

A Bernstein-Stancu type operator which preserves e_2

Ingrid OANCEA

Abstract

In this paper we construct a Bernstein-Stancu type operator following a J.P.King model.

1 Introduction

Most of linear and positive operators on C[a, b] preserve e_0 and e_1 :

$$L_n(e_0)(x) = e_0(x)$$

 $L_n(e_1)(x) = e_1(x)$

for each n = 0, 1, 2, ... and $x \in [a, b]$.

J.P. King defined in [3] an interesting class of operators which preserve e_2 . Let $(s_n(x))_{n\in\mathbb{N}}$ be a sequence of continuous functions on [0,1] so that $0 \le s_n(x) \le 1$. For any $f \in C[0,1]$ and $x \in [0,1]$ let $V_n : C[0,1] \to C[0,1]$ be defined by

$$(V_n f)(x) = \sum_{k=0}^n \binom{n}{k} s_n^k(x) (1 - s_n(x))^{n-k} f\left(\frac{k}{n}\right).$$
(1)

For $s_n(x) = x, n \in \mathbb{N}$ operators V_n become Bernstein operators. The values of the operators V_n on test functions $e_j = x^j$, j = 0, 1, 2 are given by

$$\left(V_n e_0\right)\left(x\right) = 1$$

Key Words: Positive linear operator; Bernstein operator; Stancu operator. Mathematics Subject Classification: 41A36. Received: July, 2008

Accepted: March, 2009

¹⁴⁵

$$(V_n e_1)(x) = s_n(x)$$

 $V_n e_2(x) = \frac{1}{n}s_n(x) + \frac{n-1}{n}s_n^2(x).$

Using Bohman-Korovkin theorem ([1], [4]) it follows immediately that $\lim_{n \to \infty} V_n f =$ f uniformly on [0, 1] if and only if $\lim_{n \to \infty} s_n(x) = x$ uniformly on [0, 1]. In order to preserve e_2 , the s_n sequence has to be as it follows:

$$\begin{cases} s_1(x) = x^2 \\ s_n(x) = -\frac{1}{2(n-1)} + \sqrt{\frac{n}{n-1}x^2 + \frac{1}{4(n-1)^2}}, n = 2, 3, \dots \end{cases}$$

$\mathbf{2}$ Main results

D.D. Stancu (see [5], [6]) defined for two positive numbers $0 \le \alpha \le \beta$ independent of n and for any function $f \in C[0, 1]$ the operator,

$$(P_n^{(\alpha,\beta)}f)(x) = \sum_{k=0}^n p_{n,k}(x) f\left(\frac{k+\alpha}{n+\beta}\right).$$
(2)

The Bernstein Stancu operator uses the equidistant knots $a_0 = \frac{\alpha}{n+\beta}, a_1 =$ $x_0+h, \ldots, a_n = x_0+nh$ where $h = \frac{1}{n+\beta}$ and because $\left(P_n^{(\alpha,\beta)}f\right)(0) = f\left(\frac{\alpha}{n+\beta}\right)$ and $\left(P_n^{(\alpha,\beta)}f\right)(1) = f\left(\frac{n+\alpha}{n+\beta}\right)$, interpolates function f in x = 0 if $\alpha = 0$ and in x = 1 if $\alpha = \beta$.

Values on test function are given by:

(

$$\left(P_n^{(\alpha,\beta)}e_0\right)(x) = 1\tag{3}$$

$$\left(P_n^{(\alpha,\beta)}e_1\right)(x) = x + \frac{\alpha - \beta x}{n+\beta} \tag{4}$$

$$\left(P_n^{(\alpha,\beta)}e_2\right)(x) = x^2 + \frac{nx(1-x) + (\alpha - \beta x)(2nx + \beta x + \alpha)}{(n+\beta)^2} \tag{5}$$

so we can state that for any $f \in C[0,1]$ the sequence $\left((P_n^{(\alpha,\beta)} f)(x) \right)_{n \in \mathbb{N}}$ converges uniformly to f(x) on [0,1]. We define now the operators $V_n^{(\alpha,\beta)}: C[0,1] \to C[0,1]$ by

$$\left(V_n^{(\alpha,\beta)}f\right)(x) = \sum_{k=0}^n \binom{n}{k} r_n^k(x)(1-r_n(x))^{n-k} f\left(\frac{k+\alpha}{n+\beta}\right),\tag{6}$$

for any function $f \in C[0, 1]$ and $x \in [0, 1]$.

