that any k vertices of G with $k < \left\lceil \frac{n}{5} \right\rceil$ dominate at most n-2 vertices of G. Let T be a subset of vertices with $|T| < \left\lceil \frac{n}{5} \right\rceil$.

If $n \equiv 0 \pmod{5}$, then n = 5i for some integer *i*. It follows that $\gamma(G) = i$. Now, *T* dominates at most $5i - 5 \le n - 2$ vertices of *G*. Similarly for $n \equiv 2, 3 \pmod{5}$, *T* dominates at most $5i - 5 \le n - 2$ vertices of *G*. So we assume that $n \equiv 1 \pmod{5}$. There is an integer *l* such that n = 5l + 1. Without loss of generality let $|T| = \left\lceil \frac{n}{5} \right\rceil - 1 = l$.

If there are two consecutive vertices x, y in T such that |x - y| < 5, then $N_G[x] \cap N_G[y] \neq \emptyset$. Furthermore, $\{x, y\}$ dominates at most nine vertices of G and $T \setminus \{x, y\}$ dominates at most 5(l - 2) vertices of G. So, T dominates at most n - 2 vertices of G. It remains to assume that for any two consecutive vertices a, b in $T, |a - b| \ge 5$. But then there are two consecutive vertices x, y in T such that |x - y| > 5. There exist two vertices u, v in G such that u, v lie between x and y in C, and T does not dominate $\{u, v\}$. So, T dominates at most n - 2 vertices of G. Hence, G is not γ -critical for $n \not\equiv 4 \pmod{5}$.

Theorem 6 For $n \ge 4$ the Circulant graph $G = C_n \langle 1, 3 \rangle$ is γ_t -critical if and only if $n \equiv 1 \pmod{8}$.

Proof. Let $G = C_n \langle 1, 3 \rangle$ and $n \geq 4$. First assume that $n \not\equiv 1 \pmod{8}$. We prove that G is not γ_t -critical. Let $T \subset V(G)$ be a subset of at most $\gamma_t(G) - 1$ vertices, and G[T] has no isolated vertex. We show that T totally dominates at most n-2 vertices of G. Without loss of generality assume that $|T| = \gamma_t(G) - 1$. For $n \not\equiv 4 \pmod{8}$, the result follows from applying Lemma 2 and Lemma 3. So, we let $n \equiv 4 \pmod{8}$. We proceed with the following fact.

Fact D. T totally dominates at most n - 2 vertices of G.

Proof. Let |T| = 2k + 1 for some integer k. If two vertices in T have a common neighbor, then the result follows. So, suppose that no two vertices in T have a common neighbor. Without loss of generality we may assume that G[S] has k components $G_1, G_2, ..., G_k$ where $|V(G_1)| = 3$ and $|V(G_i)| = 2$ for i = 2, 3, ..., k. Let $V(G_1) = \{a, b, c\}$, then $T \setminus \{a, b, c\}$ dominates at most 8k - 8 vertices of G, and we may assume that $T \setminus \{a, b, c\}$ dominates 8k - 8 vertices of G. Let G_1 be the subgraph of G induced by $V(G) \setminus N[T \setminus \{a, b, c\}]$. Then there are the following possibilities for G_1 .

1) $V(G_1) = \{v_t, v_{t+1}, ..., v_{t+11}\}$ where t is an integer and the addition in t + i is in modulo n, and, $E(G_1) = \{\{V_{t+i}, v_{t+j}\} : i \in \{0, 1, ..., 8\}, j \in \{1, 3\}\} \cup \{\{V_{t+9}, v_{t+10}\}, \{V_{t+10}, v_{t+11}\}\}.$

2) $V(G_1) = \{v_t, v_{t+1}, ..., v_{t+11}\}$ where t is an integer and the addition in t+i is in modulo n, and,

 $E(G_1) = \{\{V_{t+i}, v_{t+j}\} : i \in \{1, ..., 9\}, i \neq 8, j \in \{1, 3\}\}$

 $\cup \{\{V_t, v_{t+2}\}, \{V_{t+10}, v_{t+11}\}, \{V_{t+8}, v_{t+9}\}\}.$

For any possiblity for $\{a, b, c\}$, it is easy to see that $\{a, b, c\}$ dominates at most 10 vertices of G_1 . This completes the proof of Fact D.

Now, it is sufficient to prove that for $n \equiv 1 \pmod{8}$, G is γ_t -critical. Let $n \equiv 1 \pmod{8}$, and let x be a vertex of G. We show that $\gamma_t(G - x) < \gamma_t(G)$. Since G is vertex transitive, we can assume that $x = v_{n-4}$. Then $S = \{v_{8k}, v_{8k+1} : 0 \le k < \lfloor \frac{n}{8} \rfloor\}$ is a total dominating set for G - x. Hence, G is γ_t -critical.

Now, we are ready to provide an answer to Question 1, and a positive answer to question 2. The following is an immediate result of Theorem 5 and Theorem 6, and provide an answer to Question 1.

Theorem 7 (1) For any positive integer $n \ge 1$ with $8 \nmid 5n + 3$, the Circulant graph $C_{5n+4}\langle 1, 3 \rangle$ is γ -critical and is not γ_t -critical.

(2) For any positive integer $n \geq 1$ with $5 \nmid 8n - 3$, the Circulant graph $C_{8n+1}\langle 1,3 \rangle$ is γ_t -critical and is not γ -critical.

(3) For any positive integer $n \ge 1$ with $8 \mid 5n + 3$, the Circulant graph $C_{5n+4}\langle 1,3 \rangle$ is both γ_t -critical and γ -critical.

Since for any $n \ge 1$, $\gamma_t(C_{8n+1}\langle 1,3\rangle) = 2n+1$ and $\Delta(C_{8n+1}\langle 1,3\rangle) = 4$, then $C_{8n+1}\langle 1,3\rangle$ is a γ_t -critical graph of order $(\gamma_t - 1) \bigtriangleup +1$. Hence, the following result provides a positive answer to question 2.

Theorem 8 For any odd $k \ge 3$ there exists a $k - \gamma_t$ -critical graph G of order $(\gamma_t(G) - 1) \bigtriangleup (G) + 1$.

References

- R. C. Brigham, P. Z. Chinn, and R. D. Dutton, Vertex domination-critical graphs, Networks, 18(1988), 173–179.
- [2] W. Goddard, T. W. Haynes, M. A. Henning, and L. C. van der Merwe, The diameter of total domination vertex critical graphs. Discrete Math. 286 (2004), 255-261.
- [3] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
- [4] D. A. Mojdeh and N. Jafari Rad, On an open problem concerning total domination critical graphs, Expositions Mathematicae, 25(2007), 175-179.

Department of Mathematics, Shahrood University of Technology, Shahrood, Iran e-mail: n.jafarirad@shahroodut.ac.ir