From the elliptic regulator to exotic relations

Nouressadat TOUAFEK

Abstract

In this paper we prove an identity between the elliptic regulators of some 2 -isogenous elliptic curves. This allow us to prove a new exotic relation for the elliptic curve 20 A of Cremona's tables. Also we prove the (conjectured) exotic relation for the curve $20 B$ given by Bloch and Grayson in [3].

1 Introduction

For some elliptic curves, the elliptic dilogarithm satisfies linear relations, called exotic by Bloch and Grayson [3].
In [3] a list of elliptic curves that satisfies exotic relations is given. Recently some of these relations are proved by Bertin [1], Touafek [7].

We note that whenever we can find a tempered model of the elliptic curve, the existence of exotic relations is related to elements in the second group of the K-theory $K_{2}(E)$ hence to elliptic regulators, so we can prove the exotic relations.

Bloch and Grayson conjectured the following fact.
Conjecture 1 Suppose that $E(\mathbb{Q})_{\text {tors }}$ is cyclic and $d=\# E(\mathbb{Q})_{\text {tors }}>2$. Write Σ for the number of fibres of type I_{ν} with $\nu \geq 3$ in the Néron model, and suppose $\left[\frac{d-1}{2}\right]-\Sigma>1$. Then there should be at least $\left[\frac{d-1}{2}\right]-\Sigma-1$ exotic relations

$$
\sum_{r=1}^{\left[\frac{d-1}{2}\right]} a_{r} D^{E}(r P)=0
$$

[^0]where P is a d-torsion point and $a_{r} \in \mathbb{Z}$.
In particular, these conditions are satisfied for the curve 20 A of Cremona's tables [4]: $E(\mathbb{Q})_{\text {tors }}$ cyclic, $d=6$ and $\Sigma=0$.

In section 3 we use an identity between regulators and some equalities between the elliptic dilogarithm to prove a new exotic relation for the elliptic curve $20 A$ and also we prove the (conjectured) exotic relation for the curve $20 B$ of Cremona's tables given by Bloch and Grayson in [3].

2 Preliminaries

Let E be an elliptic curve defined over \mathbb{Q}.
Throughout this paper, the notation $E=\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right]$ means that the elliptic curve E is in the Weierstrass form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} .
$$

2.1 The elliptic regulator

Let F be a field. By Matsumoto's theorem, the second group of K-theory $K_{2}(F)$ can be described in terms of symbols $\{f, g\}$, for $f, g \in F^{*}$ and relations between them.

The relations are

$$
\begin{cases}\left\{f_{1} f_{2}, g\right\} & =\left\{f_{1}, g\right\}+\left\{f_{2}, g\right\} \\ \left\{f, g_{1} g_{2}\right\} & =\left\{f, g_{1}\right\}+\left\{f, g_{2}\right\} \\ \{1-f, f\} & =0\end{cases}
$$

For example, if v is a discrete valuation on F with maximal ideal \mathfrak{M} and residual field k, the Tate's tame symbol

$$
(x, y)_{\nu} \equiv(-1)^{\nu(x) \nu(y)} \frac{x^{\nu(y)}}{y^{\nu(x)}} \quad \bmod \mathfrak{M}
$$

defines a homomorphism

$$
\lambda_{v}: K_{2}(F) \longrightarrow k^{*}
$$

Let $\mathbb{Q}(E)$ be the rational function field of the elliptic curve E. To any $P \in$ $E(\overline{\mathbb{Q}})$ is associated a valuation on $\mathbb{Q}(E)$ that gives the homomorphism

$$
\lambda_{P}: K_{2}(\mathbb{Q}(E)) \longrightarrow \mathbb{Q}(P)^{*}
$$

and the exact sequence

$$
0 \rightarrow K_{2}(E) \otimes \mathbb{Q} \rightarrow K_{2}(\mathbb{Q}(E)) \otimes \mathbb{Q} \rightarrow \bigsqcup_{P \in E(\overline{\mathbb{Q})}} \mathbb{Q}(P)^{*} \otimes \mathbb{Q} \rightarrow \ldots
$$

By definition $K_{2}(E)$ is defined modulo torsion by

$$
K_{2}(E) \simeq \operatorname{ker} \lambda=\bigcap_{P} \operatorname{ker} \lambda_{P} \subset K_{2}(\mathbb{Q}(E))
$$

where

$$
\lambda: K_{2}(\mathbb{Q}(E)) \otimes \mathbb{Q} \longrightarrow \bigsqcup_{P \in E(\overline{\mathbb{Q}})}\left(\mathbb{Q}(P)^{*} \otimes \mathbb{Q}\right)
$$

Definition 1 A polynomial in two variables is tempered if the polynomial of the faces of its Newton polygon has only roots of unity.

