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On the existence and nonexistence of positive

entire large solutions for semilinear elliptic

equations

Maria-Magdalena BOUREANU

Abstract

In this paper we are studying the existence of positive entire large
solutions for the problem ∆u = p1(x)uα + p2(x)uβf(u) in R

N , N ≥ 3.
Moreover, we are interested in the relation between the existence or
nonexistence of such solutions for the above problem and the existence
or nonexistence of such solutions for the problems ∆u = p1(x)uα and
∆u = p2(x)uβf(u).

1 Introduction

In the present paper we are discussing the existence of large solutions for some
semilinear elliptic equations.

Definition 1 (i) A positive solution u of an elliptic equation on Ω 6≡ R
N

satisfying the condition

u(x) → ∞, as dist(x, ∂Ω) → 0

is called a large (blow-up, explosive) solution of that equation.
(ii) A positive solution u of an elliptic equation on R

N satisfying the con-
dition

u(x) → ∞, as |x| → ∞

is called a positive entire large solution of that equation.
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The study of large solutions has been initiated in 1916 by Bieberbach [2]
who studied the equation ∆u = eu in the plane. He showed that there exists a
unique solution of this equation such that u(x)−log(dist(x, ∂Ω)−2) is bounded
as dist(x, ∂Ω) → 0. Problems of this type arise in Riemannian geometry: if
a Riemannian metric of the form |ds|2 = e2u(x)|dx|2 has constant Gaussian
curvature −c2, then ∆u = c2e2u. Motivated by a problem in mathematical
physics, in 1943 Rademacher [15] continued the study of Bieberbach on smooth
bounded domains in R

3.
Later on, due to their applicability in a number of different areas, problems

of this type were studied under the general form ∆u = f(u) in N-dimensional
domains. A special attention was paid to the equations of the form

∆u = p(x)uγ (1)

which was studied in bounded and in unbounded domains. In [5], Cheng and
Ni proved that (1) has a unique entire large solution in R

N provided that
function p is positive and smooth, γ > 1 and that there exists m > 2 such
that |x|mp(x) is bounded for large |x|. In [1], Bandle and Marcus showed
the existence and uniqueness of a positive entire large solution for the more
general equation

∆u = g(x, u),

which includes the case g(x, u) = p(x)uγ where γ > 1 and the function p(x) is
positive and continuous such that p and 1/p are bounded. The study of the
existence of positive large solutions for (1) in the superlinear case is included
in many studies, see for example [6]. Nonexistence results of large positive
solutions for (1) with γ > 1 were given in [13], [12] and [4]. Although the
sublinear case has not received as much attention as the superlinear case, we
will recall some results concerning the existence of solution to equation (1) in
both cases in Section 2.

For more information on problems with large solutions we refer to [16] or to
the recent book [7]. In [16] Rădulescu was concerned with some recent results
related to various singular phenomena arising in the study of nonlinear elliptic
equations. He established qualitative results on the existence, nonexistence or
the uniqueness of solutions concerning the following types of problems:

(i) blow-up boundary solutions of logistic equations;
(ii) Lane-Emden-Fowler equations with singular nonlinearities and sub-

quadratic convection term.
Rădulescu studied the combined effects of various terms involved in these

problems: sublinear or superlinear nonlinearities, singular nonlinear terms,
convection nonlinearities, as well as sign-changing potentials, also taking into
consideration bifurcation nonlinear problems. The precise rate decay of the
solution was established in some concrete situations.
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In the second chapter of [7], Rădulescu was concerned with a class of singu-
lar solutions for logistic - type equations. He focused on positive solutions with
blow-up boundary behavior and he formulated several sufficient conditions for
the existence of such solutions. In one of the main results it was established
a necessary and sufficient condition for the existence of explosive boundary
solutions in the singular case of a potential that vanishes on the boundary.

In this paper our interest goes to the intriguing situation when

∆u = q1(x)f1(u) and ∆u = q2(x)f2(u)

both have positive entire large solutions while

∆u = q1(x)f1(u) + q2(x)f2(u)

has not. One of our main results present such a case. On the other hand,
there are cases when if one of the problems ∆u = q1(x)f1(u) and ∆u =
q2(x)f2(u) has no positive entire large solutions, then necessarily problem
∆u = q1(x)f1(u) + q2(x)f2(u) has none. Some interesting results of this kind
were given by Lair in [10].