It's obvious that for $r_n(x) = x, n \in \mathbb{N}$ the Bernstein-Stancu operators are obtained, and for $a = \beta = 0$ the V_n operators defined by (1) are obtained. The $V_n^{(\alpha,\beta)}$ operators are linear and positive.

Using the relations (3)-(5) the following theorem can be easily proved:

Theorem 2.1 The operators $V_n^{(\alpha,\beta)}$ have the following properties: 1.

$$\left(V_n^{(\alpha,\beta)}e_0\right)(x) = 1\tag{7}$$

$$\left(V_n^{(\alpha,\beta)}e_1\right)(x) = \frac{n}{n+\beta}r_n(x) + \frac{\alpha}{n+\beta}$$
(8)

$$\left(V_n^{(\alpha,\beta)}e_2\right)(x) = \frac{1}{(n+\beta)^2} \left(n(n-1)r_n^2(x) + n(1+2\alpha)r_n(x) + \alpha^2\right)$$
(9)

2. For any function $f \in C[0,1]$ si $x \in [0,1]$ we have

$$\lim_{n \to \infty} V_n^{(\alpha,\beta)} f = f$$

uniformly on [0,1] if and only if

$$\lim_{n \to \infty} r_n(x) = x$$

uniformly on [0, 1].

Next we impose the condition $V_n^{(\alpha,\beta)}e_2 = e_2$, that is

$$\frac{1}{(n+\beta)^2} \left(n(n-1)r_n^2(x) + n(1+2\alpha)r_n(x) + \alpha^2 \right) = x^2$$

or

$$n(n-1)r_n^2(x) + n(1+2\alpha)r_n(x) + \alpha^2 - x^2(n+\beta)^2 = 0.$$

If we denote

$$a = n(n-1)$$

$$b = n(1+2\alpha)$$

$$c = \alpha^2 - (n+\beta)^2 x^2$$

then the discriminant is given by

$$\Delta = n^2 (1+2\alpha)^2 - 4n(n-1) \left(\alpha^2 - (n+\beta)^2 x^2\right) =$$
$$= n^2 + 4n\alpha(n+\alpha) + 4n(n-1)(n+\beta)^2 x^2 \ge 0$$

for any $x \in [0,1]$. For $n \neq 1$ the solutions of the equation are

$$(r_n(x))_{1,2} = \frac{-n(1+2\alpha) \pm \sqrt{n^2(1+2\alpha)^2 - 4n(n-1)(\alpha^2 - (n+\beta)^2 x^2)}}{2n(n-1)}.$$

We choose

$$r_n^*(x) = \frac{-n(1+2\alpha) + \sqrt{n^2(1+2\alpha)^2 - 4n(n-1)(\alpha^2 - (n+\beta)^2 x^2)}}{2n(n-1)}, \quad n > 1$$
(10)

and

$$r_1^*(x) = x^2. (11)$$

Lemma 2.2 For any $x \in \left[\frac{\alpha}{n+\beta}, \frac{n+\alpha}{n+\beta}\right]$ the following inequality holds $0 \leq r_n^*(x) \leq 1$.

Proof. Because $r_n^*(x) = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ the inequality $0 \le r_n^*(x) \le 1$ becomes

$$0 \le \frac{-b + \sqrt{b^2 - 4ac}}{2a} \le 1$$

Since a > 0 we get

$$0 \le -b + \sqrt{b^2 - 4ac} \le 2a$$
$$0 \le b \le \sqrt{b^2 - 4ac} \le 2a + b$$

which leads to

$$b^2 \leq b^2 - 4ac \leq 4a^2 + 4ab + b^2$$
$$0 \leq -ac \leq a^2 + ab.$$

It results that we have to find $x \in [0, 1]$ such that

$$\begin{cases} c \le 0\\ a+b+c \ge 0 \end{cases}$$

.