When drawing the convex hull of points $(i, j) \in \mathbb{Z}^{2}$ corresponding to the monomials $a_{i, j} x^{i} y^{j}, a_{i, j} \neq 0$, you also draw points located on the faces. The polynomial of the face is a polynomial in one variable t which is a combination of the monomials $1, t, t^{2}, \ldots$. The coefficients of the combination are given when going along the face, that is $a_{i, j}$ if the lattice point of the face belongs to the convex hull and 0 otherwise.

In particular, the polynomials

$$
P_{1}\left(X_{1}, Y_{1}\right)=Y_{1}^{2}+2 X_{1} Y_{1}-X_{1}^{3}+X_{1}
$$

and

$$
P_{2}\left(X_{2}, Y_{2}\right)=Y_{2}^{2}+2 X_{2} Y_{2}+2 Y_{2}-\left(X_{2}-1\right)^{3}
$$

are tempered, so we get $\left\{X_{1}, Y_{1}\right\} \in K_{2}\left(E_{1}\right)$ and $\left\{X_{2}, Y_{2}\right\} \in K_{2}\left(E_{2}\right)$, see Rodriguez-Villegas [5]. Here E_{1} is the elliptic curve defined by $P_{1}\left(X_{1}, Y_{1}\right)=0$ and E_{2} the elliptic curve defined by $P_{2}\left(X_{2}, Y_{2}\right)=0$.

Let f and g be in $\mathbb{Q}(E)^{*}$. Let us define

$$
\eta(f, g)=\log |f| d(\arg g)-\log |g| d(\arg f)
$$

Definition 2 The elliptic regulator r of E is given by

$$
\begin{array}{ccc}
r: & K_{2}(E) & \longrightarrow \\
& \{f, g\} & \longmapsto
\end{array} \frac{1}{2 \pi} \int_{\gamma} \eta(f, g) \text { lat }
$$

for a suitable loop γ generating the subgroup $H_{1}(E, \mathbb{Z})^{-}$of $H_{1}(E, \mathbb{Z})$, where the complex conjugation acts by -1 .

2.2 The elliptic dilogarithm

We have two representations for $E(\mathbb{C})$

$$
\begin{array}{cc}
E(\mathbb{C}) \xrightarrow{\sim} & \mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z}) \\
(\wp(u), \wp(u)) \longrightarrow & \mathbb{C}^{*} / q^{\mathbb{Z}} \\
u(\bmod \Lambda) \longrightarrow & z=e^{2 \pi i u}
\end{array}
$$

where \wp is the Weierstrass function, $\Lambda=\{1, \tau\}$ the lattice associated to the elliptic curve and $q=e^{2 \pi i \tau}$.

Definition 3 The elliptic dilogarithm D^{E} [2] is defined by

$$
D^{E}(P)=\sum_{n=-\infty}^{n=+\infty} D\left(q^{n} z\right)
$$

where $P \in E(\mathbb{C})$ is the image of $z \in \mathbb{C}^{*}, z=e^{2 \pi i u}, u=\xi \tau+\eta$ and D is the Bloch-Wigner dilogarithm

$$
D(x):=\Im L i_{2}(x)+\log |x| \arg (1-x)
$$

Remark 1 1. The Bloch-Wigner dilogarithm is a function univalued, real analytic in $\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}$, continuous in $\mathbb{P}^{1}(\mathbb{C})$ [9].
2. There is a second representation of the elliptic dilogarithm given by Bloch [2], [10] in terms of Eisenstein-Kronecker series

$$
\begin{equation*}
D^{E}(P)=\frac{(\Im \tau)^{2}}{\pi} \Re\left(\sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0)}} \frac{\exp (2 \pi i(n \xi-m \eta))}{(m \tau+n)^{2}(m \bar{\tau}+n)}\right) \tag{1}
\end{equation*}
$$

