Domination in Circulant Graphs

Nader Jafari Rad

Abstract

A graph G with no isolated vertex is total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of $G-v$ is less than the total domination number of G. We call these graphs γ_{t}-critical. In this paper, we determine the domination and the total domination number in the Circulant graphs $C_{n}\langle 1,3\rangle$, and then study γ-criticality and γ_{t}-criticality in these graphs. Finally, we provide answers to some open questions.

1 Introduction

A vertex in a graph G dominates itself and its neighbors. A set of vertices S in a graph G is a dominating set, if each vertex of G is dominated by some vertex of S. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. A dominating set S is called a total dominating set if each vertex v of G is dominated by some vertex $u \neq v$ of S. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a total dominating set of G.

We denote the open neighborhood of a vertex v of G by $N_{G}(v)$, or just $N(v)$, and its closed neighborhood by $N[v]$. For a vertex set $S \subseteq V(G)$, $N(S)=\cup_{v \in S} N(v)$ and $N[S]=\cup_{v \in S} N[v]$. So, a set of vertices S in G is a dominating set, if $N[S]=V(G)$. Also, S is a total dominating set, if $N(S)=V(G)$. For notation and graph theory terminology in general we follow [3].

An end-vertex in a graph G is a vertex of degree one and a support vertex is one that is adjacent to an end-vertex. We call a dominating set of cardinality

[^0]$\gamma(G)$, a $\gamma_{t}(G)$-set, and a total dominating set of cardinality $\gamma_{t}(G)$, a $\gamma_{t}(G)$-set. We also let $S(G)$ be the set of all support vertices of G.

For many graph parameters, criticality is a fundamental question. A graph G is called vertex domination critical if $\gamma(G-v)<\gamma(G)$, for every vertex v in G. For references on vertex domination critical graphs see [1, 2, 3].

Goddard, et. al., [2], introduced total domination vertex critical graphs. A graph G is total domination vertex critical, or just γ_{t}-critical, if for every vertex $v \in V(G) \backslash S(G), \gamma_{t}(G-v)<\gamma_{t}(G)$. If G is γ_{t}-critical, and $\gamma_{t}(G)=k$, then G is called $k-\gamma_{t}$-critical. They posed the following open question:

Question 1([2]): Which graphs are γ-critical and γ_{t}-critical or one but not the other?

Let $\Delta(G)$ be the maximum degree of vertices in a graph G. Mojdeh, et. al., [4], studied γ_{t}-critical graphs G of order $\Delta(G)\left(\gamma_{t}(G)-1\right)+1$ and posed the following question:

Question 2([4]): Does there exist a $k-\gamma_{t}$-critical graph of order $\left(\gamma_{t}(G)-\right.$ 1) $\triangle(G)+1$ for all odd $k \geq 3$?

Let $n \geq 4$ be a positive integer. The Circulant graph $C_{n}\langle 1,3\rangle$ is the graph with vertex set $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$, and edge set $\left\{\left\{v_{i}, v_{i+j}\right\}: i \in\{0,1, \ldots, n-1\}\right.$ and $j \in\{1,3\}\}$. All arithmetic on the indices is assumed to be modulo n.

In this paper, we first determine the domination number and the total domination number in the Circulant graphs $C_{n}\langle 1,3\rangle$ for any integer n, and then study γ-criticality and γ_{t}-criticality in these class of graphs. We then provide an answer to Question 1, and an answer to Question 2.

For a subset $S \subseteq V(G)$, we denote by $G[S]$ the subgraph of G induced by S. Also for two vertices x and y in a graph G we denote the distance between x and y by $d_{G}(x, y)$, or just $d(x, y)$.

2 Domination and total domination

Let $n \geq 4$ be a positive integer, and let $G=C_{n}\langle 1,3\rangle$. Let Cycle $C=C(G)$ be the subgraph with vertex set $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and edge set $\left\{\left\{v_{i}, v_{i+1}\right\}\right.$: $i \in\{0,1, \ldots, n-1\}$. For a subset $S \subseteq V(G)$ with at least three vertices, we say that $x, y \in S$ are consecutive if there is no vertex $z \in S$ such that z lies between x and y in C. For two consecutive vertices x, y in a subset of vertices S, we define $|x-y|=d_{C}(x, y)$. So, $|x-y|$ equals to the number of edges in a shortest path between x and y in the cycle C.

