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From the elliptic regulator to exotic relations

Nouressadat TOUAFEK

Abstract

In this paper we prove an identity between the elliptic regulators of
some 2-isogenous elliptic curves. This allow us to prove a new exotic
relation for the elliptic curve 20A of Cremona’s tables. Also we prove
the (conjectured) exotic relation for the curve 20B given by Bloch and
Grayson in [3].

1 Introduction

For some elliptic curves, the elliptic dilogarithm satisfies linear relations, called
exotic by Bloch and Grayson [3].
In [3] a list of elliptic curves that satisfies exotic relations is given. Recently
some of these relations are proved by Bertin [1], Touafek [7].

We note that whenever we can find a tempered model of the elliptic curve,
the existence of exotic relations is related to elements in the second group of
the K-theory K2(E) hence to elliptic regulators, so we can prove the exotic
relations.

Bloch and Grayson conjectured the following fact.

Conjecture 1 Suppose that E (Q)tors is cyclic and d = #E (Q)tors > 2.
Write Σ for the number of fibres of type Iν with ν ≥ 3 in the Néron model,
and suppose

[
d−1
2

]−Σ > 1. Then there should be at least
[

d−1
2

]−Σ−1 exotic
relations

[ d−1
2 ]∑

r=1

arD
E(rP ) = 0,
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where P is a d-torsion point and ar ∈ Z.

In particular, these conditions are satisfied for the curve 20A of Cremona’s
tables [4]: E (Q)tors cyclic, d = 6 and Σ = 0.

In section 3 we use an identity between regulators and some equalities
between the elliptic dilogarithm to prove a new exotic relation for the elliptic
curve 20A and also we prove the (conjectured) exotic relation for the curve
20B of Cremona’s tables given by Bloch and Grayson in [3].

2 Preliminaries

Let E be an elliptic curve defined over Q.
Throughout this paper, the notation E = [a1, a2, a3, a4, a6] means that the

elliptic curve E is in the Weierstrass form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

2.1 The elliptic regulator

Let F be a field. By Matsumoto’s theorem, the second group of K-theory
K2(F ) can be described in terms of symbols {f, g}, for f, g ∈ F ∗ and relations
between them.

The relations are
⎧⎨
⎩

{f1f2, g} = {f1, g} + {f2, g}
{f, g1g2} = {f, g1} + {f, g2}
{1 − f, f} = 0.

For example, if v is a discrete valuation on F with maximal ideal M and
residual field k, the Tate’s tame symbol

(x, y)ν ≡ (−1)ν(x)ν(y) xν(y)

yν(x)
mod M

defines a homomorphism

λv : K2(F ) −→ k∗.

Let Q(E) be the rational function field of the elliptic curve E. To any P ∈
E(Q) is associated a valuation on Q(E) that gives the homomorphism

λP : K2(Q(E)) −→ Q(P )∗
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and the exact sequence

0 → K2(E) ⊗ Q → K2(Q(E)) ⊗ Q →
⊔

P∈E(Q)

Q(P )∗ ⊗ Q → ...

By definition K2(E) is defined modulo torsion by

K2(E) � kerλ = ∩
P

kerλP ⊂ K2(Q(E))

where
λ : K2(Q(E)) ⊗ Q −→

⊔

P∈E(Q)

(Q(P )∗ ⊗ Q).

Definition 1 A polynomial in two variables is tempered if the polynomial of
the faces of its Newton polygon has only roots of unity.

When drawing the convex hull of points (i, j) ∈ Z2 corresponding to the
monomials ai,jx

iyj, ai,j 	= 0, you also draw points located on the faces. The
polynomial of the face is a polynomial in one variable t which is a combination
of the monomials 1, t, t2,.... The coefficients of the combination are given when
going along the face, that is ai,j if the lattice point of the face belongs to the
convex hull and 0 otherwise.

In particular, the polynomials

P1(X1, Y1) = Y 2
1 + 2X1Y1 − X3

1 + X1

and
P2(X2, Y2) = Y 2

2 + 2X2Y2 + 2Y2 − (X2 − 1)3

are tempered, so we get {X1, Y1} ∈ K2(E1) and {X2, Y2} ∈ K2(E2), see
Rodriguez-Villegas [5]. Here E1 is the elliptic curve defined by P1(X1, Y1) = 0
and E2 the elliptic curve defined by P2(X2, Y2) = 0.

Let f and g be in Q(E)∗. Let us define

η(f, g) = log |f |d(arg g) − log |g|d(arg f).