3. The elliptic dilogarithm can be extended to divisors on $E(\mathbb{C})$

$$
D^{E}((f))=\sum_{i} n_{i} D^{E}\left(P_{i}\right)
$$

where

$$
(f)=\sum_{i} n_{i}\left[P_{i}\right]
$$

2.3 The diamond operation

Let $\mathbb{Z}[E(\mathbb{C})]^{-}$be the subgroup of $\mathbb{Z}[E(\mathbb{C})]$ modulo the equivalence relation

$$
c l([-P])=-c l([P]) .
$$

Definition 4 The diamond operation is defined by

$$
\begin{array}{rlrl}
\diamond: \quad \mathbb{Z}[E(\mathbb{C})] \times \mathbb{Z}[E(\mathbb{C})] & \longrightarrow \mathbb{Z}[E(\mathbb{C})]^{-} \\
& ((f),(g)) & \longmapsto \sum_{i, j} n_{i} m_{j} c l\left(\left[P_{i}-P_{j}\right]\right)
\end{array}
$$

where

$$
(f)=\sum_{i} n_{i}\left[P_{i}\right] \text { and }(g)=\sum_{j} m_{j}\left[P_{j}\right]
$$

The following theorem [2], establishes the relation between the elliptic regulator and the elliptic dilogarithm.
Theorem 1 The elliptic dilogarithm D^{E} can be extended to a morphism

$$
\mathbb{Z}[E(\mathbb{C})]^{-} \longrightarrow \mathbb{R}
$$

If f, g are functions on E and $\{f, g\} \in K_{2}(E)$, then

$$
\pi r(\{f, g\})=D^{E}((f) \diamond(g))
$$

in particular

$$
D^{E}((f) \diamond(1-f))=0
$$

3 An identity between regulators

Let E_{1} be the elliptic curve, isomorphic to the curve $20 A$, with equation

$$
Y_{1}^{2}+2 X_{1} Y_{1}=X_{1}^{3}-X_{1}
$$

and let E_{2} be the elliptic curve, isomorphic to the curve $20 B$, with equation

$$
Y_{2}^{2}+2 X_{2} Y_{2}+2 Y_{2}=\left(X_{2}-1\right)^{3}
$$

Proposition 1 We have

$$
\begin{aligned}
& \pi r\left(\left\{X_{1}, Y_{1}\right\}\right)=-4 D^{E_{1}}\left(P_{1}\right)-4 D^{E_{1}}\left(2 P_{1}\right) \\
& \pi r\left(\left\{X_{2}, Y_{2}\right\}\right)=6 D^{E_{2}}\left(P_{2}\right)+6 D^{E_{2}}\left(2 P_{2}\right)
\end{aligned}
$$

where $P_{1}=(-1,2)$ is the 6 -torsion point of the curve $E_{1}=[2,0,0,-1,0]$ and $P_{2}=(5,4)$ is the 6 -torsion point of the curve $E_{2}=[2,-3,2,3,-1]$.

Proof. We need to compute the following divisors

$$
\begin{aligned}
\left(X_{1}\right) & = & 2\left[3 P_{1}\right]-2\left[O_{1}\right] \\
\left(Y_{1}\right) & = & {\left[3 P_{1}\right]+\left[4 P_{1}\right]+\left[5 P_{1}\right]-3\left[O_{1}\right] } \\
\left(X_{2}\right) & = & 2\left[3 P_{2}\right]-2\left[O_{2}\right] \\
\left(Y_{2}\right) & = & 3\left[2 P_{2}\right]-3\left[O_{2}\right]
\end{aligned}
$$

hence

$$
\left(X_{1}\right) \diamond\left(Y_{1}\right)=-4 c l\left(\left[P_{1}\right]\right)-4 c l\left(\left[2 P_{1}\right]\right)
$$

and

$$
\left(X_{2}\right) \diamond\left(Y_{2}\right)=6 c l\left(\left[P_{2}\right]\right)+6 c l\left(\left[2 P_{2}\right]\right)
$$

so, by theorem 1 we get

$$
\pi r\left(\left\{X_{1}, Y_{1}\right\}\right)=-4 D^{E_{1}}\left(P_{1}\right)-4 D^{E_{1}}\left(2 P_{1}\right)
$$

and

$$
\pi r\left(\left\{X_{2}, Y_{2}\right\}\right)=6 D^{E_{2}}\left(P_{2}\right)+6 D^{E_{2}}\left(2 P_{2}\right)
$$