Here we consider the following class of semilinear elliptic equations

{
∆u = p1(x)uα + p2(x)uβf(u) in R

N ,
u ≥ 0, u 6≡ 0 in R

N ,
(2)

where N ≥ 3 and f is under the assumptions

f ∈ C1([0, ∞)), f ′ ≥ 0, f ≥ 1. (3)

Note that the conditions imposed on f are quite permissive, thus f can be
chosen to be an appropriate polynomial function or a logarithmical function,
an exponential function etc. Our purpose is to establish conditions on p1, p2,
α and β so that situations like the ones described above would appear.

The rest of our paper has the following structure. In Section 2 we make
some notation and we give some results that will be used later in the proof
of our main theorems. In Section 3 we are studying the relation between the
existence or nonexistence of positive entire large solutions for problem (2) and
the existence or nonexistence of such solutions for the problems ∆u = p1(x)uα

and ∆u = p2(x)uβf(u).

In order to simplify the reading, throughout this paper, C will denote a
universal positive constant, depending on different parameters, whose value
may change from line to line.
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2 Preliminary results

We consider the following semilinear elliptic problem:

{
∆u = p(x)k(u) in Ω,
u ≥ 0, u 6≡ 0 in Ω.

(4)

Let us denote

Mp(r) ≡ max
|x|=r

p(x) (5)

and

mp(r) ≡ min
|x|=r

p(x). (6)

Definition 2 A nonnegative function p is said to be c-positive in Ω if for
every x0 ∈ Ω with p(x0) = 0 there is a domain Ω0 ∋ x0 such that Ω0 ⊂ Ω and
p > 0 on ∂Ω0.

We recall two theorems given by Ĉırstea and Rădulescu in [6].

Theorem 1 Let Ω ⊂ R
N , N ≥ 3, be an open, bounded, connected, smooth

set with compact boundary. Assume p ∈ C0,µ(Ω) (0 < µ < 1) is a c-positive
function in Ω and k satisfies

k ∈ C1([0, ∞)), k′ ≥ 0, k(0) = 0 and k > 0 on (0,∞) (7)

and the so-called Keller-Osserman condition (see [9] and [14])

∫ ∞

1

[2K(t)]−1/2dt < ∞, (8)

where K(t) =
∫ t

0
k(s)ds. Then the problem (4) has a positive large solution.

Theorem 2 Let us consider problem (4) with Ω = R
N , N ≥ 3. Suppose

there exists a sequence of smooth bounded connected sets (Ωn)n≥1 such that
Ωn ⊂ Ωn+1, R

N =
⋃∞

n=1 Ωn and p is c-positive in Ωn, for any n ≥ 1. Also,

suppose that the function p ∈ C0,µ
loc (RN ) (0 < µ < 1) verifies

∫ ∞

0

rMp(r)dr < ∞ (9)

and the nonlinearity k verifies (7) and (8). Then (4) has a positive entire
large solution.
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Next, we consider the problems

{
∆u = p1(x)uα in R

N ,
u ≥ 0, u 6≡ 0 in R

N ,
(10)

and {
∆u = p2(x)uβf(u) in R

N ,
u ≥ 0, u 6≡ 0 in R

N ,
(11)

where N ≥ 3.
Based on the already known results, a characterization of the existence

and the nonexistence of positive entire large solutions for problem (10) may
be formulated as follows. For the superlinear case where α > 1 equation (10)
has such solutions if p satisfies (9) and it will not generally have positive entire
large solutions if ∫ ∞

0

rmp(r)dr = ∞. (12)

The sublinear case, where 0 < α ≤ 1, behaves generally in the opposite man-
ner. In the case when p(x) is radial, we have the following result, given by
Lair and Wood [11].

Theorem 3 Suppose 0 < α ≤ 1 and p(x) = p(|x|) ∈ C(RN ) is nonnegative
and nontrivial. Then the equation ∆u = p(|x|)uα has a positive entire large
solution if and only if ∫ ∞

0

rp(r)dr = ∞ (13)

takes place.

In what concerns problem (11), with the aid of Theorem 2 we can prove the
following lemma.

