A Bernstein-Stancu type operator which preserves e_{2}

Ingrid OANCEA

Abstract

In this paper we construct a Bernstein-Stancu type operator following a J.P.King model.

1 Introduction

Most of linear and positive operators on $C[a, b]$ preserve e_{0} and e_{1} :

$$
\begin{aligned}
& L_{n}\left(e_{0}\right)(x)=e_{0}(x) \\
& L_{n}\left(e_{1}\right)(x)=e_{1}(x)
\end{aligned}
$$

for each $n=0,1,2, \ldots$ and $x \in[a, b]$.
J.P. King defined in [3] an interesting class of operators which preserve e_{2}. Let $\left(s_{n}(x)\right)_{n \in \mathbb{N}}$ be a sequence of continuous functions on $[0,1]$ so that $0 \leq s_{n}(x) \leq 1$. For any $f \in C[0,1]$ and $x \in[0,1]$ let $V_{n}: C[0,1] \rightarrow C[0,1]$ be defined by

$$
\begin{equation*}
\left(V_{n} f\right)(x)=\sum_{k=0}^{n}\binom{n}{k} s_{n}^{k}(x)\left(1-s_{n}(x)\right)^{n-k} f\left(\frac{k}{n}\right) \tag{1}
\end{equation*}
$$

For $s_{n}(x)=x, n \in \mathbb{N}$ operators V_{n} become Bernstein operators. The values of the operators V_{n} on test functions $e_{j}=x^{j}, j=0,1,2$ are given by

$$
\left(V_{n} e_{0}\right)(x)=1
$$

Key Words: Positive linear operator; Bernstein operator; Stancu operator.
Mathematics Subject Classification: 41A36.
Received: July, 2008
Accepted: March, 2009

$$
\begin{gathered}
\left(V_{n} e_{1}\right)(x)=s_{n}(x) \\
\left(V_{n} e_{2}\right)(x)=\frac{1}{n} s_{n}(x)+\frac{n-1}{n} s_{n}^{2}(x)
\end{gathered}
$$

Using Bohman-Korovkin theorem ([1], [4]) it follows immediately that $\lim _{n \rightarrow \infty} V_{n} f=$ f uniformly on $[0,1]$ if and only if $\lim _{n \rightarrow \infty} s_{n}(x)=x$ uniformly on $[0,1]$.

In order to preserve e_{2}, the s_{n} sequence has to be as it follows:

$$
\left\{\begin{array}{l}
s_{1}(x)=x^{2} \\
s_{n}(x)=-\frac{1}{2(n-1)}+\sqrt{\frac{n}{n-1} x^{2}+\frac{1}{4(n-1)^{2}}}, n=2,3, \ldots
\end{array}\right.
$$

2 Main results

D.D. Stancu (see [5], [6]) defined for two positive numbers $0 \leq \alpha \leq \beta$ independent of n and for any function $f \in C[0,1]$ the operator,

$$
\begin{equation*}
\left(P_{n}^{(\alpha, \beta)} f\right)(x)=\sum_{k=0}^{n} p_{n, k}(x) f\left(\frac{k+\alpha}{n+\beta}\right) . \tag{2}
\end{equation*}
$$

The Bernstein Stancu operator uses the equidistant knots $a_{0}=\frac{\alpha}{n+\beta}, a_{1}=$ $x_{0}+h, \ldots, a_{n}=x_{0}+n h$ where $h=\frac{1}{n+\beta}$ and because $\left(P_{n}^{(\alpha, \beta)} f\right)(0)=f\left(\frac{\alpha}{n+\beta}\right)$ and $\left(P_{n}^{(\alpha, \beta)} f\right)(1)=f\left(\frac{n+\alpha}{n+\beta}\right)$, interpolates function f in $x=0$ if $\alpha=0$ and in $x=1$ if $\alpha=\beta$.

Values on test function are given by:

$$
\begin{gather*}
\left(P_{n}^{(\alpha, \beta)} e_{0}\right)(x)=1 \tag{3}\\
\left(P_{n}^{(\alpha, \beta)} e_{1}\right)(x)=x+\frac{\alpha-\beta x}{n+\beta} \tag{4}\\
\left(P_{n}^{(\alpha, \beta)} e_{2}\right)(x)=x^{2}+\frac{n x(1-x)+(\alpha-\beta x)(2 n x+\beta x+\alpha)}{(n+\beta)^{2}} \tag{5}
\end{gather*}
$$

so we can state that for any $f \in C[0,1]$ the sequence $\left(\left(P_{n}^{(\alpha, \beta)} f\right)(x)\right)_{n \in \mathbb{N}}$ converges uniformly to $f(x)$ on $[0,1]$.