Replacing a, b, c we obtain $c \leq 0$ if $\alpha^2 - (n + \beta)^2 x^2 \leq 0$, that is $x \in \left[\frac{\alpha}{n+\beta}, 1\right]$, and $a + b + c \geq 0$ becomes

$$n(n-1) + n(1+2\alpha) + \alpha^2 - (n+\beta)^2 x^2 \ge 0$$
$$x^2 \le \left(\frac{n+\alpha}{n+\beta}\right)^2,$$

therefore $x \in \left[0, \frac{n+\alpha}{n+\beta}\right]$ which eventually gives us that $x \in \left[\frac{\alpha}{n+\beta}, \frac{n+\alpha}{n+\beta}\right]$.

If we denote $I_n = \left[\frac{\alpha}{n+\beta}, \frac{n+\alpha}{n+\beta}\right]$ from the inequalities

$$\frac{\alpha}{n+\beta+1} \le \frac{\alpha}{n+\beta} \le \frac{n+\alpha}{n+\beta} \le \frac{n+\alpha+1}{n+\beta+1}$$

it follows that $I_n \subset I_{n+1}, n \in \mathbb{N}$; moreover for $n \to \infty$ the interval I_n becomes [0,1].

One can notice that $\lim_{n\to\infty} r_n^*(x) = x$, so we have the following

Theorem 2.3 The operators $V_n^{(\alpha,\beta)}$ given by 6 with the sequence $(r_n^*(x))_{n\in\mathbb{N}}$ defined by 10, 11 have the following properties:

- 1. they are linear and positive on C[0,1]2. $\left(V_n^{(\alpha,\beta)}e_2\right)(x) = e_2(x), \ n \in \mathbb{N}^* \text{ for any } x \in \left[\frac{\alpha}{n+\beta}, \frac{n+\alpha}{n+\beta}\right]$ 3. $\lim_{n \to \infty} V_n^{(\alpha,\beta)}f = f \text{ for any } f \in C[0,1], \ x \in \left[\frac{\alpha}{n+\beta}, \frac{n+\alpha}{n+\beta}\right].$

If L is a linear and positive operator on C[a, b], then for any continuous function $f \in C[a, b]$ and $x \in [a, b]$ we have the evaluation (see [2], pg. 30)

$$|(Lf)(x) - f(x)| \le |f(x)| |(Le_0)(x) - 1| + \left((Le_0)(x) + \frac{(L\varphi_x)(x)}{\delta} \right) \omega(f,\delta) \le \\ \le |f(x)| |(Le_0)(x) - 1| + \left((Le_0)(x) + \frac{\sqrt{(Le_0)(x)(L\varphi_x^2)(x)}}{\delta} \right) \omega(f,\delta) \quad (12)$$

 $(\forall) x \in I, (\forall) \delta > 0$, where $\varphi_x = e_1 - xe_0$

If the operator L satisfies the conditions $Le_0 = e_0$ şi $Le_2 = e_2$ then the evaluation (12) can be written as:

$$|(Lf)(x) - f(x)| \le \left(1 + \frac{\sqrt{(L\varphi_x^2)(x)}}{\delta}\right)\omega(f,\delta)$$

and since

$$(L\varphi_x^2)(x) = L\left((e_1 - xe_0)^2, x\right) = (Le_2)(x) - 2x(Le_1)(x) + x^2(Le_0)(x) = = 2x^2 - 2x(Le_1)(x) = 2x(x - (Le_1)(x)),$$
(13)

we can also write that

$$|(Lf)(x) - f(x)| \le \left(1 + \frac{\sqrt{2x(x - (Le_1)(x))}}{\delta}\right)\omega(f,\delta)$$

for any $f \in C[a, b]$ and $x \in [a, b]$.

Since the operator L is positive and $\varphi_x^2 \ge 0$ we get that $L\varphi_x^2 \ge 0$ which is equivalent with $2x (x - (Le_1)(x))$. It follows that for any $x \in [a, b], a \ge 0$ the inequality

 $(Le_1)(x) \le x.$

holds true.