Lemma 1 Assume that β > 1, f verifies (3) and p2 ∈ C0,µ
loc (RN ) (N ≥ 3,

0 < µ < 1) satisfies condition (9). Suppose there exists a sequence of smooth
bounded connected sets (Ωn)n≥1 such that Ωn ⊂ Ωn+1, R

N =
⋃∞

n=1 Ωn and p2

is c-positive in Ωn, for any n ≥ 1. Then problem (11) has a positive entire
large solution.

Proof. We will show that we are under the hypotheses of Theorem 2.
First we consider the function k defined by k(u) = uβf(u). We will show

that our k verifies conditions (7) and (8).
Due to the fact that f is satisfying (3), it is easy to see that k is satisfying

(7). Since p2 satisfies condition (9), it only remains to see if (8) is also fulfilled.
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Since f ≥ 1,

K(t) =

∫ t

0

k(s)ds =

∫ t

0

sβf(s)ds ≥

∫ t

0

sβds =
tβ+1

β + 1
.

There exists t0 (e.g. t0 := β + 1) such that for all t > t0 > 1,

2K(t) ≥
2

β + 1
tβ+1 ≥ 1.

Hence, for t > t0 > 1,

[2K(t)]−1/2 ≤

[
2

β + 1
tβ+1

]−1/2

which implies

∫ ∞

t0

[2K(t)]−1/2dt ≤

∫ ∞

t0

[
2

β + 1
tβ+1

]−1/2

dt.

We obtain
∫ ∞

1
[2K(t)]−1/2dt =

∫ t0

1
[2K(t)]−1/2dt +

∫ ∞

t0

[2K(t)]−1/2dt ≤ C + C

∫ ∞

t0

t−(β+1)/2dt

≤ C + C · t(−β+1)/2
∣∣∞
t0

.

But α > 0, therefore limt→∞ t(−β+1)/2 = 0 and consequently

∫ ∞

1

[2K(t)]−1/2dt < ∞.

Therefore we can conclude that problem (11) has a positive entire large
solution.

�

3 Main results

In what follows we state our main results. The proofs are based on the maxi-
mum principle and on the results presented in the previous section.

Theorem 4 Assume α > 1 and p1 ∈ C0,µ
loc (RN ) (N ≥ 3, 0 < µ < 1) is c-

positive in Ωn, where by Ωn we understand the ball |x| < n. If problem (10)
has no positive entire large solutions, then problem (2) has no positive entire
large solutions.
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Proof.
Firstly we show that the function k(u) = uα fulfills conditions (7) and (8),

for α > 1. Obviously, k ∈ C1([0, ∞)), k′ ≥ 0, k(0) = 0 and k > 0 on (0,∞),
thus (7) is fulfilled. For the Keller-Osserman condition, we have

K(t) =

∫ t

0

k(s)ds =

∫ t

0

sαds =
tα+1

α + 1
.

In the same manner as in the proof of Lemma 1 we obtain the fact that k
satisfies (8). Therefore, by applying Theorem 1, we can consider vn to be a
positive solution of

{
∆vn = p1(x)vα

n in Ωn,
vn(x) → ∞ as x → ∂Ωn.

Since Ωn ⊂ Ωn+1 we can apply, for each n ≥ 1, the maximum principle in order
to find that vn ≥ vn+1 in Ωn. The positive sequence (vn)n is monotonically
decreasing and thus converges to a function v on R

N .
Arguing by contradiction, we assume that problem (2) has a positive entire

large solution and we denote it ũ. Due to the fact that ũ ≤ vn on Ωn for
all n ∈ N we have ũ ≤ v on R

N . Since ũ is positive and ũ(x) → ∞ as
|x| → ∞, the function v has the same properties. A standard regularity
argument can be used to show that the function v is a positive entire large
solution of (10), which, by hypothesis, has none. Hence we have obtained the
desired contradiction.

�

Remark 1 For problem (10) not to have positive entire large solutions under
the hypotheses of Theorem 4, p1 must not fulfill condition (9), since function
k(u) = uα fulfills conditions (7) and (8), for α > 1.

Moreover, the following corollary takes place.

Corollary 1 Assume α > 1 and p1 ∈ C0,µ
loc (RN ) (N ≥ 3, 0 < µ < 1) is

c-positive in Ωn, where by Ωn we understand the ball |x| < n. Assume the
function p1 satisfies (12), mp1

(r) is non-increasing for large r and

lim sup
r→∞

r2mp1
(r) > 0,

where mp1
(r) is given by formula (6). Then problem (2) has no positive entire

large solutions.

