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From the elliptic regulator to exotic relations

Nouressadat TOUAFEK

Abstract
In this paper we prove an identity between the elliptic regulators of
some 2-isogenous elliptic curves. This allow us to prove a new exotic
relation for the elliptic curve 20A of Cremona’s tables. Also we prove
the (conjectured) exotic relation for the curve 20B given by Bloch and
Grayson in [3].

1 Introduction

For some elliptic curves, the elliptic dilogarithm satisfies linear relations, called
exotic by Bloch and Grayson [3].

In [3] a list of elliptic curves that satisfies exotic relations is given. Recently
some of these relations are proved by Bertin [1], Touafek [7].

We note that whenever we can find a tempered model of the elliptic curve,
the existence of exotic relations is related to elements in the second group of
the K-theory K3(F) hence to elliptic regulators, so we can prove the exotic
relations.

Bloch and Grayson conjectured the following fact.

Conjecture 1 Suppose that E(Q),,,., is cyclic and d = #E(Q),,,.. > 2.
Write % for the number of fibres of type I, with v > 3 in the Néron model,
and suppose [%} —3 > 1. Then there should be at least [%] — ¥ —1 exotic
relations

> a,DP(rP) =0,

r=1
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where P is a d-torsion point and a, € 7.

In particular, these conditions are satisfied for the curve 20A of Cremona’s
tables [4]: E(Q),,,, cyclic, d =6 and ¥ = 0.

In section 3 we use an identity between regulators and some equalities
between the elliptic dilogarithm to prove a new exotic relation for the elliptic
curve 204 and also we prove the (conjectured) exotic relation for the curve
20B of Cremona’s tables given by Bloch and Grayson in [3].

2 Preliminaries

Let E be an elliptic curve defined over Q.
Throughout this paper, the notation F = [a1, as, as, a4, ag] means that the
elliptic curve F is in the Weierstrass form

y2 + a1y +asy = z° + aga:Q + asx + ag.

2.1 The elliptic regulator

Let F' be a field. By Matsumoto’s theorem, the second group of K-theory
K5(F') can be described in terms of symbols { f, g}, for f, g € F* and relations
between them.

The relations are

{flang} :{flag}+{f259}
{f7 ngQ} {f7 gl} + {f7 92}
n=-rp =0

For example, if v is a discrete valuation on F with maximal ideal 9t and
residual field k, the Tate’s tame symbol

(r,), = (~1)" 70 =

defines a homomorphism
Ay i Ko(F) — k™.

(E) be the rational function field of the elliptic curve E. To any P €
is associated a valuation on Q(F) that gives the homomorphism

Let Q
E(Q)

Ap : K (Q(E)) — Q(P)°
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and the exact sequence

0— Ky(E)®Q— K>(QE)©Q— || QP)e@Q—..

PecE(Q)
By definition K5(F) is defined modulo torsion by

Ks(E) ~ker A = ler)\p C K2(Q(E))

where
A KQE)2Q— || @P)eQ).

PeE(Q)

Definition 1 A polynomial in two variables is tempered if the polynomial of
the faces of its Newton polygon has only roots of unity.

When drawing the convex hull of points (i,j) € Z? corresponding to the
monomials ai,jxiyj, a;; # 0, you also draw points located on the faces. The
polynomial of the face is a polynomial in one variable ¢ which is a combination
of the monomials 1, ¢, t2,.... The coefficients of the combination are given when
going along the face, that is a; ; if the lattice point of the face belongs to the
convex hull and 0 otherwise.

In particular, the polynomials

P (X1, Y1) =Y2+2X1Y - X3P+ X,

and
Py(X2,Y2) = Y5 +2X5Ys 4 2Y5 — (X5 — 1)°

are tempered, so we get {X1,Y1} € Ko(E1) and {X2,Y2} € Ka(Es), see
Rodriguez-Villegas [5]. Here Ej is the elliptic curve defined by P;(X1,Y1) =0
and Fs the elliptic curve defined by P2 (Xa2,Ys2) = 0.

