Mahler's measure : proof of two conjectured formulae

Nouressadat TOUAFEK

Abstract

In this note we prove the two formulae conjectured by D. W. Boyd [Experiment. Math. 7 (1998), 37-82], $$
\begin{aligned} m\left(y^{2}(x+1)^{2}+y\left(x^{2}+6 x+1\right)+(x+1)^{2}\right) & =\frac{8}{3} L^{\prime}\left(\chi_{-4},-1\right) \\ m\left(y^{2}(x+1)^{2}+y\left(x^{2}-10 x+1\right)+(x+1)^{2}\right) & =\frac{20}{3} L^{\prime}\left(\chi_{-3},-1\right) \end{aligned}
$$ where m denotes the logarithmic Mahler measure for two-variable polynomials.

1 Introduction

The logarithmic Mahler measure of a non-zero Laurent polynomial $P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ is defined as

$$
m(P):=\frac{1}{(2 \pi i)^{n}} \int_{\mathbf{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{d x_{1}}{x_{1}} \ldots \frac{d x_{n}}{x_{n}}
$$

Here,

$$
\mathbf{T}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n} /\left|x_{1}\right|=\ldots\left|x_{n}\right|=1\right\}
$$

is the n-torus. This integral is not singular and $m(P)$ always exists. Moreover, if P has integral coefficients, this number is nonnegative.

[^0]In [3] Boyd computed the measure of polynomials of the form

$$
P_{k}(x, y)=k+Q(x, y)
$$

where Q is a Laurent polynomial and k an integer parameter. He found families of (conjectural) formulas of the type $m\left(P_{k}\right) \stackrel{?}{=} r_{k} b_{E_{k}}$, where $P_{k}=0$ defines a curve E_{k} of genus $1, r_{k}$ is a rational number and

$$
b_{E_{k}}:=\frac{N_{k}}{4 \pi^{2}} L\left(E_{k}, 2\right)
$$

Here N_{k} is the conductor of the elliptic curve E_{k} and $L\left(E_{k}, 2\right)$ its L-series. In particular many experimental relations between the Mahler measure of different polynomials are founded.

Some of these experimental relations are proved Rodriguez-Villegas [5], Bertin [1, 2], Touafek and Kerada [6]. The main idea is to view $m(P)$ as an elliptic regulator, so, expressed in terms of the elliptic dilogarithm.

Also in [3], formulas of the type $m\left(P_{k}\right) \stackrel{?}{=} r_{k} d_{f}$ are given, where r_{k} is a rational number,

$$
d_{f}:=L^{\prime}\left(\chi_{-f},-1\right)=\frac{f^{\frac{3}{2}}}{4 \pi} L\left(\chi_{-f}, 2\right)
$$

and $P_{k}=0$ defines a curve of genus 0 . Here $L\left(\chi_{-f}, 2\right)$ is the Dirichlet Lfunction associated to the odd primitive caracter χ_{-f}.
Bloch's formula gives $L^{\prime}\left(\chi_{-f},-1\right)$ for odd primitive character χ_{-f} as a combination of Bloch-Wigner dilogarithms,

$$
\begin{equation*}
L^{\prime}\left(\chi_{-f},-1\right)=\frac{f}{4 \pi} \sum_{m=1}^{f} \chi_{-f}(m) D\left(\xi_{f}^{m}\right) \tag{1}
\end{equation*}
$$

where ξ_{f} denotes a primitive of roots of unity. So, we may get $m(P)$ as a combination of Bloch-Wigner dilogarithm.
The notation $A \stackrel{?}{=} B$, means " A is conjectured to be equal to B ", that is A and B are numerically equal to at least 25 decimal places.

After some preliminaries, we prove in section 3 the two following identities guessed by Boyd [3]

$$
\begin{aligned}
m\left(y^{2}(x+1)^{2}+y\left(x^{2}+6 x+1\right)+(x+1)^{2}\right) & =\frac{8}{3} L^{\prime}\left(\chi_{-4},-1\right) \\
m\left(y^{2}(x+1)^{2}+y\left(x^{2}-10 x+1\right)+(x+1)^{2}\right) & =\frac{20}{3} L^{\prime}\left(\chi_{-3},-1\right)
\end{aligned}
$$

2 Preliminaries

2.1 Polylogarithms

For a positive integer k, the k th polylogarithm function is defined for $|x|<1$ by

$$
L i_{k}(x):=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{k}}, x \in \mathbb{C} .
$$

This function can be continued analytically to $\mathbb{C} \backslash[1, \infty)$.
In order to avoid discontinuities, and to extend this function to the whole complex plane, Zagier [7] propose the following version

$$
\widehat{\mathbb{L}}_{k}(x):=\widehat{\Re}_{k}\left(\sum_{j=0}^{k-1} \frac{2^{j} B_{j}}{j!}(\log |x|)^{j} L i_{k-j}(x)\right)
$$

where B_{j} is the j th Bernoulli number and $\widehat{\Re}_{k}$ denotes \Re or $i \Im$ depending on whether k is odd or even.