We define now the operators $V_{n}^{(\alpha, \beta)}: C[0,1] \rightarrow C[0,1]$ by

$$
\begin{equation*}
\left(V_{n}^{(\alpha, \beta)} f\right)(x)=\sum_{k=0}^{n}\binom{n}{k} r_{n}^{k}(x)\left(1-r_{n}(x)\right)^{n-k} f\left(\frac{k+\alpha}{n+\beta}\right), \tag{6}
\end{equation*}
$$

for any function $f \in C[0,1]$ and $x \in[0,1]$.
It's obvious that for $r_{n}(x)=x, n \in \mathbb{N}$ the Bernstein-Stancu operators are obtained, and for $a=\beta=0$ the V_{n} operators defined by (1) are obtained.

The $V_{n}^{(\alpha, \beta)}$ operators are linear and positive.
Using the relations (3)-(5) the following theorem can be easily proved:
Theorem 2.1 The operators $V_{n}^{(\alpha, \beta)}$ have the following properties:
1.

$$
\begin{gather*}
\left(V_{n}^{(\alpha, \beta)} e_{0}\right)(x)=1 \tag{7}\\
\left(V_{n}^{(\alpha, \beta)} e_{1}\right)(x)=\frac{n}{n+\beta} r_{n}(x)+\frac{\alpha}{n+\beta} \tag{8}\\
\left(V_{n}^{(\alpha, \beta)} e_{2}\right)(x)=\frac{1}{(n+\beta)^{2}}\left(n(n-1) r_{n}^{2}(x)+n(1+2 \alpha) r_{n}(x)+\alpha^{2}\right) \tag{9}
\end{gather*}
$$

2. For any function $f \in C[0,1]$ şi $x \in[0,1]$ we have

$$
\lim _{n \rightarrow \infty} V_{n}^{(\alpha, \beta)} f=f
$$

uniformly on $[0,1]$ if and only if

$$
\lim _{n \rightarrow \infty} r_{n}(x)=x
$$

uniformly on $[0,1]$.
Next we impose the condition $V_{n}^{(\alpha, \beta)} e_{2}=e_{2}$, that is

$$
\frac{1}{(n+\beta)^{2}}\left(n(n-1) r_{n}^{2}(x)+n(1+2 \alpha) r_{n}(x)+\alpha^{2}\right)=x^{2}
$$

or

$$
n(n-1) r_{n}^{2}(x)+n(1+2 \alpha) r_{n}(x)+\alpha^{2}-x^{2}(n+\beta)^{2}=0
$$

If we denote

$$
\begin{aligned}
a & =n(n-1) \\
b & =n(1+2 \alpha) \\
c & =\alpha^{2}-(n+\beta)^{2} x^{2}
\end{aligned}
$$

then the discriminant is given by

$$
\begin{aligned}
\Delta & =n^{2}(1+2 \alpha)^{2}-4 n(n-1)\left(\alpha^{2}-(n+\beta)^{2} x^{2}\right)= \\
& =n^{2}+4 n \alpha(n+\alpha)+4 n(n-1)(n+\beta)^{2} x^{2} \geq 0
\end{aligned}
$$

for any $x \in[0,1]$. For $n \neq 1$ the solutions of the equation are

$$
\left(r_{n}(x)\right)_{1,2}=\frac{-n(1+2 \alpha) \pm \sqrt{n^{2}(1+2 \alpha)^{2}-4 n(n-1)\left(\alpha^{2}-(n+\beta)^{2} x^{2}\right)}}{2 n(n-1)}
$$

We choose
$r_{n}^{*}(x)=\frac{-n(1+2 \alpha)+\sqrt{n^{2}(1+2 \alpha)^{2}-4 n(n-1)\left(\alpha^{2}-(n+\beta)^{2} x^{2}\right)}}{2 n(n-1)}, \quad n>1$
and

$$
\begin{equation*}
r_{1}^{*}(x)=x^{2} . \tag{10}
\end{equation*}
$$

Lemma 2.2 For any $x \in\left[\frac{\alpha}{n+\beta}, \frac{n+\alpha}{n+\beta}\right]$ the following inequality holds $0 \leq$ $r_{n}^{*}(x) \leq 1$.