Let f and g be in Q(E)*. Let us define

n(f,g) = log|fld(arg g) — log|g|d(arg f).
Definition 2 The elliptic regulator v of E is given by

r: Ko(E) — R
{f.9y— oz [, 0(f,9)

for a suitable loop ~ generating the subgroup H1(E,Z)~ of Hi(E,Z), where
the complex conjugation acts by —1.
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2.2 The elliptic dilogarithm

We have two representations for E(C)
E(C) = C/(Z+712) = (C*/qZ
(p(u), (1)) — u( mod A) — z = e2miv

where p is the Weierstrass function, A = {1, 7} the lattice associated to the
elliptic curve and g = e2™7.

Definition 3 The elliptic dilogarithm D [2] is defined by

n=-+oo

DP(P)= Y D),

n—=—oo

where P € E(C) is the image of z € C*, z = e®™ o = &7 41 and D is the
Bloch-Wigner dilogarithm

D(z) := SLig(x) + log|zlarg(l — x).

Remark 1 1. The Bloch-Wigner dilogarithm is a function univalued, real
analytic in P1(C)\{0,1, 00}, continuous in P1(C) [9].

2. There is a second representation of the elliptic dilogarithm given by
Bloch [2], [10] in terms of Fisenstein-Kronecker series

DE(P) _ (37)2%( eXp( 27Ti(’l’L€ - mn))) (1)

™ mmez. (M7 +n)2(mT +n)
(man)#£(0,0)

3. The elliptic dilogarithm can be extended to divisors on E(C)
D®((f)) = ZmDE(Pz‘),

where

()= nilP).

2.3 The diamond operation

Let Z[E(C)]™ be the subgroup of Z [E(C)] modulo the equivalence relation

cd ([=P]) = = ([P]) .
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Definition 4 The diamond operation is defined by

O ZE(C)] x Z[E(C)] — Z[E(C)]”
() (9) — 2, namycl ([P — Pj))
where

(£) =3 nilP] and (9) =3 my [P

The following theorem [2], establishes the relation between the elliptic regula-
tor and the elliptic dilogarithm.

Theorem 1 The elliptic dilogarithm DF can be extended to a morphism
ZE(C) —R.
If f, g are functions on E and {f,g} € Ka2(F), then
mr({f,9}) = DP((£)0(9));

i particular

DF((£)0(1 - £)) =0.

3 An identity between regulators

Let E; be the elliptic curve, isomorphic to the curve 204, with equation
Y2 +2X,Y = XP - X,
and let E5 be the elliptic curve, isomorphic to the curve 208, with equation
Y2 4 2XoYs + 2V, = (Xo — 1)%.
Proposition 1 We have

7T7”({X1, Yl}) = —4DE1 (Pl) — 4DE1 (2P1)
ar({Xa,Ya}) = 6DEF2(R) +6DF2(2P,)

where Py = (—1,2) is the 6-torsion point of the curve Fy = [2,0,0,—1,0] and
P, = (5,4) is the 6-torsion point of the curve Ey = [2,—3,2,3, —1].

Proof. We need to compute the following divisors

(X1) = 2[3P] —2[0,]
(Y1) = [3P1]+[4P1] + [5P1] — 3[04]
(X2) = 2[3P] —2[0s]
(Yo) = 3[2P] - 3[0,]
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hence
(X1)0(Y1) = —4cl([P1]) — 4cl([2P1])

and
(X2)0(Yz2) = 6cl([P]) + 6cl([2P%])

80, by theorem 1 we get
mr({X1,Y1}) = —4DF1(P)) — 4D" (2P))

and
mr({ X2, Y2}) = 6DE2(Py) + 6DF2(2P).

Remark 2 Using the previous proposition and formula (1), we have find by
the computer,

r({ X2, Y2}) = ({X1, 1)),

where the notation A = B, means 7 A is conjectured to be equal to B 7, that
is A and B are numerically equal to at least 25 decimal places.