In this section, we determine the domination number and the total domination number in the Circulant graphs $G=C_{n}\langle 1,3\rangle$, for any integer $n \geq 4$.

2.1 Domination number

It is obvious that $C_{4}\langle 1,3\rangle=C_{4}$ and $C_{5}\langle 1,3\rangle=K_{5}$. So $\gamma\left(C_{4}\langle 1,3\rangle\right)=2$ and $\gamma\left(C_{5}\langle 1,3\rangle\right)=1$. For $n \geq 6$ we have the following result.

Theorem 1 For any integer $n \geq 6, \gamma(G)=\left\{\begin{array}{c}\left\lceil\frac{n}{5}\right\rceil, \quad n \not \equiv 4(\bmod 5) \\ \left\lceil\frac{n}{5}\right\rceil+1, n \equiv 4(\bmod 5)\end{array}\right.$

Proof. Let $G=C_{n}\langle 1,3\rangle$ and let S be a $\gamma(G)$-set. Any vertex of S dominates five vertices of G including itself, so $|S| \geq\left\lceil\frac{n}{5}\right\rceil$. We proceed with the following fact.

Fact A. If $n \equiv 4(\bmod 5)$, then $|S| \geq\left\lceil\frac{n}{5}\right\rceil+1$.
To see this, assume to the contrary that $n \equiv 4(\bmod 5)$, and $|S|=\left\lceil\frac{n}{5}\right\rceil$. There are two consecutive vertices $v_{k}, v_{k^{\prime}} \in S$ such that $\left|k-k^{\prime}\right|<5$. Let $v_{k^{\prime}} \neq v_{k}$ is a consecutive vertex of $v_{k^{\prime}}$. Without loss of generality assume that $|k "-k|=9$. Then there are eight possiblities for $v_{k^{\prime}}$ to lies between v_{k} and $v_{k^{\prime \prime}}$. In each possiblity there exists a vertex between v_{k} and v_{k} " which is not dominated by $\left\{v_{k}, v_{k^{\prime}}, v_{k^{\prime \prime}}\right\}$, a contradiction. Hence, for $n \equiv 4(\bmod 5)$, $|S| \geq\left\lceil\frac{n}{5}\right\rceil+1$.

Now, it is sufficient to define a dominating set of required cardinality. We consider the following cases:

Case 1. $n \equiv 0(\bmod 5)$. We define $S=\left\{v_{5 k}: 0 \leq k<\frac{n}{5}\right\}$.
Case 2 . $n \equiv 1(\bmod 5)$. For $n=6$ we define $S=\left\{v_{0}, v_{3}\right\}$ and for $n>6$ we define $S=\left\{v_{5 k}: 0 \leq k<\left\lfloor\frac{n}{5}\right\rfloor\right\} \cup\left\{v_{n-1}\right\}$.

Case 3. $n \equiv 2(\bmod 5)$. For $n=7$ we define $S=\left\{v_{0}, v_{1}\right\}$ and for $n>7$ we define $S=\left\{v_{5 k}: 0 \leq k<\left\lfloor\frac{n}{5}\right\rfloor\right\} \cup\left\{v_{n-2}\right\}$.

Case 4 . $n \equiv 3(\bmod 5)$. For $n=8$ we define $S=\left\{v_{0}, v_{3}\right\}$ and for $n>8$ we define $S=\left\{v_{5 k}: 0 \leq k<\left\lfloor\frac{n}{5}\right\rfloor\right\} \cup\left\{v_{n-3}\right\}$.

Case 5. $n \equiv 4(\bmod 5)$. For $n=9$ we define $S=\left\{v_{0}, v_{1}, v_{5}\right\}$ and for $n>9$ we define $S=\left\{v_{5 k}: 0 \leq k \leq\left\lfloor\frac{n}{5}\right\rfloor\right\} \cup\left\{v_{n-2}\right\}$.

