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A Bernstein-Stancu type operator which
preserves ¢

Ingrid OANCEA

Abstract

In this paper we construct a Bernstein-Stancu type operator follow-
ing a J.P.King model.

1 Introduction

Most of linear and positive operators on C|a, b] preserve ey and e; :

Ly(eo)(x) = eo(x)
Ly(er)(z) = ei(z)

for each n =0,1,2,... and x € [a, b].

J.P. King defined in [3] an interesting class of operators which preserve
ea. Let (sp(x)),cn be a sequence of continuous functions on [0,1] so that
0 < sp(z) < 1. For any f € C[0,1] and z € [0,1] let V,, : C[0,1] — C][0,1] be
defined by

(V) (&) = ; (3) sk = st s (2] 0

For s,(x) = =, n € N operators V,, become Bernstein operators. The values
of the operators V,, on test functions e; = x/, j = 0,1, 2 are given by

(Vneo) (z) =1
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(Vaer) (x) = Sn(x)

-1

Using Bohman-Korovkin theorem ([1], [4]) it follows immediately that lim V,,f =

(Vaea) () = ~sn(z) +

f uniformly on [0, 1] if and only if lim s,(z) = 2 uniformly on [0, 1].
n—oo

In order to preserve es, the s, sequence has to be as it follows:

s1(7) = 22
Sn(J?):—2(+_1)+1/ﬁ$2+m,n:2,37...

2 Main results

D.D. Stancu (see [5], [6]) defined for two positive numbers 0 < o < § inde-
pendent of n and for any function f € C[0, 1] the operator,

POD ) =3 @) (2. 2)
kz:%p ¢ (n+ﬂ>

The Bernstein Stancu operator uses the equidistant knots ag = ﬁ, a, =
zo+h, ..., a, = xg+nh where h = ﬁ and because (P,(L“’B)f> 0)=f (ﬁ)
and (P,(La’ﬂ)f) (1) =f (Tﬁ) , interpolates function f in x = 0 if « = 0 and
inz=1ifa=70.

Values on test function are given by:

(PEen) (@) =1 (3)

a— fx
n+p

(P,(f"ﬁ)el) (x) =x+

nx(l —z)+ (o — Bx)(2nz + Bz + @)
(n+p)?

so we can state that for any f € CJ0,1] the sequence ((P,(Lo"ﬁ)f)(x)>
converges uniformly to f(z) on [0,1].
We define now the operators V;{*? : C[0,1] — C[0,1] by

() @ =3 (F)swa-rey=s (25). o

k=0

(5)

(P,(la’ﬁ)@) (z) =2* +

neN
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for any function f € C[0,1] and = € [0, 1].
It’s obvious that for r,(z) = x, n € N the Bernstein-Stancu operators are
obtained, and for a = 3 = 0 the V,, operators defined by (1) are obtained.

The Vn(O"[3 ) operators are linear and positive.
Using the relations (3)-(5) the following theorem can be easily proved:

Theorem 2.1 The operators VTE”‘"’) have the following properties:

1.
(Vieeq) () =1 (7)
(Vé“’ﬁ)m) (z) = TLZ/BTH(I) + niﬁ (8)
Py ) (x :# n(n—1)r(zx)+n a)r,(z) + «
(VieDes) (@) = (g (0l = D7) 01+ 20)ra@) +0%) - (9)

2. For any function f € C[0,1] si x € [0,1] we have

lim V(@A f=f

uniformly on [0,1] if and only if

lim r,(z) ==
n—oo

uniformly on [0, 1].

)

Next we impose the condition VTSO"B eo = eg, that is

1

n+3)? (n(n — 1)r2(z) + n(l + 2a)r,(2) + o?) = 2?

n(n — 1)r2(x) + n(l + 2a)r,(z) + o? — 2%(n + 3)* = 0.

If we denote

a = nn-1)
= n(l+2a)
c = o= (n+p)%?

then the discriminant is given by
A =n*1+2a)°—4n(n—1) (a® - (n+ B)%2°%) =

=n? +4na(n+ o) +4n(n —1)(n + B)%2*> >0
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for any « € [0,1]. For n # 1 the solutions of the equation are

—n(1+2a) £ /n2(1 +2a)2 —4n(n — 1) (a2 — (n + B)2a2)

(rn(x))lg = 2n(n — 1)

We choose

—n(1+2a) + /n2(1 + 2a)2 — 4n(n — 1) (a® — (n + 3)222)

* _ 1
ra(®) 2n(n —1) e
(10)
and
ri(z) = 2% (11)
Lemma 2.2 For any z € [nafg, %} the following inequality holds 0 <
ri(z) < 1.