Remark 2 Using the previous proposition and formula (1), we have find by the computer,

$$
r\left(\left\{X_{2}, Y_{2}\right\}\right) \stackrel{?}{=} r\left(\left\{X_{1}, Y_{1}\right\}\right)
$$

where the notation $A \stackrel{?}{=} B$, means " A is conjectured to be equal to B ", that is A and B are numerically equal to at least 25 decimal places.
Theorem 2 We have the following identity

$$
r\left(\left\{X_{2}, Y_{2}\right\}\right)=r\left(\left\{X_{1}, Y_{1}\right\}\right)
$$

Proof. Let $\Xi^{1}=20 A$ be the elliptic curve with equation

$$
S_{1}^{2}=T_{1}^{3}+T_{1}^{2}-T_{1}
$$

and Ξ^{2} be the elliptic curve, isomorphic to $20 B$, with equation

$$
S_{2}^{2}=T_{2}^{3}-2 T_{2}^{2}+5 T_{2}
$$

It is easy to check that

$$
\begin{equation*}
T_{1}=X_{1}, S_{1}=Y_{1}+X_{1} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{2}=X_{2}, S_{2}=Y_{2}+X_{2}+1 \tag{3}
\end{equation*}
$$

give isomorphisms

$$
\Xi^{1} \simeq E_{1}, \quad \Xi^{2} \simeq E_{2}
$$

Also we have the 2 -isogeny [6] given by

$$
\begin{array}{rll}
\Phi: & \Xi^{1} & \longrightarrow \Xi^{2} \\
& \left(T_{1}, S_{1}\right) & \longmapsto\left(\frac{S_{1}^{2}}{T_{1}^{2}},-\frac{S_{1}\left(T_{1}^{2}+1\right)}{T_{1}^{2}}\right) . \tag{4}
\end{array}
$$

Using (2), (3) and (4) we can see Φ as

$$
\begin{array}{rll}
\Phi: & E_{1} & \longrightarrow E_{2} \\
& \left(X_{1}, Y_{1}\right) & \longmapsto\left(X^{\Phi}, Y^{\Phi}\right)=\left(\frac{\left(Y_{1}+X_{1}\right)^{2}}{X_{1}^{2}},-\frac{\left(Y_{1}+X_{1}+1\right)\left(Y_{1}+X_{1}^{2}+X_{1}\right)}{X_{1}^{2}}\right) .
\end{array}
$$

The elliptic curve E_{1} can be considered as a double cover of \mathbf{P}^{1} by

$$
\pi_{X_{1}}: E_{1} \longrightarrow \mathbf{P}^{1}
$$

ramified at the zeros of $X_{1}^{3}+X_{1}^{2}-X_{1}$, i.e. $0, \frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}$. The closed curve $\sigma_{1}=\pi_{X_{1}}^{-1}\left(\left[0, \frac{-1+\sqrt{5}}{2}\right]\right)$ generates $H_{1}\left(E_{1}, \mathbb{Z}\right)^{-}$.

The elliptic curve E_{2} can be considered as a double cover of \mathbf{P}^{1} by

$$
\pi_{X_{2}}: E_{2} \longrightarrow \mathbf{P}^{1}
$$

ramified at the zeros of $X_{2}^{3}-2 X_{2}^{2}+5 X_{2}$, i.e. $0,1+2 i, 1-2 i$. The closed curve $\sigma_{2}=\pi_{X_{2}}^{-1}([1-2 i, 1+2 i])$ generates $H_{1}\left(E_{2}, \mathbb{Z}\right)^{-}$.