Proof. Under these hypotheses, from [8, Theorem 3.1] we know that
problem (10) has no positive entire large solutions. Thus by applying Theorem
4, problem (2) has no positive entire large solutions either. �
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Theorem 5 Assume β > 1, f satisfies (3) and p2 ∈ C0,µ
loc (RN ) (N ≥ 3,

0 < µ < 1) is c-positive in Ωn, where by Ωn we understand the ball |x| < n.
If problem (11) has no positive entire large solutions, then problem (2) has no
positive entire large solutions.

Proof. As seen in the proof of Lemma 1, function k(u) = uβf(u) fulfills
conditions (7) and (8), for β > 1. Using Theorem 1, we can consider vn to be
a nonnegative solution of

{
∆vn = p2(x)vβ

nf(u) in Ωn,
vn(x) → ∞ as x → ∂Ωn.

By the maximum principle, the positive sequence (vn)n is monotonically
decreasing and thus converges to a function v on R

N . Arguing by contradic-
tion, we assume problem (2) has a positive entire large solution. With the same
arguments as in the proof of the above theorem, we obtain that the function
v is a positive entire large solution of (11). This contradicts the hypothesis.

�

Remark 2 For problem (11) not to have positive entire large solutions under
the hypotheses of Theorem 5, p2 must not fulfill condition (9), since function
k(u) = uβf(u) fulfills conditions (7) and (8), for β > 1.

We saw that under certain conditions, if one of the problems (10) and
(11) has no positive entire large solutions, then problem (2) has no positive
entire large solutions. What happens when both problems (10) and (11) have
positive entire large solutions? We can not give a straight answer, because
there are cases when (2) has positive entire large solutions, but there are also
cases when (2) does not have such solutions. Let us give some examples in
both directions.

For f ≡ 1 we consider the particular case of (2)

{
∆u = p1(x)uα + p2(x)uβ in R

N ,
u ≥ 0, u 6≡ 0 in R

N ,
(14)

where N ≥ 3.

Theorem 6 (Lair [10, Theorem 1]). Suppose the nonnegative functions p1

and p2 are locally Hölder continuous on R
N and have the property that

min{p1(x), p2(x)} is c-positive in R
N . Suppose 0 < α ≤ 1 < β, p1 satisfies

(9) and p2 satisfies

∫ ∞

0

rMp2
(r)e(β−1)(N−2)

∫
r

0
sMp1

(s)dsdr < ∞,
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where Mp1
, Mp2

are given as in formula (5). Then problem (14) has a positive
entire large solution.

This is an interesting and new result which complements some results that
have already been established. Still, the situation when both problems (10)
and (11) have positive entire large solutions while problem (2) does not have
such solutions appears to be more intriguing. In [10], Lair showed, for N ≥ 3
and α > 2, that even though the problems

{
∆u = u in R

N ,
u ≥ 0, u 6≡ 0 in R

N .
(15)

and

{
∆u = e−|x|uα in R

N ,
u ≥ 0, u 6≡ 0 in R

N .

have positive entire large solutions, the situation is completely different for
the problem {

∆u = u + e−|x|uα in R
N ,

u ≥ 0, u 6≡ 0 in R
N .

In the recent work [3], for N ≥ 3, f satisfying (3) and α > 2, we improved the
above results and obtained that (15) and

{
∆u = e−|x|uαf(u) in R

N ,
u ≥ 0, u 6≡ 0 in R

N ,

have positive entire large solutions while
{

∆u = u + e−|x|uαf(u) in R
N ,

u ≥ 0, u 6≡ 0 in R
N .

has not. Here, by giving the next theorem, we make another improvement.

Theorem 7 Assume N ≥ 3, β > 2, p1 ∈ C(RN ) satisfies p1(x) = p1(|x|) ≥ 1
and relation (13), p2 ∈ C0,µ

loc (RN ) (0 < µ < 1) satisfies p2(x) ≥ e−|x| and
relation (9), f verifies (3). Although both problems