Taking $[a, b] = I_n$ and $L = V_n^{(\alpha, \beta)}$ as a particular case we obtain:

Lemma 2.4 For any $x \in I_n$ if $r_n(x) = r_n^*(x)$ we have

$$\left(V_n^{(\alpha,\beta)}e_1\right)(x) \le x.$$

We got that for any $x \in I_n$ we have $\left(V_n^{(\alpha,\beta)}e_0\right)(x) = e_0(x), \left(V_n^{(\alpha,\beta)}e_2\right)(x) = e_2(x)$ şi $\left(V_n^{(\alpha,\beta)}e_1\right)(x) \le x$; therefore the following evaluation stands:

$$\left| (V_n^{(\alpha,\beta)} f)(x) - f(x) \right| \le \left(1 + \frac{\sqrt{2x \left(x - \left(V_n^{(\alpha,\beta)} e_1 \right)(x) \right)}}{\delta} \right) \omega(f,\delta)$$

The order of approximation is at least as good as in case of approximation by Bernstein-Stancu polynomials for those $x \in I_n$ for which the following inequality is true

$$(V_n^{(\alpha,\beta)}\varphi_x^2)(x) \le (P_n^{(\alpha,\beta)}\varphi_x^2)(x).$$
(14)

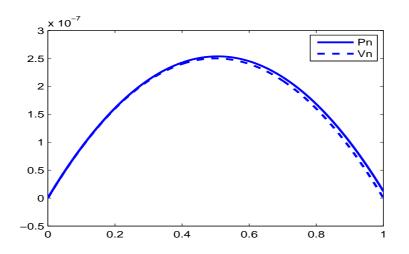
For $n > \beta^2$ the second order moment of Stancu operator is given by

$$(P_n^{(\alpha,\beta)}\varphi_x^2)(x) = (P_n^{(\alpha,\beta)}(e_1 - xe_0)^2)(x) = \frac{nx(1-x) + (\beta x - \alpha)^2}{(n+\beta)^2}.$$
 (15)

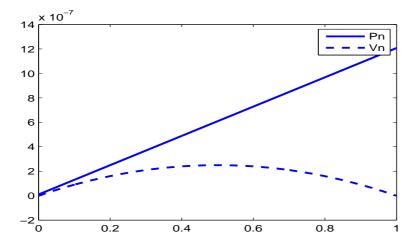
Taking into account the expressions of the moments for the two operators from relations (13) and (15), we can rewrite the inequality (14) as:

$$2x\left(x-\frac{n}{n+\beta}r_n^*(x)+\frac{\alpha}{n+\beta}\right) \le \frac{nx(1-x)+(\beta x-\alpha)^2}{(n+\beta)^2}.$$
 (16)

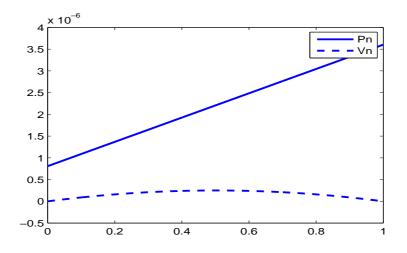
We present the graphics of the two members of inequality for some particular cases:



 $n = 1.000.000; \alpha = 10; \beta = 100$



 $n=1.000.000;\,\alpha=100;\,\beta=1.000$



 $n = 1.000.000; \alpha = 900; \beta = 1.000$

References

- H. Bohmann, On approximation of continous and analytic functions, Ark. Mat. 2 (1952), 43-56.
- R.A. DeVore, The approximation of continuous functions by positive linear operators, Lecture Notes in Mathematics 293, Springer-Verlag, New York, 1972.
- [3] J.P. King, Positive linear operators which preserve x^2 , Acta Math. Hungar. **99**(3)(2003), 203-208.
- [4] P.P. Korovkin, On convergence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk. SSSR (NS), 90 (1953), 961-964.
- [5] D.D. Stancu, Folosirea interpolării liniare pentru construirea unei clase de polinoame Bernstein, Studii și Cercetări Matematice, 3 (28), (1976), 369-379.
- [6] D.D. Stancu, Asupra unei generalizări a polinoamelor lui Bernstein, Studia Universitatis Babeş-Bolyai, 14 (2) (1969), 31-45.

Valahia University of Târgovişte, Department of Mathematics, Bd. Unirii No 18, 130082, Târgovişte, Romania ingrid.oancea@gmail.com