This function is one-valued, real analytic in $\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}$ and continuous in $\mathbb{P}^{1}(\mathbb{C})$. Moreover, $\widehat{\mathbb{L}}_{k}$ satisfy some functional equations, for example

$$
\widehat{\mathbb{L}}_{k}\left(\frac{1}{x}\right)=(-1)^{k-1} \widehat{\mathbb{L}}_{k}(x) .
$$

For $k=2$,

$$
\widehat{\mathbb{L}}_{2}(x):=\Im L i_{2}(x)+\log |x| \arg (1-x)
$$

is well-known as $D(x)$, the Bloch-Wigner dilogarithm.
The Bloch-Wigner dilogarithm satisfies the following properties
$D(x)=-D(\bar{x}), D(x)=D\left(\frac{x-1}{x}\right), D(x)=D\left(\frac{1}{1-x}\right), D(x)=-D\left(\frac{1}{x}\right)$, $D(x)=-D(1-x), D(x)=-D\left(\frac{x}{x-1}\right), D\left(x^{n}\right)=n \sum_{k=0}^{n-1} D\left(e^{\frac{2 \pi i k}{n}} x\right)$ (distribution formula).

2.2 Mahler measure of two-variable polynomials

Let $P \in \mathbb{C}[x, y]$ be a polynomial in two variables, we may think of it as a polynomial in x with coefficients which are polynomials in y and write

$$
P(x, y)=a_{0}(y) \prod_{j=1}^{k}\left(x-x_{j}(y)\right)
$$

where $x_{j}(y)$ are algebraic functions of y. Integrating the x variable using Jensen's formula we obtain

$$
\begin{equation*}
m(P)=m\left(a_{0}\right)+\sum_{j=1}^{k} \frac{1}{2 \pi i} \int_{|y|=1} \log ^{+}\left|x_{j}(y)\right| \frac{d y}{y} \tag{2}
\end{equation*}
$$

where $\log ^{+}|z|=\log |z|$ if $|z| \geq 1$ and 0 otherwise.
Let

$$
\eta_{2}(2)(x, y)=i \log |x| d(\arg y)-i \log |y| d(\arg x)
$$

it's a differential form on the variety

$$
\gamma=\{P(x, y)=0\} \cap\{|x|=1,|y| \geq 1\}
$$

The differential form $\eta_{2}(2)$ satisfy the following properties

- $\eta_{2}(2)(x, y)=-\eta_{2}(2)(y, x)$
- $\eta_{2}(2)\left(x_{1} x_{2}, y\right)=\eta_{2}(2)\left(x_{1}, y\right)+\eta_{2}(2)\left(x_{2}, y\right)$
- $\eta_{2}(2)(x, 1-x)=d \widehat{D}(x)$, where $\widehat{D}(x)=i D(x)$
- if $\alpha \neq \beta$

$$
\begin{aligned}
\eta_{2}(2)(t-\alpha, t-\beta) & =\eta_{2}(2)\left(\frac{t-\alpha}{\beta-\alpha}, 1-\frac{t-\alpha}{\beta-\alpha}\right)+\eta_{2}(2)(t-\alpha, \alpha-\beta) \\
& +\eta_{2}(2)(\beta-\alpha, t-\beta) .\left(\text { Tate's }^{\prime} \text { formula }\right)
\end{aligned}
$$

Hence $\eta_{2}(2)(t-1, t)=-\eta_{2}(2)(t, 1-t)$ etc...
For each j, the set

$$
\gamma_{j}=\left\{\left(x_{j}(y), y\right):|y|=1 \text { and }\left|x_{j}(y)\right| \geq 1\right\}
$$

is a direct path (or a union of such) inside of $C=\{P(x, y)=0\}$. The set $\cup \gamma_{j}$ precisely coincides with

$$
\gamma=\{(x, y) \in C:|y|=1,|x| \geq 1\}
$$

Therefore (2) may be rewritten as

$$
m(P)=m\left(a_{0}\right)+\frac{1}{2 \pi i} \int_{\gamma} \log |x| \frac{d y}{y}=m\left(a_{0}\right)+\frac{1}{2 \pi i} \int_{\gamma} \eta_{2}(2)(x, y)
$$

Or equivalently
$m(P)=m\left(a_{0}\right)+\frac{1}{2 \pi i} \int_{\gamma} \log |x| \frac{d y}{y}=m\left(a_{0}\right)+\frac{1}{2 \pi i} \sum_{j} \int_{\gamma_{j}} \eta_{2}(2)\left(x_{j}(y), y\right)$.