Using the 2-isogeny we get

$$
\begin{array}{rccc}
2 P_{1}, & 5 P_{1} & \xrightarrow{\Phi} & 2 P_{2} \\
P, & Q & \xrightarrow[\Phi]{~} & 3 P_{2} \\
P_{1}, & 4 P_{1} & \xrightarrow{\Phi} & 4 P_{2} \\
3 P_{1}, & O_{1} & \xrightarrow{\Phi} & O_{2}
\end{array}
$$

where

$$
P=(-\varphi, \varphi), \quad Q=\left(-\frac{1}{\varphi}, \frac{1}{\varphi}\right), \quad Q=P+3 P_{1}, \quad \varphi=\frac{1+\sqrt{5}}{2}
$$

Also, when $\left(X_{2}, Y_{2}\right)$ describes $\sigma_{2},\left(X^{\Phi}, Y^{\Phi}\right)$ describes twice the closed curve

$$
\sigma=\left\{\left(X_{1}, Y_{1}\right) \in E_{1}(\mathbb{C}) /\left|X_{1}\right|=1\right\}
$$

which generates $H_{1}\left(E_{1}, \mathbb{Z}\right)^{-}$, because it's in the same homology class as σ_{1}.
Hence,

$$
\begin{equation*}
r\left(\left\{X_{2}, Y_{2}\right\}\right)= \pm \frac{1}{2} r\left(\left\{X^{\Phi}, Y^{\Phi}\right\}\right) \tag{5}
\end{equation*}
$$

We have

$$
\begin{aligned}
\left(1+X_{1}+Y_{1}\right) & =\left[2 P_{1}\right]+2\left[5 P_{1}\right]-3\left[O_{1}\right] \\
\left(X_{1}+Y_{1}\right) & =\left[3 P_{1}\right]+[P]+[Q]-3\left[O_{1}\right] \\
\left(Y_{1}+X_{1}+X_{1}^{2}\right) & =\left[3 P_{1}\right]+\left[5 P_{1}\right]+2\left[2 P_{1}\right]-4\left[O_{1}\right] .
\end{aligned}
$$

Performing the necessary computation, we obtain

$$
\begin{aligned}
\left(X^{\Phi}\right) \diamond\left(Y^{\Phi}\right)=-12 c l\left(\left[P_{1}\right]\right) & +12 \operatorname{cl}\left(\left[2 P_{1}\right]\right)+12 c l\left(\left[P-2 P_{1}\right]\right)+12 \operatorname{cl}([P-2 Q]) \\
& +12 c l\left(\left[Q-2 P_{1}\right]\right)+12 c l([Q-2 P])
\end{aligned}
$$

and

$$
\begin{aligned}
\left(1+X_{1}+Y_{1}\right) \diamond\left(X_{1}+Y_{1}\right)= & 5 \operatorname{cl}\left(\left[P_{1}\right]\right)-\operatorname{cl}\left(\left[2 P_{1}\right]\right)-3 \operatorname{cl}\left(\left[P-2 P_{1}\right]\right)-3 \operatorname{cl}([P-2 Q]) \\
& -3 \operatorname{cl}\left(\left[Q-2 P_{1}\right]\right)-3 \operatorname{cl}([Q-2 P]) .
\end{aligned}
$$

Using the fact that

$$
D^{E}\left(\left(1+X_{1}+Y_{1}\right) \diamond\left(X_{1}+Y_{1}\right)\right)=0
$$

we get

$$
D^{E_{1}}\left(X^{\Phi} \diamond Y^{\Phi}\right)=8 D^{E_{1}}\left(P_{1}\right)+8 D^{E_{1}}\left(2 P_{1}\right)
$$

so by Theorem 1 and Proposition 1

$$
\begin{equation*}
r\left(\left\{X^{\Phi}, Y^{\Phi}\right\}\right)=-2 r\left(\left\{X_{1}, Y_{1}\right\}\right) \tag{6}
\end{equation*}
$$

By (5), (6) and remark 2 we get

$$
r\left(\left\{X_{2}, Y_{2}\right\}\right)=r\left(\left\{X_{1}, Y_{1}\right\}\right)
$$

