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Strong convergence of the Modified

Halpern-type iterative algorithms in Banach

spaces

Yeol Je Cho, Xiaolong Qin and Shin Min Kang ∗

Abstract

The purpose of this paper is to introduce a modified Halpern-type

iteration algorithm and prove strong convergence of the algorithm for

quasi-φ-asymptotically non-expansive mappings. Our results improve

and extend the corresponding results announced by many others.

1. Introduction

Let E be a real Banach space, C a nonempty subset of E and T : C → C

a nonlinear mapping. A point x ∈ C is said to be a fixed point of T provided
Tx = x. Denote by F (T ) the set of fixed points of T .

Recall that the mapping T is said to be non-expansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C.

T is said to be asymptotically non-expansive if there exists a sequence {kn}
of real numbers with kn → 1 as n → ∞ such that

‖Tnx − Tny‖ ≤ kn‖x − y‖, ∀x, y ∈ C.

The class of asymptotically non-expansive mappings was introduced by
Goebel and Kirk [7] in 1972. They proved that, if C is a nonempty bounded
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closed convex subset of a uniformly convex Banach space E, then every asymp-
totically non-expansive self-mapping T of C has a fixed point in C. Further,
the set F (T ) of fixed points of T is closed and convex. Since 1972, many au-
thors have studied the weak and strong convergence problems of the iterative
algorithms for such a class of mappings.

In 1976, Halpern [8] introduced the following explicit iteration for a single
non-expansive mapping:

(1.1)

{

x0 ∈ C, chosen arbitrarily,

xn+1 = αnu + (1 − αn)Txn, ∀n ≥ 0.

He pointed out that the conditions

(C1) limn→∞ αn = 0;

(C2)
∑

∞

n=1 αn = ∞,

are necessary in the sense that, if the iteration scheme (1.1) converges to a
fixed point of T , then these conditions must be satisfied. It is well know
that the process (1.1) is widely believed to have slow convergence because the
restriction of condition (C2). To improve the rate of convergence of process
(1.1), one cannot rely only on the process itself.

Recently, hybrid projection algorithm has been applied to approximate
fixed points of non-expansive mappings and its extensions (see [1,9,10,12-21,23-
27,29,30] and the references therein).

Martinez-Yanes and Xu [13] proposed the following modification of the
Halpern iteration for a single non-expansive mapping T in a Hilbert space. To
be more precise, they proved the following theorem:

Theorem MX. Let H be a real Hilbert space, C a closed convex subset of H

and T : C → C a non-expansive mapping such that F (T ) 6= ∅. Assume that

{αn} ⊂ (0, 1) is such that limn→∞ αn = 0. Then the sequence {xn} defined by































x0 ∈ C, chosen arbitrarily,

yn = αnx0 + (1 − αn)Txn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + αn(‖x0‖
2 + 2〈xn − x0, z〉)},

Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},

xn+1 = PCn∩Qn
x0, ∀n ≥ 0,

converges strongly to PF (T )x0.

Subsequently, Qin et al. [18] improved Theorem 3.1 of Martinez-Yanes
and Xu [13] from non-expansive mappings to asymptotically non-expansive
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mappings still in the framework of Hilbert spaces. Recently, Qin and Su [17]
further improved the result of Martinez-Yanes and Xu [13] from Hilbert spaces
to Banach spaces. To be more precise, they proved the following theorem:

Theorem QS. Let E be a uniformly convex and uniformly smooth Banach

space, let C be a nonempty closed convex subset of E, let T : C → C be a

relatively non-expansive mapping. Assume that {αn} is a sequence in (0, 1)
such that limn→∞ αn = 0. Define a sequence {xn} in C by the following

algorithm:






























x0 ∈ C chosen arbitrarily,

yn = J−1(αnJx0 + (1 − αn)JTxn),

Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, x0) + (1 − αn)φ(v, xn),

Qn = {v ∈ C : 〈Jx0 − Jxn, xn − v〉 ≥ 0},

xn+1 = ΠCn∩Qn
x0, ∀n ≥ 0,

where J is the single-valued duality mapping on E. If F (T ) is nonempty, then

{xn} converges to ΠF (T )x0.