In each of the above cases S is a dominating set for $C_{n}\langle 1,3\rangle$ of cardinality $\left\lceil\frac{n}{5}\right\rceil+1$ when $n \equiv 4(\bmod 5)$, and of cardinality $\left\lceil\frac{n}{5}\right\rceil$ when $n \not \equiv 4(\bmod 5)$. Hence, the result follows.

2.2 Total domination number

Here we study total domination numbers in $C_{n}\langle 1,3\rangle$ for $k \geq 4$. We need the following lemmas.

Lemma 2 Let S be a subset of vertices of G and $G[S]$ has no isolated vertices. If $|S|$ is even, then S dominates at most $4|S|$ vertices of G.

Proof. Let S be subset of vertices with $|S|=m$, where m is even. Any two adjacent vertices of S dominate eight vertices of G including themselves. So S dominates at most $8\left(\frac{|S|}{2}\right)=4|S|$ vertices of G.

Lemma 3 Let S be a subset of vertices of $G=C_{n}\langle 1,3\rangle$ and $G[S]$ has no isolated vertices. If $|S|$ is odd, then S dominates at most $4|S|-1$ vertices of G.

Proof. Let S be a subset of vertices with $|S|=m$, where m is odd. Without loss of generality we may assume that $G[S]$ has $k=\frac{|S|-3}{2}+1$ components $G_{1}, G_{2}, \ldots, G_{k}$, where $\mid V\left(G_{1} \mid=3\right.$ and $\mid V\left(G_{i} \mid=2\right.$ for $i=2,3, \ldots, k$. Let $V\left(G_{1}\right)=\{a, b, c\}$, then $\{a, b, c\}$ dominates at most 11 vertices of G. So S dominates at most $8\left(\frac{|S|-3}{2}\right)+11=4 m-1$ vertices of G.

Now, we determine the total domination numbers in G, by the following.
Theorem 4 For any integer $n \geq 4, \gamma_{t}(G)=\left\{\begin{array}{cc}\left\lceil\frac{n}{4}\right\rceil+1, & n \equiv 2,4(\bmod 8) \\ \left\lceil\frac{n}{4}\right\rceil, & \text { Otherwise }\end{array}\right.$.
Proof. The result is trivial for $n \leq 7$. So, we let $n \geq 8$. Let $G=C_{n}\langle 1,3\rangle$ and let S be a total dominating set for G. It follows from Lemma 2 and Lemma 3 that $|S| \geq\left\lceil\frac{n}{4}\right\rceil$.

Claim 1. If $n \equiv 2(\bmod 8)$ and S is a total dominating set for G, then $|S| \geq\left\lceil\frac{n}{4}\right\rceil+1$.

Proof of Claim 1. Let $n \equiv 2(\bmod 8)$ and let S be a total dominating set for G. Assume to the contrary that $|S|=\left\lceil\frac{n}{4}\right\rceil$. Let $n=8 k+2$, where k is a positive integer. Since $|S|=\left\lceil\frac{n}{4}\right\rceil$, then $|S|=2 k+1$ is an odd number. So, the induced subgraph $G[S]$ has a component H with at least three vertices. We proceed with Fact B and Fact C.

Fact B. Any component of $G[S]$ has at most three vertices.
To see this, assume to the contrary that G_{1} is a component of $G[S]$ and G_{1} has at least 4 vertices. Without loss of generality assume that G_{1} has 4 vertices. Then S dominates at most $14+8\left(\frac{|S|-4-3}{2}\right)+11=8 k+1$ vertices of G, a contradiction.

Fact C. H is the only odd component of $G[S]$.
To see this, assume to the contrary that $H^{\prime} \neq H$ is a component of $G[S]$ with $\left|V\left(H^{\prime}\right)\right|$ odd. It follows from Fact B that $\left|V\left(H^{\prime}\right)\right|=3$. Since $|S|$ is odd, there is another component $H^{\prime \prime}$ with three vertices. Now S dominates at most $8 k+1$ vertices of G, a contradiction.