Proof. Because $r_{n}^{*}(x)=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ the inequality $0 \leq r_{n}^{*}(x) \leq 1$ becomes

$$
0 \leq \frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \leq 1
$$

Since $a>0$ we get

$$
\begin{gathered}
0 \leq-b+\sqrt{b^{2}-4 a c} \leq 2 a \\
0 \leq b \leq \sqrt{b^{2}-4 a c} \leq 2 a+b
\end{gathered}
$$

which leads to

$$
\begin{gathered}
b^{2} \leq b^{2}-4 a c \leq 4 a^{2}+4 a b+b^{2} \\
0 \leq-a c \leq a^{2}+a b .
\end{gathered}
$$

It results that we have to find $x \in[0,1]$ such that

$$
\left\{\begin{array}{c}
c \leq 0 \\
a+b+c \geq 0
\end{array} .\right.
$$

Replacing a, b, c we obtain $c \leq 0$ if $\alpha^{2}-(n+\beta)^{2} x^{2} \leq 0$, that is $x \in\left[\frac{\alpha}{n+\beta}, 1\right]$, and $a+b+c \geq 0$ becomes

$$
\begin{gathered}
n(n-1)+n(1+2 \alpha)+\alpha^{2}-(n+\beta)^{2} x^{2} \geq 0 \\
x^{2} \leq\left(\frac{n+\alpha}{n+\beta}\right)^{2}
\end{gathered}
$$

therefore $x \in\left[0, \frac{n+\alpha}{n+\beta}\right]$ which eventually gives us that $x \in\left[\frac{\alpha}{n+\beta}, \frac{n+\alpha}{n+\beta}\right]$.

If we denote $I_{n}=\left[\frac{\alpha}{n+\beta}, \frac{n+\alpha}{n+\beta}\right]$ from the inequalities

$$
\frac{\alpha}{n+\beta+1} \leq \frac{\alpha}{n+\beta} \leq \frac{n+\alpha}{n+\beta} \leq \frac{n+\alpha+1}{n+\beta+1}
$$

it follows that $I_{n} \subset I_{n+1}, n \in \mathbb{N}$; moreover for $n \rightarrow \infty$ the interval I_{n} becomes $[0,1]$.

One can notice that $\lim _{n \rightarrow \infty} r_{n}^{*}(x)=x$, so we have the following
Theorem 2.3 The operators $V_{n}^{(\alpha, \beta)}$ given by 6 with the sequence $\left(r_{n}^{*}(x)\right)_{n \in \mathbb{N}}$ defined by 10, 11 have the following properties:

1. they are linear and positive on $C[0,1]$
2. $\left(V_{n}^{(\alpha, \beta)} e_{2}\right)(x)=e_{2}(x), n \in \mathbb{N}^{*}$ for any $x \in\left[\frac{\alpha}{n+\beta}, \frac{n+\alpha}{n+\beta}\right]$
3. $\lim _{n \rightarrow \infty} V_{n}^{(\alpha, \beta)} f=f$ for any $f \in C[0,1], x \in\left[\frac{\alpha}{n+\beta}, \frac{n+\alpha}{n+\beta}\right]$.

If L is a linear and positive operator on $C[a, b]$, then for any continuous function $f \in C[a, b]$ and $x \in[a, b]$ we have the evaluation (see [2], pg. 30)

$$
\begin{align*}
& |(L f)(x)-f(x)| \leq|f(x)|\left|\left(L e_{0}\right)(x)-1\right|+\left(\left(L e_{0}\right)(x)+\frac{\left(L \varphi_{x}\right)(x)}{\delta}\right) \omega(f, \delta) \leq \\
& \quad \leq|f(x)|\left|\left(L e_{0}\right)(x)-1\right|+\left(\left(L e_{0}\right)(x)+\frac{\sqrt{\left(L e_{0}\right)(x)\left(L \varphi_{x}^{2}\right)(x)}}{\delta}\right) \omega(f, \delta) \tag{12}
\end{align*}
$$

$(\forall) x \in I,(\forall) \delta>0$, where $\varphi_{x}=e_{1}-x e_{0}$
If the operator L satisfies the conditions $L e_{0}=e_{0}$ şi $L e_{2}=e_{2}$ then the evaluation (12) can be written as:

$$
|(L f)(x)-f(x)| \leq\left(1+\frac{\sqrt{\left(L \varphi_{x}^{2}\right)(x)}}{\delta}\right) \omega(f, \delta)
$$

and since

$$
\begin{gather*}
\left(L \varphi_{x}^{2}\right)(x)=L\left(\left(e_{1}-x e_{0}\right)^{2}, x\right)=\left(L e_{2}\right)(x)-2 x\left(L e_{1}\right)(x)+x^{2}\left(L e_{0}\right)(x)= \\
=2 x^{2}-2 x\left(L e_{1}\right)(x)=2 x\left(x-\left(L e_{1}\right)(x)\right) \tag{13}
\end{gather*}
$$