Very recently, Plubtieng and Ungchittrakool [15] also considered the hybrid
projection algorithm to modify the Halpern iteration (1.1) and obtained a
strong convergence theorem for a pair of relatively non-expansive mappings in
the framework of Banach spaces, see [15] for more details.

Motivated and inspired by the research going on in this direction, we mod-
ify the iterative process (1.1) for closed quasi-φ-asymptotically non-expansive
mappings (see below) in the framework of Banach spaces. Our results improve
and extend the corresponding result announced by many others.

2. Preliminaries

Let E be a Banach space with the dual space E∗. We denote by J the
normalized duality mapping from E to 2E∗

defined by

Jx = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that, if
E∗ is strictly convex, then J is single-valued and, if E∗ is uniformly convex,
then J is uniformly continuous on bounded subsets of E.

Also, it is well known that, if C is a nonempty closed convex subset of
a Hilbert space H and PC : H → C is the metric projection of H onto
C, then PC is non-expansive. This fact actually characterizes Hilbert spaces
and, consequently, it is not available in more general Banach spaces. In this
connection, Alber [3] recently introduced a generalized projection operator ΠC
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in a Banach space E which is an analogue of the metric projection in Hilbert
spaces.

Let E be a smooth Banach space. Consider the functional defined by

(2.1) φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2, ∀x, y ∈ E.

Observe that, in a Hilbert space H, (2.1) reduces to φ(x, y) = ‖x− y‖2 for all
x, y ∈ H. The generalized projection ΠC : E → C is a mapping that assigns
to an arbitrary point x ∈ E the minimum point of the functional φ(x, y), that
is, ΠCx = x̄, where x̄ is the solution to the following minimization problem:

(2.2) φ(x̄, x) = inf
y∈C

φ(y, x).

The existence and uniqueness of the operator ΠC follow from the properties
of the functional φ(x, y) and the strict monotonicity of the mapping J (see,
for example, [2,3,6,11]). In Hilbert spaces, ΠC = PC . It is obvious from the
definition of the function φ that

(2.3) (‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖ + ‖x‖)2, ∀x, y ∈ E.

Remark 2.1. If E is a reflexive, strictly convex and smooth Banach space,
then, for all x, y ∈ E, φ(x, y) = 0 if and only if x = y. It is sufficient to
show that, if φ(x, y) = 0, then x = y. From (2.3), we have ‖x‖ = ‖y‖. This
implies 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J, one has Jx = Jy.
Therefore, we have x = y (see [6,28] for more details).

Now, we give some definitions for our main results in this paper.

Let C be a nonempty, closed and convex subset of a smooth Banach E and
T a mapping from C into itself.

(1) A point p in C is said to be an asymptotic fixed point [22] of T if C

contains a sequence {xn} which converges weakly to p such that limn→∞ ‖xn−

Txn‖ = 0. The set of asymptotic fixed points of T will be denoted by F̃ (T ).

(2) A mapping T from C into itself is said to be relatively non-expansive

[4,5,11,12,17] if

F̃ (T ) = F (T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T ).

The asymptotic behavior of a relatively non-expansive mapping was studied
in [4,5,22].

(3) The mapping T is said to be relatively asymptotically non-expansive

[1,19,21,23] if

F̃ (T ) = F (T ) 6= ∅, φ(p, Tnx) ≤ knφ(p, x), ∀x ∈ C, p ∈ F (T ),
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where kn ≥ 1 is a sequence such that kn → 1 as n → ∞.

(4) The mapping T is said to be φ-nonexpansive [16,20] if

φ(Tx, Ty) ≤ φ(x, y), ∀x, y ∈ C.