Let E_{1}, E_{2} be as above. We have the following theorem [8].
Theorem 3 We have the following equalities

$$
\begin{aligned}
& \text { 1) } D^{E_{1}}\left(P_{1}\right)=-2 D^{E_{2}}\left(P_{2}\right)+3 D^{E_{2}}\left(2 P_{2}\right) \\
& \text { 2) } D^{E_{1}}\left(2 P_{1}\right)=-2 D^{E_{2}}\left(P_{2}\right)+2 D^{E_{2}}\left(2 P_{2}\right) \text {. }
\end{aligned}
$$

Proof. The proof follow the same way of the proof of Theorem 3.2 in [7]
Now, we are able to give a new exotic relation for the curve 20 A .
Corollary 1 We have the linear relation

$$
16 D^{E_{1}}\left(P_{1}\right)-11 D^{E_{1}}\left(2 P_{1}\right)=0
$$

Proof. It results from Proposition 1 and Theorem 2 that

$$
-4 D^{E_{1}}\left(P_{1}\right)-4 D^{E_{1}}\left(2 P_{1}\right)=6 D^{E_{2}}\left(P_{2}\right)+6 D^{E_{2}}\left(2 P_{2}\right)
$$

so by theorem 3, we get

$$
16 D^{E_{1}}\left(P_{1}\right)-11 D^{E_{1}}\left(2 P_{1}\right)=0
$$

Remark 3 1. In turn, by Theorem 3, the relation

$$
16 D^{E_{1}}\left(P_{1}\right)-11 D^{E_{1}}\left(2 P_{1}\right)=0
$$

becomes

$$
5 D^{E_{2}}\left(P_{2}\right)-13 D^{E_{2}}\left(2 P_{2}\right)=0
$$

This achieves the proof of the (conjectured) exotic relation for the curve $20 B$ given by Bloch and Grayson in [3].
2. In [3] only elliptic curves with negative discriminant are considered, so our new exotic relation does not appear in the list of Bloch and Grayson because the curve $20 A$ have a positive discriminant.

References

[1] M.J. Bertin, Mesure de Mahler et régulateur elliptique: Preuve de deux relations exotiques, CRM Proc. Lectures Notes, 36 (2004), 1-12.
[2] S. Bloch, Higher regulators, algebraic K-theory and zeta functions of ellptic curves, (Irvine Lecture, 1977) CRM-Monograph series, vol.11, Amer.Math.Soc., Providence, RI, 2000.
[3] S. Bloch and D. Grayson, K_{2} and L-functions of elliptic curves computer calculations, I, Contemp. Math. 55 (1986), 79-88.
[4] J.E. Cremona, Algorithms for modular elliptic curves, Cambridge University Press, 2nd edition, 1997.
[5] F. Rodriguez-Villegas, Modular Mahler measures I, Topics in Number Theory (S. D. Ahlgren, G. E. Andrews, and K. Ono, eds), Kluwer, Dordrecht, 1999, pp. 17-48.
[6] J.H. Silverman, The arithmetic of elliptic curves, Springer Verlag, Berlin and New York, 1986.
[7] N. Touafek, Some equalities between elliptic dilogarithm of 2-isogenous elliptic curves, Int. J. Algebra, 2(2008), 45-51.
[8] N. Touafek, Thèse de Doctorat, Université de Constantine, Algeria, 2008.
[9] D. Zagier, Dedekind Zeta functions, and the Algebraic K-theory of Fields, Arithmetic algebraic geometry (Texel, 1989), 391-430, Progr. Math., 89, Birkhuser Boston, Boston, MA, 1991.
[10] D. Zagier and H. Gangl, Classical and elliptic polylogarithms and special values of L-series, the Arithmetic and Geometry of Algebraic cycles, Nato, Adv. Sci. Ser.C. Math.Phys.Sci., Vol. 548, Kluwer, Dordrech, 2000, pp. 561-615.

Laboratoire de Physique Théorique
Equipe de Théorie des Nombres
Université de Jijel, Algeria
nstouafek@yahoo.fr

[^0]: Key Words: Elliptic curves, Elliptic dilogarithm, Elliptic regulator, Exotic relations.
 Mathematics Subject Classification: 11G05, 14G05, 14H52.
 Received: April, 2008
 Accepted: September, 2008