we can also write that

$$
|(L f)(x)-f(x)| \leq\left(1+\frac{\sqrt{2 x\left(x-\left(L e_{1}\right)(x)\right)}}{\delta}\right) \omega(f, \delta)
$$

for any $f \in C[a, b]$ and $x \in[a, b]$.
Since the operator L is positive and $\varphi_{x}^{2} \geq 0$ we get that $L \varphi_{x}^{2} \geq 0$ which is equivalent with $2 x\left(x-\left(L e_{1}\right)(x)\right)$. It follows that for any $x \in[a, b], a \geq 0$ the inequality

$$
\left(L e_{1}\right)(x) \leq x
$$

holds true.
Taking $[a, b]=I_{n}$ and $L=V_{n}^{(\alpha, \beta)}$ as a particular case we obtain:
Lemma 2.4 For any $x \in I_{n}$ if $r_{n}(x)=r_{n}^{*}(x)$ we have

$$
\left(V_{n}^{(\alpha, \beta)} e_{1}\right)(x) \leq x
$$

We got that for any $x \in I_{n}$ we have $\left(V_{n}^{(\alpha, \beta)} e_{0}\right)(x)=e_{0}(x),\left(V_{n}^{(\alpha, \beta)} e_{2}\right)(x)=$ $e_{2}(x)$ şi $\left(V_{n}^{(\alpha, \beta)} e_{1}\right)(x) \leq x$; therefore the following evaluation stands:

$$
\left|\left(V_{n}^{(\alpha, \beta)} f\right)(x)-f(x)\right| \leq\left(1+\frac{\sqrt{2 x\left(x-\left(V_{n}^{(\alpha, \beta)} e_{1}\right)(x)\right)}}{\delta}\right) \omega(f, \delta)
$$

The order of approximation is at least as good as in case of approximation by Bernstein-Stancu polynomials for those $x \in I_{n}$ for which the following inequality is true

$$
\begin{equation*}
\left(V_{n}^{(\alpha, \beta)} \varphi_{x}^{2}\right)(x) \leq\left(P_{n}^{(\alpha, \beta)} \varphi_{x}^{2}\right)(x) \tag{14}
\end{equation*}
$$

For $n>\beta^{2}$ the second order moment of Stancu operator is given by

$$
\begin{equation*}
\left(P_{n}^{(\alpha, \beta)} \varphi_{x}^{2}\right)(x)=\left(P_{n}^{(\alpha, \beta)}\left(e_{1}-x e_{0}\right)^{2}\right)(x)=\frac{n x(1-x)+(\beta x-\alpha)^{2}}{(n+\beta)^{2}} \tag{15}
\end{equation*}
$$

Taking into account the expressions of the moments for the two operators from relations (13) and (15), we can rewrite the inequality (14) as:

$$
\begin{equation*}
2 x\left(x-\frac{n}{n+\beta} r_{n}^{*}(x)+\frac{\alpha}{n+\beta}\right) \leq \frac{n x(1-x)+(\beta x-\alpha)^{2}}{(n+\beta)^{2}} . \tag{16}
\end{equation*}
$$

We present the graphics of the two members of inequality for some particular cases:

$$
n=1.000 .000 ; \alpha=10 ; \beta=100
$$

$n=1.000 .000 ; \alpha=100 ; \beta=1.000$

References

[1] H. Bohmann, On approximation of continous and analytic functions, Ark. Mat. 2 (1952), 43-56.
[2] R.A. DeVore, The approximation of continuous functions by positive linear operators, Lecture Notes in Mathematics 293, Springer-Verlag, New York, 1972.
[3] J.P. King, Positive linear operators which preserve x^{2}, Acta Math. Hungar. 99(3)(2003), 203-208.
[4] P.P. Korovkin, On convergence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk. SSSR (NS), 90 (1953), 961-964.
[5] D.D. Stancu, Folosirea interpolării liniare pentru construirea unei clase de polinoame Bernstein, Studii şi Cercetări Matematice, 3 (28), (1976), 369-379.
[6] D.D. Stancu, Asupra unei generalizări a polinoamelor lui Bernstein, Studia Universitatis Babeş-Bolyai, 14 (2) (1969), 31-45.

Valahia University of Târgovişte,
Department of Mathematics,
Bd. Unirii No 18, 130082, Târgovişte,
Romania
ingrid.oancea@gmail.com