(5) The mapping T is said to be quasi-φ-non-expansive [16,20] if

F (T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T ).

(6) The mapping T is said to be φ-asymptotically non-expansive if there
exists some real sequence {kn} with kn ≥ 1 and kn → ∞ as n → ∞ such that

φ(Tnx, Tny) ≤ knφ(x, y), ∀x, y ∈ C.

(7) The mapping T is said to be quasi-φ-asymptotically non-expansive if

F (T ) 6= ∅, φ(p, Tnx) ≤ knφ(p, x), ∀x ∈ C, p ∈ F (T ).

(8) The mapping T is said to be asymptotically regular on C if, for any
bounded subset K of C,

lim sup
n→∞

{‖Tn+1x − Tnx‖ : x ∈ K} = 0.

(9) The mapping T is said to be closed on C if, for any sequence {xn} such
that limn→∞ xn = x0 and limn→∞ Txn = y0, then Tx0 = y0.

Remark 2.2. The class of quasi-φ-nonexpansive mappings and quasi-φ-
asymptotically non-expansive mappings are more general than the class of rel-
atively non-expansive mappings and relatively asymptotically non-expansive
mappings, respectively. The quasi-φ-nonexpansive mappings and quasi-φ-

asymptotically non-expansive mappings do not require F (T ) = F̃ (T ), where

F̃ (T ) denotes the asymptotic fixed point set of T (see [4-6] for more details).

Remark 2.3. A φ-asymptotically non-expansive mapping with F (T ) 6= ∅ is a
quasi-φ-asymptotically non-expansive mapping, but the converse may be not
true.

Next, we give some examples which are closed quasi-φ-asymptotically non-
expansive mappings.

Example 2.4 (Qin et al. [16]). Let E be a uniformly smooth and strictly
convex Banach space and A ⊂ E ×E∗ be a maximal monotone mapping such
that its zero set A−10 is nonempty. Then Jr = (J+rA)−1J is a closed quasi-φ-
asymptotically non-expansive mapping from E onto D(A) and F (Jr) = A−10.
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Example 2.5 (Qin et al. [16]). Let ΠC be the generalized projection from
a smooth, strictly convex and reflexive Banach space E onto a nonempty
closed convex subset C of E. Then ΠC is a closed quasi-φ-asymptotically
non-expansive mapping from E onto C with F (ΠC) = C.

A Banach space E is said to be strictly convex if ‖x+y
2 ‖ < 1 for all x, y ∈

E with ‖x‖ = ‖y‖ = 1 and x 6= y. It is said to be uniformly convex if
limn→∞ ‖xn − yn‖ = 0 for any two sequences {xn} and {yn} in E such that
‖xn‖ = ‖yn‖ = 1 and limn→∞ ‖xn+yn

2 ‖ = 1.

Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach
space E is said to be smooth provided

(2.4) lim
t→0

‖x + ty‖ − ‖x‖

t

exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit (2.4)
is attained uniformly for x, y ∈ E. It is well known that, if E is uniformly
smooth, then J is uniformly norm-to-norm continuous on each bounded subset
of E.

In order to the main results of this paper, we need the following lemmas.

Lemma 2.1 ([11]). Let E be a uniformly convex and smooth Banach space

and {xn}, {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or

{yn} is bounded, then xn − yn → 0.

Lemma 2.2 ([3]). Let C be a nonempty closed convex subset of a smooth

Banach space E and x ∈ E. Then x0 = ΠCx if and only if

〈x0 − y, Jx − Jx0〉 ≥ 0, ∀y ∈ C.

Lemma 2.3 ([3]). Let E be a reflexive, strictly convex and smooth Banach

space and C a nonempty closed convex subset of E. Let x ∈ E. Then

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x). ∀y ∈ C.

Lemma 2.4. Let E be a uniformly convex and uniformly smooth Banach

space, C a nonempty, closed and convex subset of E and T a closed quasi-

φ-asymptotically non-expansive mapping from C into itself. Then F (T ) is a

closed convex subset of C.