Let $V(H)=\left\{v_{i}, v_{j}, v_{l}\right\}$ where $i<j<l$. Let $v_{i^{\prime}}$ be a consecutive vertex of v_{i} with $i^{\prime} \neq j$ and $v_{l^{\prime}}$ be a consecutive vertex of v_{l} with $l^{\prime} \neq j$. Since S dominates $11+8\left(\frac{|S|-3}{2}\right)=8 k+3$ vertices of G, then there is a vertex x of G which has two neighbors in S. Now $\min \{|i-j|,|l-j|\} \neq 2$, and we can assume that x is adjacent to both v_{l} and $v_{l^{\prime}}$. Let $x=v_{t}$ where $t<l^{\prime}$. If $\left|l^{\prime}-t\right|=1$, then v_{t-1} is not dominated by S which is a contradiction. So $\left|l^{\prime}-t\right|=4$. But then v_{t+1} is not dominated by S, a contradiction. Hence $|S| \geq\left\lceil\frac{n}{4}\right\rceil+1$. This completes the proof of Claim 1 .

With a similar manner as in the proof of Claim 1, the following Claim is verified, and we left the proof.

Claim 2. If $n \equiv 2$ or $4(\bmod 8)$ and S is a total dominating set for G, then $|S| \geq\left\lceil\frac{n}{4}\right\rceil+1$.

Now, it is sufficient to define a total dominating set S of required cardinality.

For $n \equiv 0(\bmod 8)$, we define $S=\left\{v_{8 k}, v_{8 k+3}: 0 \leq k<\frac{n}{8}\right\}$.
For $n \equiv 1(\bmod 8)$, we define $S=\left\{v_{0}, v_{3}, v_{6}\right\}$ if $n=9$, and define $S=$ $\left\{v_{8 k}, v_{8 k+3}: 0 \leq k<\frac{n-1}{8}-1\right\} \cup\left\{v_{n-3}, v_{n-6}, v_{n-9}\right\}$ if $n>9$.

For $n \equiv 2(\bmod 8)$, we define $S=\left\{v_{8 k}, v_{8 k+3}: 0 \leq k<\left\lfloor\frac{n}{8}\right\rfloor\right\} \cup\left\{v_{n-3}, v_{n-4}\right\}$.
For $n \equiv 3(\bmod 8)$, we define $S=\left\{v_{8 k}, v_{8 k+3}: 0 \leq k<\left\lfloor\frac{n}{8}\right\rfloor\right\} \cup\left\{v_{n-5}\right\}$.
For $n \equiv 4(\bmod 8)$, we define $S=\left\{v_{8 k}, v_{8 k+3}: 0 \leq k<\left\lfloor\frac{n}{8}\right\rfloor\right\} \cup\left\{v_{n-3}, v_{n-4}\right\}$.
For $n \equiv 5(\bmod 8)$, we define $S=\left\{v_{8 k}, v_{8 k+3}: 0 \leq k<\left\lfloor\frac{n}{8}\right\rfloor\right\} \cup\left\{v_{n-4}, v_{n-5}\right\}$.
For $n \equiv 6(\bmod 8)$, we define $S=\left\{v_{8 k}, v_{8 k+3}: 0 \leq k<\left\lfloor\frac{n}{8}\right\rfloor\right\} \cup\left\{v_{n-5}, v_{n-6}\right\}$.
For $n \equiv 7(\bmod 8)$, we define $S=\left\{v_{8 k}, v_{8 k+1}: 0 \leq k \leq\left\lfloor\frac{n}{8}\right\rfloor\right\}$.
Then S is a total dominating set of cardinality $\left\lceil\frac{n}{4}\right\rceil+1$ when $n \equiv 2,4(\bmod$ $8)$, and of cardinality $\left\lceil\frac{n}{4}\right\rceil$ when $n \not \equiv 2,4(\bmod 8)$.

3 Criticality of domination and total domination

In this section, we study γ-criticality and γ_{t}-criticality in Circulant graphs $G=C_{n}\langle 1,3\rangle$, for any integer $n \geq 4$. This leads us to provide answers to Question 1 and Question 2.

Theorem 5 For $n \geq 6$, the Circulant graph $G=C_{n}\langle 1,3\rangle$ is $\gamma-$ critical if and only if $n \equiv 4(\bmod 5)$.