Definition 2 The elliptic regulator r of E is given by

r : K2(E) −→ R

{f, g} 
−→ 1
2π

∫
γ η(f, g)

for a suitable loop γ generating the subgroup H1(E, Z)− of H1(E, Z), where
the complex conjugation acts by −1.
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2.2 The elliptic dilogarithm

We have two representations for E(C)

E(C) ∼−→ C /(Z + τZ) ∼−→ C∗ /
qZ

(℘(u), ℘´(u)) −→ u( mod Λ) −→ z = e2πiu

where ℘ is the Weierstrass function, Λ = {1, τ} the lattice associated to the
elliptic curve and q = e2πiτ .

Definition 3 The elliptic dilogarithm DE [2] is defined by

DE(P ) =
n=+∞∑
n=−∞

D(qnz),

where P ∈ E(C) is the image of z ∈ C∗, z = e2πiu, u = ξτ + η and D is the
Bloch-Wigner dilogarithm

D(x) := �Li2(x) + log |x|arg(1 − x).

Remark 1 1. The Bloch-Wigner dilogarithm is a function univalued, real
analytic in P1(C)\{0, 1,∞}, continuous in P1(C) [9].

2. There is a second representation of the elliptic dilogarithm given by
Bloch [2], [10] in terms of Eisenstein-Kronecker series

DE(P ) =
(�τ)2

π
(

∑
m,n∈Z

(m,n) �=(0,0)

exp( 2πi(nξ − mη))

(mτ + n)2(m
−
τ + n)

). (1)

3. The elliptic dilogarithm can be extended to divisors on E(C)

DE((f)) =
∑

i

niD
E(Pi),

where
(f) =

∑
i

ni [Pi] .

2.3 The diamond operation

Let Z [E(C)]− be the subgroup of Z [E(C)] modulo the equivalence relation

cl ([−P ]) = −cl ([P ]) .
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Definition 4 The diamond operation is defined by

♦ : Z [E(C)] × Z [E(C)] −→ Z [E(C)]−

((f), (g)) 
−→ ∑
i,j nimjcl([Pi − Pj ])

where
(f) =

∑
i

ni [Pi] and (g) =
∑

j

mj [Pj ] .

The following theorem [2], establishes the relation between the elliptic regula-
tor and the elliptic dilogarithm.

Theorem 1 The elliptic dilogarithm DE can be extended to a morphism

Z [E(C)]− −→ R.

If f, g are functions on E and {f, g} ∈ K2(E), then

πr({f, g}) = DE((f)♦(g));

in particular
DE((f)♦(1 − f)) = 0.

3 An identity between regulators

Let E1 be the elliptic curve, isomorphic to the curve 20A, with equation

Y 2
1 + 2X1Y1 = X3

1 − X1

and let E2 be the elliptic curve, isomorphic to the curve 20B, with equation

Y 2
2 + 2X2Y2 + 2Y2 = (X2 − 1)3.

Proposition 1 We have

πr({X1, Y1}) = −4DE1(P1) − 4DE1(2P1)
πr({X2, Y2}) = 6DE2(P2) + 6DE2(2P2)

where P1 = (−1, 2) is the 6-torsion point of the curve E1 = [2, 0, 0,−1, 0] and
P2 = (5, 4) is the 6-torsion point of the curve E2 = [2,−3, 2, 3,−1] .

Proof. We need to compute the following divisors

(X1) = 2 [3P1] − 2 [O1]
(Y1) = [3P1] + [4P1] + [5P1] − 3 [O1]
(X2) = 2 [3P2] − 2 [O2]
(Y2) = 3 [2P2] − 3 [O2]
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hence
(X1)♦(Y1) = −4cl([P1]) − 4cl([2P1])

and
(X2)♦(Y2) = 6cl([P2]) + 6cl([2P2])

so, by theorem 1 we get

πr({X1, Y1}) = −4DE1(P1) − 4DE1(2P1)

and
πr({X2, Y2}) = 6DE2(P2) + 6DE2(2P2).

Remark 2 Using the previous proposition and formula (1), we have find by
the computer,

r ({X2, Y2}) ?= r ({X1, Y1}) ,

where the notation A
?= B, means ” A is conjectured to be equal to B ”, that

is A and B are numerically equal to at least 25 decimal places.

Theorem 2 We have the following identity

r ({X2, Y2}) = r ({X1, Y1}) .

Proof. Let Ξ1 = 20A be the elliptic curve with equation

S2
1 = T 3

1 + T 2
1 − T1

and Ξ2 be the elliptic curve, isomorphic to 20B, with equation

S2
2 = T 3

2 − 2T 2
2 + 5T2.

It is easy to check that

T1 = X1, S1 = Y1 + X1 (2)

and
T2 = X2, S2 = Y2 + X2 + 1 (3)

give isomorphisms
Ξ1 � E1, Ξ2 � E2.