Proof. The closedness of F (T ) can be deduced by the closedness of T . Next,
we show that F (T ) is convex. for x, y ∈ F (T ) and t ∈ (0, 1), put p = tx+(1−
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t)y. It is sufficient to show Tp = p. In fact, we have

(2.5)

φ(p, Tnp)

= ‖p‖2 − 2〈p, JTnp〉 + ‖Tnp‖2

= ‖p‖2 − 2〈tx + (1 − t)y, JTnp〉 + ‖Tnp‖2

= ‖p‖2 − 2t〈x, JTnp〉 − 2(1 − t)〈y, JTnp〉 + ‖Tnp‖2

= ‖p‖2 + tφ(x, Tnp) + (1 − t)φ(y, Tnp) − t‖x‖2 − (1 − t)‖y‖2

≤ ‖p‖2 + kntφ(x, p) + kn(1 − t)φ(y, p) − t‖x‖2 − (1 − t)‖y‖2

= (kn − 1)(t‖x‖2 + (1 − t)‖y‖2 − ‖p‖2).

Let n → ∞ in (2.5) yields that limn→∞ φ(p, Tnp) = 0. We, therefore, apply
Lemma 2.1 to see that Tnp → p as n → ∞. Hence

TTnp = Tn+1p → p

as n → ∞. By the closed-ness of T , it follows that p ∈ F (T ). This completes
the proof.

3. Main results

Now, we are ready to give our main results in this paper.

Theorem 3.1. Let C be a nonempty, closed and convex subset of a uniformly

convex and uniformly smooth Banach space E and T : C → C a closed quasi-φ-

asymptotically non-expansive mapping with a sequence {kn} ⊂ [1,∞) such that

kn → 1 as n → ∞. Assume that T is asymptotically regular on C, F (T ) 6=
∅ and F (T ) is bounded. Let {xn} be a sequence generated by the following

manner:

(3.1)







































x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1
x0,

yn = J−1[αnJx1 + (1 − αn)JTnxn],

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn) + αnM},

xn+1 = ΠCn+1
x1, ∀n ≥ 0,

where M is an appropriate constant such that M ≥ φ(w, x1) for all w ∈
F (T ). Assume that the control sequence {αn} in (0, 1) satisfies the following

restrictions:

(a) limn→∞ αn = 0,
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(b) (1 − αn)kn ≤ 1 for all n ≥ 0.

Then {xn} converges strongly to ΠF (T )x1.

Proof. First, we show that Cn is closed and convex for all n ≥ 1. It is obvious
that C1 = C is closed and convex. Suppose that Ch is closed and convex for
some h ∈ N. For any z ∈ Ch such that

φ(z, yh) ≤ φ(z, xh) + αhM.

This inequality is equivalent to

2〈z, Jxh〉 − 2〈z, Jyh〉 ≤ ‖xh‖
2 − ‖yh‖

2 + αhM.

It is to see that Ch+1 is closed and convex. Then, for all n ≥ 1, Cn is closed
and convex.

Next, we prove that F (T ) ⊂ Cn for all n ≥ 1. F (T ) ⊂ C1 = C is obvious.
Suppose that F (T ) ⊂ Ch for some h ∈ N. Then, for all w ∈ F (T ) ⊂ Ch, one
has

φ(w, yh) = φ(w, J−1[αhJx1 + (1 − αh)JThxh])

= ‖w‖2 − 2〈w,αhJx1 + (1 − αh)JThxh〉

+ ‖αhJx1 + (1 − αh)JThxh‖
2

≤ ‖w‖2 − 2αh〈w, Jx1〉 − 2(1 − αh)〈w, JThxh〉

+ αh‖x1‖
2 + (1 − αh)‖Thxh‖

2

= αhφ(w, x1) + (1 − αh)φ(w, Thxh)

≤ αhφ(w, x1) + (1 − αh)khφ(w, xh)

= φ(w, xh) − [1 − (1 − αh)kh]φ(w, xh) + αhφ(w, x1)

≤ φ(w, xh) + αhM,

which shows w ∈ Ch+1. This implies that F (T ) ⊂ Cn for all n ≥ 1. From
xn = ΠCn

x1, one sees

(3.2) 〈xn − z, Jx1 − Jxn〉 ≥ 0, ∀z ∈ Cn.