Proof. First we show that G is γ-critical for $n \equiv 4(\bmod 5)$. Let x be a vertex of $G=C_{5 n+4}\langle 1,3\rangle$ for some positive integer n. Since G is vertex transitive, we assume that $x=v_{n-2}$. It is easy to see that $S=\left\{v_{5 k}: 0 \leq\right.$ $\left.k \leq\left\lfloor\frac{n}{5}\right\rfloor\right\}$ is a dominating set for $G-x$, concluding that $\gamma(G-x) \leq\left\lceil\frac{n}{5}\right\rceil<$ $\left\lceil\frac{n}{5}\right\rceil+1=\gamma(G)$. Hence, G is $\gamma-$ critical.

Suppose now, that $n \not \equiv 4(\bmod 5)$. We Show that G is not γ-critical. By Theorem 1, $\gamma(G)=\left\lceil\frac{n}{5}\right\rceil$. We show that any k vertices of G with $k<\left\lceil\frac{n}{5}\right\rceil$ dominate at most $n-2$ vertices of G. Let T be a subset of vertices with $|T|<\left\lceil\frac{n}{5}\right\rceil$.

If $n \equiv 0(\bmod 5)$, then $n=5 i$ for some integer i. It follows that $\gamma(G)=i$. Now, T dominates at most $5 i-5 \leq n-2$ vertices of G. Similarly for $n \equiv 2,3$ $(\bmod 5), T$ dominates at most $5 i-5 \leq n-2$ vertices of G. So we assume that $n \equiv 1(\bmod 5)$. There is an integer l such that $n=5 l+1$. Without loss of generality let $|T|=\left\lceil\frac{n}{5}\right\rceil-1=l$.

If there are two consecutive vertices x, y in T such that $|x-y|<5$, then $N_{G}[x] \cap N_{G}[y] \neq \emptyset$. Furthermore, $\{x, y\}$ dominates at most nine vertices of G and $T \backslash\{x, y\}$ dominates at most $5(l-2)$ vertices of G. So, T dominates at most $n-2$ vertices of G. It remains to assume that for any two consecutive vertices a, b in $T,|a-b| \geq 5$. But then there are two consecutive vertices x, y in T such that $|x-y|>5$. There exist two vertices u, v in G such that u, v lie between x and y in C, and T does not dominate $\{u, v\}$. So, T dominates at most $n-2$ vertices of G. Hence, G is not γ-critical for $n \not \equiv 4(\bmod 5)$.

Theorem 6 For $n \geq 4$ the Circulant graph $G=C_{n}\langle 1,3\rangle$ is $\gamma_{t}-$ critical if and only if $n \equiv 1(\bmod 8)$.

Proof. Let $G=C_{n}\langle 1,3\rangle$ and $n \geq 4$. First assume that $n \not \equiv 1(\bmod 8)$. We prove that G is not γ_{t}-critical. Let $T \subset V(G)$ be a subset of at most $\gamma_{t}(G)-1$ vertices, and $G[T]$ has no isolated vertex. We show that T totally dominates at most $n-2$ vertices of G. Without loss of generality assume that $|T|=\gamma_{t}(G)-1$. For $n \not \equiv 4(\bmod 8)$, the result follows from applying Lemma 2 and Lemma 3 . So, we let $n \equiv 4(\bmod 8)$. We proceed with the following fact.

Fact D. T totally dominates at most $n-2$ vertices of G.

Proof. Let $|T|=2 k+1$ for some integer k. If two vertices in T have a common neighbor, then the result follows. So, suppose that no two vertices in T have a common neighbor. Without loss of generality we may assume that $G[S]$ has k components $G_{1}, G_{2}, \ldots, G_{k}$ where $\mid V\left(G_{1} \mid=3\right.$ and $\mid V\left(G_{i} \mid=2\right.$ for $i=2,3, \ldots, k$. Let $V\left(G_{1}\right)=\{a, b, c\}$, then $T \backslash\{a, b, c\}$ dominates at most $8 k-8$ vertices of G, and we may assume that $T \backslash\{a, b, c\}$ dominates $8 k-8$ vertices of G. Let G_{1} be the subgraph of G induced by $V(G) \backslash N[T \backslash\{a, b, c\}]$. Then there are the following possiblities for G_{1}.