{
∆u = p1(|x|)u in R

N ,
u ≥ 0, u 6≡ 0 in R

N ,
(16)

and (11) have positive entire large solutions, problem
{

∆u = p1(|x|)u + p2(x)uβf(u) in R
N ,

u ≥ 0, u 6≡ 0 in R
N ,

(17)

has no such solutions.
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Proof.
By Theorem 3 and Lemma 1, problems (16) and (11) have positive entire

large solutions. Therefore we focus on showing that (17) does not have such
solutions. The proof basically follows the same ideas as in [3] and [10]. Arguing
by contradiction, we assume that there exists a positive entire large solution
w of (17). Then, we can assume that there exists a radial solution u such that
u satisfies the integral equation

u(r) = u0 +

∫ r

0

t1−N

∫ t

0

sN−1[p1(s)u(s) + p2(s)u
β(s)f(u(s))]dsdt, (18)

where 0 < u0 =: u(0) < w(0). We note that if (18) did not have a positive
solution valid for all r > 0, its solution u, since it is an increasing function,
would blow up at some R > 0 letting u to be a positive large solution of
∆u = p1(|x|)u + p2(x)uβf(u) on the ball |x| ≤ R, therefore u ≥ w on |x| ≤ R
contradicting the fact u0 < w(0). Since we have established that u satisfies
(18) and we also have p1(|x|) ≥ 1, p2(x)uβf(u) ≥ 0, we come to the inequality

u(r) ≥ u0 +

∫ r

0

t1−N

∫ t

0

sN−1u(s)dsdt.

We substitute u(r) ≥ u0 into the right side and we obtain

u(r) ≥ u0

(
1 +

r2

1!21N

)
.

We substitute this new expression into the right side and we obtain

u(r) ≥ u0

(
1 +

r2

1!21N
+

r4

2!22N(N + 2)

)
.

Continuing to substitute every new expression obtained into the right side we
arrive at

u(r) ≥ u0

∞∑

k=0

r2k

k!2kN(N + 2) ... (N + 2k − 2)
.

Rewriting, we get

u(r) ≥ u0Γ(N/2)

∞∑

k=0

1

k!Γ(N
2 + k)

(r

2

)2k

hence
u(r) ≥ Cr1−N/2IN/2−1(r),
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where IN/2−1 is the modified Bessel function with index N/2 − 1. It is a known
fact that for r large enough there exists C such that

IN/2−1(r) ≥ Cerr−1/2.

Combining the last two relations we obtain

u(r) ≥ Cerr(1−N)/2 for large r,

thus there exists ε > 0 small enough such that

u(r) ≥ ε[1 + e(1−ε)r] for all r ≥ 0. (19)

We will choose ε > 0 small enough so that β − 1
1−ε > 1.

For γ := β − 1
1−ε > 1 and c0 := ε1/(1−ε), let vn be a nonnegative solution

to the problem {
∆vn = c0v

γ
n in Ωn,

vn(x) → ∞ as x → ∂Ωn,

where by Ωn we understand the ball |x| < n. Since Ωn ⊂ Ωn+1 we can apply,
for each n ≥ 1, the maximum principle in order to find that vn ≥ vn+1 in
Ωn. The nonnegative sequence (vn)n is monotonically decreasing and thus
converges to a function v on R

N with

∆v = c0v
γ . (20)

If we show that u ≤ v, it follows that v is a positive entire large solution of
(20) and we obtain the desired contradiction since (20) has no such solution
(see [9] and [14]). Therefore, when we will show that u ≤ v, the proof of our
theorem will be complete.

To obtain u ≤ v we will show that u ≤ vn in Ωn, for all n, since R
N =⋃∞

n=1 Ωn. For that we will use again the method of reduction to absurdity.
Suppose that there exists a n0 such that maxΩn0

[u(x)−vn0
(x)] > 0. Since this

maximum cannot occur on ∂Ωn0
, we deduce that there exists x0 ∈ Ωn0

where
it does occur. Keeping in mind (19), the fact that p2(x) ≥ e−|x|, p1(|x|) ≥ 1
and that f ≥ 1, at this point x0 we have

0 ≥ ∆(u − vn0
) = p1(|x0|)u + p2(x0)u

βf(u) − c0vγ
n0

≥ u + e−|x0|uβ − c0vγ
n0

≥ u + e−|x0|u1/(1−ε)uγ − c0vγ
n0

≥ u + e−|x0|
[
ε

(
1 + e(1−ε)|x0|

)]1/(1−ε)
uγ − c0vγ

n0

≥ u + c0uγ − c0vγ
n0

> 0,

which is a contradiction and our proof is complete.
�
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