Since F (T ) ⊂ Cn for all n ≥ 1, we arrive at

(3.3) 〈xn − w, Jx1 − Jxn〉 ≥ 0, ∀w ∈ F (T ).

From Lemma 2.3, one has

φ(xn, x1) = φ(ΠCn
x1, x1) ≤ φ(w, x1) − φ(w, xn) ≤ φ(w, x1)

for all w ∈ F (T ) ⊂ Cn and n ≥ 1. The sequence φ(xn, x1) is, therefore,
bounded.
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On the other hand, noticing that xn = ΠCn
x1 and xn+1 = ΠCn+1

x1 ∈
Cn+1 ⊂ Cn, one has

φ(xn, x1) ≤ φ(xn+1, x1), ∀n ≥ 1.

Therefore, {φ(xn, x1)} is nondecreasing and so the limit of {φ(xn, x1)} exists.
By the construction of Cn, one knows that Cm ⊂ Cn and xm = PCm

x1 ∈ Cn

for any positive integer m ≥ n. It follows that

(3.4)

φ(xm, xn) = φ(xm,ΠCn
x1)

≤ φ(xm, x1) − φ(ΠCn
x1, x1)

= φ(xm, x1) − φ(xn, x1).

Letting m,n → ∞ in (3.4), one has φ(xm, xn) → 0. It follows from Lemma
2.1 that xm − xn → 0 as m,n → ∞ Hence {xn} is a Cauchy sequence in C.
Since E is a Banach space and C is closed and convex, one can assume that

xn → p ∈ C (n → ∞).

Finally, we show that p = ΠF (T )x1. To end this, we first show that p ∈
F (T ). By taking m = n + 1 in (3.4), one arrives at

(3.5) lim
n→∞

φ(xn+1, xn) = 0.

From Lemma 2.1, it follows that

(3.6) lim
n→∞

‖xn+1 − xn‖ = 0.

Noticing that xn+1 ∈ Cn+1, one obtains

φ(xn+1, yn) ≤ φ(xn+1, xn) + αnM.

It follows from (3.5) and the assumption (a) that

lim
n→∞

φ(xn+1, yn) = 0.

Thus, from Lemma 2.1, one has

(3.7) lim
n→∞

‖xn+1 − yn‖ = 0.

Notice that

‖xn − yn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖.
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It follows from (3.6) and (3.7) that

(3.8) lim
n→∞

‖xn − yn‖ = 0.

Since J is uniformly norm-to-norm continuous on any bounded sets, we have

(3.9) lim
n→∞

‖Jxn − Jyn‖ = 0.

On the other hand, we have

‖Jyn − JTnxn‖ = αn‖JTx1 − JTnxn‖.

By the assumption (a), one sees that

lim
n→∞

‖Jyn − JTnxn‖ = 0.

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we
obtain

(3.10) lim
n→∞

‖yn − Tnxn‖ = 0.

On the other hand, one has

‖xn − Tnxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖ + ‖yn − Tnxn‖.

From (3.6), (3.7) and (3.10), it follows that limn→∞ ‖Tnxn − xn‖ = 0. Noting
that xn → p as n → ∞, one has

(3.11) Tnxn → p (n → ∞).

On the other hand, one has

‖Tn+1xn − p‖ ≤ ‖Tn+1xn − Tnxn‖ + ‖Tnxn − p‖.

Thus it follows from the asymptotic regularity of T and (3.11) that

Tn+1xn → p (n → ∞).