Also we have the 2-isogeny [6] given by

Φ : Ξ1 −→ Ξ2

(T1, S1) 
−→
(

S2
1

T 2
1
,−S1(T

2
1 +1)

T 2
1

)
.

(4)
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Using (2), (3) and (4) we can see Φ as

Φ : E1 −→ E2

(X1, Y1) 
−→ (XΦ, Y Φ) = ( (Y1+X1)
2

X2
1

,− (Y1+X1+1)(Y1+X2
1+X1)

X2
1

).

The elliptic curve E1 can be considered as a double cover of P1 by

πX1 : E1 −→ P1

ramified at the zeros of X3
1 +X2

1 −X1, i.e. 0, −1+
√

5
2 , −1−√

5
2 . The closed curve

σ1 = π−1
X1

([0, −1+
√

5
2 ]) generates H1(E1, Z)−.

The elliptic curve E2 can be considered as a double cover of P1 by

πX2 : E2 −→ P1

ramified at the zeros of X3
2 −2X2

2 +5X2, i.e. 0, 1+2i, 1−2i. The closed curve
σ2 = π−1

X2
([1 − 2i, 1 + 2i]) generates H1(E2, Z)−.

Using the 2-isogeny we get

2P1, 5P1 Φ−→ 2P2

P, Q Φ−→ 3P2

P1, 4P1 Φ−→ 4P2

3P1, O1 Φ−→ O2

where

P = (−ϕ, ϕ), Q = (− 1
ϕ

,
1
ϕ

), Q = P + 3P1, ϕ =
1 +

√
5

2
.

Also, when (X2, Y2) describes σ2, (XΦ, Y Φ) describes twice the closed curve

σ = {(X1, Y1) ∈ E1(C)/|X1| = 1},

which generates H1(E1, Z)−, because it’s in the same homology class as σ1.
Hence,

r ({X2, Y2}) = ±1
2
r
({

XΦ, Y Φ
})

. (5)

We have

(1 + X1 + Y1) = [2P1] + 2 [5P1] − 3 [O1]
(X1 + Y1) = [3P1] + [P ] + [Q] − 3 [O1]

(Y1 + X1 + X2
1 ) = [3P1] + [5P1] + 2[2P1] − 4 [O1] .
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Performing the necessary computation, we obtain

(XΦ)♦(Y Φ) = −12cl([P1]) + 12cl([2P1]) + 12cl([P − 2P1]) + 12cl([P − 2Q])
+12cl([Q − 2P1]) + 12cl([Q − 2P ])

and

(1 + X1 + Y1)♦ (X1 + Y1) = 5cl([P1]) − cl([2P1]) − 3cl([P − 2P1]) − 3cl([P − 2Q])
−3cl([Q − 2P1]) − 3cl([Q − 2P ]).

Using the fact that

DE((1 + X1 + Y1)♦ (X1 + Y1)) = 0

we get
DE1(XΦ♦Y Φ) = 8DE1(P1) + 8DE1(2P1)

so by Theorem 1 and Proposition 1

r
({

XΦ, Y Φ
})

= −2r ({X1, Y1}) . (6)

By (5), (6) and remark 2 we get

r ({X2, Y2}) = r ({X1, Y1}) .

Let E1, E2 be as above. We have the following theorem [8].

Theorem 3 We have the following equalities

1) DE1(P1) = −2DE2(P2) + 3DE2(2P2)
2) DE1(2P1) = −2DE2(P2) + 2DE2(2P2).

Proof. The proof follow the same way of the proof of Theorem 3.2 in [7]

Now, we are able to give a new exotic relation for the curve 20A.

Corollary 1 We have the linear relation

16DE1(P1) − 11DE1(2P1) = 0.

Proof. It results from Proposition 1 and Theorem 2 that

−4DE1(P1) − 4DE1(2P1) = 6DE2(P2) + 6DE2(2P2);

so by theorem 3, we get

16DE1(P1) − 11DE1(2P1) = 0.
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Remark 3 1. In turn, by Theorem 3, the relation

16DE1(P1) − 11DE1(2P1) = 0

becomes
5DE2(P2) − 13DE2(2P2) = 0.

This achieves the proof of the (conjectured) exotic relation for the curve
20B given by Bloch and Grayson in [3].

2. In [3] only elliptic curves with negative discriminant are considered, so
our new exotic relation does not appear in the list of Bloch and Grayson
because the curve 20A have a positive discriminant.
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Université de Jijel, Algeria
nstouafek@yahoo.fr



126 Nouressadat Touafek