1) $V\left(G_{1}\right)=\left\{v_{t}, v_{t+1}, \ldots, v_{t+11}\right\}$ where t is an integer and the addition in $t+i$ is in modulo n, and, $E\left(G_{1}\right)=\left\{\left\{V_{t+i}, v_{t+j}\right\}: i \in\{0,1, \ldots, 8\}, j \in\right.$ $\{1,3\}\} \cup\left\{\left\{V_{t+9}, v_{t+10}\right\},\left\{V_{t+10}, v_{t+11}\right\}\right\}$.
2) $V\left(G_{1}\right)=\left\{v_{t}, v_{t+1}, \ldots, v_{t+11}\right\}$ where t is an integer and the addition in $t+i$ is in modulo n, and, $E\left(G_{1}\right)=\left\{\left\{V_{t+i}, v_{t+j}\right\}: i \in\{1, \ldots, 9\}, i \neq 8, j \in\{1,3\}\right\}$

$$
\cup\left\{\left\{V_{t}, v_{t+2}\right\},\left\{V_{t+10}, v_{t+11}\right\},\left\{V_{t+8}, v_{t+9}\right\}\right\} .
$$

For any possiblity for $\{a, b, c\}$, it is easy to see that $\{a, b, c\}$ dominates at most 10 vertices of G_{1}. This completes the proof of Fact D.

Now, it is sufficient to prove that for $n \equiv 1(\bmod 8), G$ is γ_{t}-critical. Let $n \equiv 1(\bmod 8)$, and let x be a vertex of G. We show that $\gamma_{t}(G-x)<$ $\gamma_{t}(G)$. Since G is vertex transitive, we can assume that $x=v_{n-4}$. Then $S=\left\{v_{8 k}, v_{8 k+1}: 0 \leq k<\left\lfloor\frac{n}{8}\right\rfloor\right\}$ is a total dominating set for $G-x$. Hence, G is γ_{t}-critical.

Now, we are ready to provide an answer to Question 1, and a positive answer to question 2. The following is an immediate result of Theorem 5 and Theorem 6, and provide an answer to Question 1.

Theorem 7 (1) For any positive integer $n \geq 1$ with $8 \nmid 5 n+3$, the Circulant graph $C_{5 n+4}\langle 1,3\rangle$ is $\gamma-$ critical and is not $\gamma_{t}-$ critical.
(2) For any positive integer $n \geq 1$ with $5 \nmid 8 n-3$, the Circulant graph $C_{8 n+1}\langle 1,3\rangle$ is $\gamma_{t}-$ critical and is not $\gamma-$ critical.
(3) For any positive integer $n \geq 1$ with $8 \mid 5 n+3$, the Circulant graph $C_{5 n+4}\langle 1,3\rangle$ is both $\gamma_{t}-$ critical and $\gamma-$ critical.

Since for any $n \geq 1, \gamma_{t}\left(C_{8 n+1}\langle 1,3\rangle\right)=2 n+1$ and $\Delta\left(C_{8 n+1}\langle 1,3\rangle\right)=4$, then $C_{8 n+1}\langle 1,3\rangle$ is a γ_{t}-critical graph of order $\left(\gamma_{t}-1\right) \Delta+1$. Hence, the following result provides a positive answer to question 2 .

Theorem 8 For any odd $k \geq 3$ there exists a $k-\gamma_{t}$-critical graph G of order $\left(\gamma_{t}(G)-1\right) \triangle(G)+1$.

References

[1] R. C. Brigham, P. Z. Chinn, and R. D. Dutton, Vertex domination-critical graphs, Networks, 18(1988), 173-179.
[2] W. Goddard, T. W. Haynes, M. A. Henning, and L. C. van der Merwe, The diameter of total domination vertex critical graphs. Discrete Math. 286 (2004), 255-261.
[3] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
[4] D. A. Mojdeh and N. Jafari Rad, On an open problem concerning total domination critical graphs, Expositions Mathematicae, 25(2007), 175-179.

Department of Mathematics,
Shahrood University of Technology, Shahrood, Iran
e-mail: n.jafarirad@shahroodut.ac.ir

[^0]: Key Words: Domination; total domination; Circulant graph.
 Mathematics Subject Classification: 05C69.
 Received: November, 2008
 Accepted: April, 2009