That is, TTnxn → p. From the closedness of T , one gets p = Tp.

Finally, we show that p = ΠF (T )x1. From xn = ΠCn
x1, one has

(3.12) 〈xn − w, Jx1 − Jxn〉 ≥ 0, ∀w ∈ F (T ) ⊂ Cn.

Taking the limit as n → ∞ in (3.12), we obtain

〈p − w, Jx1 − Jp〉 ≥ 0, ∀w ∈ F (T ),
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and hence p = ΠF (T )x1 by Lemma 2.2. This completes the proof.

Remark 3.2. Theorem 3.1 improves the corresponding results of Martinez-
Yanes and Xu [13] and Qin et al. [18] from Hilbert spaces to Banach spaces.
Theorem 3.1 also improves Qin et al. [20] from quasi-φ-nonexpansive mapping
to quasi-φ-asymptotically nonexpansive mappings.

In Hilbert spaces, Theorem 3.1 is reduced to the following result.

Theorem 3.3. Let C be a nonempty, closed and convex subset of a real

Hilbert space H and T : C → C be a closed asymptotically quasi-nonexpansive

mapping with a sequence {kn} ⊂ [1,∞) such that kn → 1 as n → ∞. Assume

that T is asymptotically regular on C, F (T ) 6= ∅ and F (T ) is bounded. Let

{xn} be a sequence generated by the following manner:






































x0 ∈ H chosen arbitrarily,

C1 = C,

x1 = PC1
x0,

yn = αnx1 + (1 − αn)Tnxn,

Cn+1 = {z ∈ Cn : ‖z − yn‖
2 ≤ ‖z − xn‖

2 + αnM},

xn+1 = PCn+1
x1, ∀n ≥ 0,

where M is an appropriate constant such that M ≥ ‖w−x1‖
2 for all w ∈ F (T ).

Assume that the control sequence {αn} in (0, 1) satisfies the restrictions:

(a) limn→∞ αn = 0,

(b) (1 − αn)kn ≤ 1 for all n ≥ 0.

Then {xn} converges strongly to PF (T )x1.

Remark 3.4. Theorem 3.3 improves Theorem 3.1 of Martinez-Yanes and Xu
[13] in the following senses:

(1) from non-expansive mappings to asymptotically quasi-nonexpansive
mappings.

(2) from computation point of view, the hybrid projection algorithm in
Theorem 3.2 is also more simple and convenient to compute than the one
given by Martinez-Yanes and Xu. To be more precise, we remove the set
“Qn” in [13].

Next, we give a strong convergence theorem for an infinite family of quasi-
φ-asymptotically non-expansive mappings.

Theorem 3.5. Let C be a nonempty, closed and convex subset of a uni-

formly convex and uniformly smooth Banach space E and {Ti}i∈I : C → C
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a family of closed quasi-φ-asymptotically non-expansive mappings such that

F =
⋂

i∈I F (Ti) 6= ∅. Assume that Ti is asymptotically regular on C for each

i ∈ I and F is bounded. For each i ∈ I, let {αn,i} be a sequence in (0, 1) such

that

(a) limn→∞ αn,i = 0,

(b) (1 − αn,i)kn,i ≤ 1 for each i ∈ I.

Define a sequence {xn} in C in the following manner:

(3.13)















































x0 ∈ C chosen arbitrarily,

yn,i = J−1[αn,iJx0 + (1 − αn,i)JTn
i xn],

Cn,i = {z ∈ C : φ(z, yn,i) ≤ φ(z, xn) + αn,iQ},

Cn =
⋂

i∈I Cn,i,

Q0 = C,

Qn = {z ∈ Qn−1 : 〈xn − z, Jx0 − Jxn〉},

xn+1 = ΠCn∩Qn
x0, ∀n ≥ 0,

where Q is an appropriate constant such that Q ≥ φ(w, x0) for all w ∈ F.

Then {xn} converges strongly to ΠF x0.