Theorem 2 We have the following identity
r({ Xz, Y2}) =r ({ X1, 1))
Proof. Let Z! = 204 be the elliptic curve with equation
SE=T}+T? - T
and Z2 be the elliptic curve, isomorphic to 208, with equation
S2 =T — 2T2 4+ 5T.
It is easy to check that
=X, Si="1+X; (2)

and
To=Xo, So=Yo+ Xo+1 (3)

give isomorphisms
S~ Ey, =2~ E,.

Also we have the 2-isogeny [6] given by

2 2 4
(T1,51) +— (%,—%?1)) )
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Using (2), (3) and (4) we can see ® as

(O E1 —>E2

2 2
(X1, Y1) — (XP,7?) = (gl - e,

The elliptic curve E; can be considered as a double cover of P! by
nx, : By — P!

ramified at the zeros of X + X7 — X1, i.e. 0, %‘/5, %‘/5 The closed curve
o1 = W}}([O, #]) generates Hy(E1,Z)".
The elliptic curve Es can be considered as a double cover of P! by

Tx, : By — P!
ramified at the zeros of X3 —2X2 +5X5, i.e. 0,1+2i,1—2i. The closed curve

09 = W)_(;([]. — 2i,1 4+ 2i]) generates Hy(F2,7Z).
Using the 2-isogeny we get

2P, 5P g 2P,
Pv Q 2 3P2
Py, 4P g 4Py
3P, O & O
where
11 14+5
P:(—%Sﬁ)a Q:(_Eag)v Q:P+3P1a50: 2 .

Also, when (Xo,Y5) describes o2, (X®,Y®) describes twice the closed curve
o={(X1,11) € E1(C)/|Xu] =1},

which generates Hy(E1,7Z)~, because it’s in the same homology class as o;.
Hence,

r({Xs, Ya)) = i%r (IX®, 7)), (5)
We have
(1+X1+Y1) = [2P1]+2[5P1]—3[01]
(Xi+Y1) = [BRA]+[P]+[Q]—3[0]

Y1+ X1+ X7) = [BP]+ [P +2[2P] —4][01].
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Performing the necessary computation, we obtain

(X®)O(Y?) = —12c([P1]) + 12¢l([2P1]) + 12¢l([P — 2P1]) + 12¢l([P — 2Q))
+12c1([Q — 2P1]) + 12¢1([Q — 2P])

and

(1+X1+Y1)<>(X1 +Yi) = 5Cl([P1])—CZ([2P1])—361([P—2P1])—3Cl([P—2Q])
~3cl([Q ~ 2P1]) - 3el([Q — 2P)).

Using the fact that
DE((l + X1+ Y1) O (X1 + Yl)) =0

we get
DFL(X®OY*) = 8D (P)) + 8D (2P))

so by Theorem 1 and Proposition 1
r({X®Y?}) = —2r({X1,11}). (6)
By (5), (6) and remark 2 we get
r({ X2, Yo}) = r ({X1,11}) .

[
Let E1, Es be as above. We have the following theorem [8].

Theorem 3 We have the following equalities

1) DPy(P) = —-2DP(P,)+3DF(2P)
2) DEx (2P1) = —2DF> (PQ) +2DF> (2P2)

Proof. The proof follow the same way of the proof of Theorem 3.2 in [7]
]
Now, we are able to give a new exotic relation for the curve 20A.

Corollary 1 We have the linear relation
16D (P) — 11D* (2P;) = 0.
Proof. It results from Proposition 1 and Theorem 2 that
—4DEY(Py)) — 4DP1(2P)) = 6DF2(Py) + 6DF2(2P,);
so by theorem 3, we get

16D (P) — 11D**(2P;) = 0.
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Remark 3 1. In turn, by Theorem 3, the relation

16D (P) — 11D"1(2P) = 0

becomes
5D (Py) — 13DF2(2P;) = 0.

This achieves the proof of the (conjectured) exotic relation for the curve
20B given by Bloch and Grayson in [3].

In [3] only elliptic curves with negative discriminant are considered, so
our new exotic relation does not appear in the list of Bloch and Grayson
because the curve 20A have a positive discriminant.
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