—b++vb2%2—4ac
2a

Proof. Because r(z) = the inequality 0 < 7} (z) < 1 becomes

_ 7 _
0< b+ Vb 4ac§1

2a

Since a > 0 we get

0< —-b++vb?—4ac<2a
0<b< Vb2 —4ac<2a+b

which leads to
b? < b? — dac < 4a? + dab + b?

0 < —ac < a® + ab.

It results that we have to find x € [0, 1] such that
c<0

a+b+c¢c>0
Replacing a, b, ¢ we obtain ¢ < 0 if a? — (n + 3)22? <0, that is « € [ﬁ, 1] ,
and a + b+ ¢ > 0 becomes

nn—1)+n(l+2a) +a? - (n+p)*2* >0
2 < (n + a>2
— n_f_ﬂ b

therefore x € {0, %} which eventually gives us that x € {no‘fﬂ, Tﬁ} .
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If we denote I,, = [ﬁ, T-Tg} from the inequalities

lo' < a <n+a n+a+1
n+p+1 " n+pB " n+pf  n+p+1

it follows that I,, C I,+1, n € N; moreover for n — oo the interval I,, becomes
[0,1].
One can notice that lim r}(x) = x, so we have the following

n—oo

Theorem 2.3 The operators A given by 6 with the sequence (7 (x))nen
defined by 10, 11 have the following properties:
1. they are linear and positive on C[0,1]

2. (Véa’ﬁ)Q) (x) = ea(x), n € N* for any x € [ﬁ, =

: (a,ﬁ) _ « n+o
3. nlLHOlOV,L f=1fforany f €Cl0,1], xz € [m,m}

If L is a linear and positive operator on C|a,b], then for any continuous
function f € Cl[a,b] and x € [a, b] we have the evaluation (see [2], pg. 30)

(LN - 1) < F@ [ Eea)w) 11+ ((Lea)e) + LD ) or,0) <
< I @) (Leo)(z) ~ 1 + ((Leom) + el Wixx)) D) (12)

M)z e, (¥)d >0, where v, = e1 — zeg
If the operator L satisfies the conditions Ley = eg si Les = eg then the
evaluation (12) can be written as:

(L@~ 1) < (1 + “*g“) o(f.0)

and since
(Lg3)(x) = L ((e1 — weo)?, x) = (Lez) (x) — 2 (Ley) (x) + 2% (Leo) (x) =

=22% — 2z (Ley) (2) = 22 (v — (Ley) (v)), (13)

we can also write that

(L)) - (@) < (1 p 2= o) (x») ol f,)
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for any f € Cla,b] and z € [a, b].

Since the operator L is positive and ¢2 > 0 we get that Ly2 > 0 which is
equivalent with 2z (x — (Ley) (z)). It follows that for any = € [a,b],a > 0 the
inequality

(Lep) (z) < z.

holds true.
Taking [a,b] = I, and L = V,{*?) as a particular case we obtain:

Lemma 2.4 For any x € I, if rp(x) =1} (z) we have
(Véa’ﬁ)ﬁ) (z) <z

We got that for any = € I,, we have (Véa’ﬁ)e()) (z) = eg(x), (V,E“ﬂ)eQ) (x) =

ea(x) si (Vn(a’ﬁ)el) () < x; therefore the following evaluation stands:

\/213 (x — (Véa’ﬁ)q) (x))

]

(VD @) - f@)| < |1+ w(£,9).

The order of approximation is at least as good as in case of approximation
by Bernstein-Stancu polynomials for those x € I, for which the following
inequality is true

(VD) (@) < (P*Pe3) (). (14)

For n > (32 the second order moment of Stancu operator is given by

nr(l—z)+ (Br — a)?
(n+ B)?

Taking into account the expressions of the moments for the two operators
from relations (13) and (15), we can rewrite the inequality (14) as:

e nr(l —z) + (Br — a)?
) <

We present the graphics of the two members of inequality for some particular
cases:

(PP g2)(x) = (P (e1 — weo)?)(w) = (15)

2 (x— D i)+ (16)

n+ﬂr”
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