Proof. We first show that Cn and Qn are closed and convex for each n ≥ 0.
From the definition of Cn and Qn, it is obvious that Cn is closed and Qn is
closed and convex for each n ≥ 0. We show that Cn is convex for each n ≥ 0.
Indeed,

Cn,i = {z ∈ C : φ(z, yn,i) ≤ φ(z, xn) + αn,iQ}

is equivalent to

Cn,i = {z ∈ C : 2〈z, Jxn〉 − 2〈z, Jyn,i〉 ≤ ‖xn‖
2 − ‖yn,i‖

2 + αn,iQ}.

This shows that Cn,i is closed convex for each n ≥ 0 and i ∈ I. Therefore, one
has Cn =

⋂

i∈I Cn,i is closed convex for each n ≥ 0.

Next, we show that F ⊂ Cn for all n ≥ 0. For all w ∈ F ⊂ C and i ∈ I,



Strong convergence 63

one has

φ(w, yn,i) = φ(w, J−1[αn,iJx0 + (1 − αn,i)JTn
i xn])

= ‖w‖2 − 2〈w,αnJx0 + (1 − αn,i)JTn
i xn〉

+ ‖αn,iJx0 + (1 − αn,i)JTn
i xn‖

2

≤ ‖w‖2 − 2αn,i〈w, Jx0〉 − 2(1 − αn,i)〈w, JTn
i xn〉

+ αn,i‖x0‖
2 + (1 − αn,i)‖T

n
i xn‖

2

≤ αn,iφ(w, x0) + (1 − αn,i)φ(w, Tn
i xn)

≤ αn,iφ(w, x0) + (1 − αn,i)kn,iφ(w, xn),

= φ(w, xn) − [1 − (1 − αn,i)kn,i]φ(w, xn) + αn,iφ(w, x0)

≤ φ(w, xn) + αn,iQ,

which yields that w ∈ Cn,i for all n ≥ 0 and i ∈ I. It follows that w ∈ Cn =
⋂

i∈I Cn,i. This proves that F ⊂ Cn for all n ≥ 0.
Next, we prove that F ⊂ Qn for all n ≥ 0 by induction. For n = 0, we have

F ⊂ C = Q0. Assume that F ⊂ Qn−1 for some n ≥ 1, we show that F ⊂ Qn

for the same n ≥ 1. Since xn is the projection of x0 onto Cn−1 ∩ Qn−1, we
arrive at

(3.14) 〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn−1 ∩ Qn−1.

Since F ⊂ Cn−1 ∩ Qn−1 by the induction assumptions, (3.14) holds, in par-
ticular, for all w ∈ F . This together with the definition of Qn implies that
F ⊂ Qn for all n ≥ 0. Noticing that xn+1 = ΠCn∩Qn

x0 ∈ Qn and xn = ΠQn
x0,

one sees

(3.15) φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0.

We, therefore, obtain that {φ(xn, x0)} is nondecreasing. From Lemma 2.3, it
follows that

φ(xn, x0) = φ(ΠQn
x0, x0) ≤ φ(w, x0) − φ(w, xn) ≤ φ(w, x0)

for all w ∈ F ⊂ Cn and n ≥ 0. This shows that {φ(xn, x0)} is bounded. It
follows that the limit of {φ(xn, x0)} exists. By the construction of Qn, one
knows that Qm ⊂ Qn and xm = ΠQm

x0 ∈ Qn for any positive integer m ≥ n.

Notice that

(3.16)

φ(xm, xn) = φ(xm,ΠQn
x0)

≤ φ(xm, x0) − φ(ΠQn
x0), x0)

= φ(xm, x0) − φ(xn, x0).
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Taking the limit as m,n → ∞ in (3.16), one gets φ(xm, xn) → 0. From Lemma
2.1, it follows that xm−xn → 0 as m,n → ∞ and so {xn} is a Cauchy sequence.
Since E is a Banach space and C is closed and convex, one can assume that

xn → q ∈ C (n → ∞).

Finally, we show that q = ΠF x0. To end this, we first show that q ∈ F . By
taking m = n + 1 in (3.16), one arrives at

(3.17) φ(xn+1, xn) → 0 (n → ∞).

From Lemma 2.1, one has

(3.18) xn+1 − xn → 0 (n → ∞).

Noticing that xn+1 ∈ Cn+1, one obtains

φ(xn+1, yn,i) ≤ φ(xn+1, xn) + αn,iQ.

It follows from the assumption on {αn,i} and (3.17) that

lim
n→∞

φ(xn+1, yn,i) = 0, ∀i ∈ I.

Thus, from Lemma 2.1, one obtains

(3.19) lim
n→∞

‖xn+1 − yn,i‖ = 0, ∀i ∈ I.

On the other hand, we have ‖Jyn,i − JTixn‖ = αn,i‖Jx0 − JTn
i xn‖. By

the assumption (a), one sees

lim
n→∞

‖Jyn,i − JTn
i xn‖ = 0, ∀i ∈ I.

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we
obtain

(3.20) lim
n→∞

‖yn,i − Tn
i xn‖ = 0.

On the other hand, one has

‖xn − Tn
i xn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn,i‖ + ‖yn,i − Tn

i xn‖.

From (3.18)-(3.20), one sees that limn→∞ ‖Tn
i xn−xn‖ = 0. Noting that xn →

q as n → ∞, one has

(3.21) Tn
i xn → q (n → ∞).
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On the other hand, one has

‖Tn+1
i xn − q‖ ≤ ‖Tn+1

i xn − Tn
i xn‖ + ‖Tn

i xn − q‖.

It follows from the asymptotic regularity of Ti and (3.21) that Tn+1
i xn =

TiT
n
i xn → q as n → ∞. From the closed-ness of Ti, one gets q = Tiq for each

i ∈ I, that is, q ∈ F.

Finally, we show that q = ΠF x0. From xn = ΠQn
x0, it follows that

(3.22) 〈xn − w, Jx0 − Jxn〉 ≥ 0, ∀w ∈ F.

Taking the limit as n → ∞ in (3.22), we obtain

〈q − w, Jx0 − Jq〉 ≥ 0, ∀w ∈ F,

and hence q = ΠF x0 by Lemma 2.2. This completes the proof.

In Hilbert spaces, Theorem 3.5 reduces to the following theorem.

Theorem 3.6. Let C be a nonempty, closed and convex subset of a Hilbert

space H and {Ti}i∈I : C → C a family of closed asymptotically quasi-nonexpansive

mappings such that F =
⋂

i∈I F (Ti) 6= ∅. Assume that Ti is asymptotically

regular on C for each i ∈ I and F is bounded. For each i ∈ I, let {αn,i} be a

sequence in (0, 1) such that

(a) limn→∞ αn,i = 0,

(b) (1 − αn,i)kn,i ≤ 1 for each i ∈ I.

Define a sequence {xn} in C in the following manner:















































x0 ∈ C chosen arbitrarily,

yn,i = αn,ix0 + (1 − αn,i)T
n
i xn,

Cn,i = {z ∈ C : ‖z − yn,i‖
2 ≤ ‖z − xn‖

2 + αn,iQ},

C =
⋂

i∈I Ci,

Q0 = C,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉},

xn+1 = PCn∩Qn
x0, ∀n ≥ 0,

where Q is an appropriate constant such that Q ≥ ‖w − x0‖
2 for all w ∈ F.

Then {xn} converges strongly to PF x0.

Remark 3.7. Theorem 3.6 improves Theorem 3.1 of Martinez-Yanes and Xu
[13] from a single non-expansive mapping to an infinite family asymptotically
non-expansive mappings. Theorem 2.2 of Qin et al. [18] is also a special case
of Theorem 3.6.
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