When the differential form $\eta_{2}(2)$ is exact and $\partial \gamma \neq 0$ where

$$
\partial \gamma=\{P(x, y)=0\} \cap\{|x|=1,|y|=1\}
$$

in this case we can integrate using Stokes formula.
We can guarantee that $\eta_{2}(2)$ is exact by having $\{x, y\}$ is trivial in $K_{2}(\mathbb{C}(C)) \otimes$ \mathbb{Q} where $C=\{P(x, y)=0\}$. When the polynomial P is tempered, this condition is satisfied (see Villegas [4]).

2.3 Tempered polynomial

A polynomial in two variables is tempered if the polynomials of the faces of its Newton polygon has only roots of unity.

When drawing the convex hull of points $(i, j) \in \mathbb{Z}^{2}$ corresponding to the monomials $a_{i, j} x^{i} y^{j}, a_{i, j} \neq 0$, you also draw points located on the faces. The polynomial of the face is a polynomial in one variable t which is a combination of the monomials $1, t, t^{2}, \ldots$. The coefficients of the combination are given when going along the face, that is $a_{i, j}$ if the lattice point of the face belongs to the convex hull and 0 otherwise. The two polynomials

$$
P(x, y)=y^{2}(x+1)^{2}+y\left(x^{2}+6 x+1\right)+(x+1)^{2}
$$

and

$$
Q(x, y)=y^{2}(x+1)^{2}+y\left(x^{2}-10 x+1\right)+(x+1)^{2}
$$

are tempered.

3 Results

For the polynomials

$$
P(x, y)=y^{2}(x+1)^{2}+y\left(x^{2}+6 x+1\right)+(x+1)^{2}
$$

and

$$
Q(x, y)=y^{2}(x+1)^{2}+y\left(x^{2}-10 x+1\right)+(x+1)^{2}
$$

Boyd [3] guessed

$$
\begin{equation*}
m(P) \stackrel{?}{=} \frac{8}{3} L^{\prime}\left(\chi_{-4},-1\right), m(Q) \stackrel{?}{=} \frac{20}{3} L^{\prime}\left(\chi_{-3},-1\right) \tag{3}
\end{equation*}
$$

Therefore, by Bloch's formula (1), (3) may be rewritten as

$$
m(P) \stackrel{?}{=} \frac{16}{3 \pi} D(i), m(Q) \stackrel{?}{=} \frac{10}{\pi} D(j)
$$

where $j=e^{\frac{2 \pi i}{3}}$.
In the following we prove these two formulae.

Theorem 1 We have the following identity

$$
m\left(y^{2}(x+1)^{2}+y\left(x^{2}+6 x+1\right)+(x+1)^{2}\right)=\frac{8}{3} L^{\prime}\left(\chi_{-4},-1\right)
$$

Proof. Let P be the polynomial defined by

$$
P(x, y)=y^{2}(x+1)^{2}+y\left(x^{2}+6 x+1\right)+(x+1)^{2} .
$$

It defines a rational curve with the double point $(1,-1)$.
Let $x=X+1$ et $y=Y-1$, so $P(x, y)=0$ becomes,

$$
((X+2) Y)^{2}=X^{2}(Y-1)
$$

i.e.

$$
Y-1=\left(\frac{(X+2) Y}{X}\right)^{2}
$$

Let $t=\frac{(X+2) Y}{X}$, so $y=t^{2}$ and the equation $P(x, y)=0$ becomes

$$
(x+1)^{2} t^{4}+\left(x^{2}+6 x+1\right) t^{2}+(x+1)^{2}=0
$$

Hence we get the following parametrization

$$
\begin{aligned}
y(t) & =t^{2} \\
x_{1}(t) & =-\frac{\left(t^{3}-1\right)(t+1)}{(t-1)\left(t^{3}+1\right)} \\
x_{2}(t) & =-\frac{\left(t^{3}+1\right)(t-1)}{(t+1)\left(t^{3}-1\right)}
\end{aligned}
$$

We have

$$
m(P)=\frac{1}{2 \pi i} \int_{|y|=1} \log |x| \frac{d y}{y}=\frac{1}{2 \pi i} \int_{\gamma} \eta_{2}(2)(x, y)
$$

where

$$
\gamma=\left\{(x+1)^{2} y^{2}+\left(x^{2}+6 x+1\right) y+(x+1)^{2}=0\right\} \cap\{|y|=1,|x| \geq 1\}
$$

and

$$
\eta_{2}(2)(x, y)=i \log |x| d(\arg y)-i \log |y| d(\arg x) .
$$

Using the parametrization, we get

$$
\begin{equation*}
m(P)=\frac{1}{2 \pi i} \int_{\gamma_{1}} \eta_{2}(2)\left(x_{1}(t), y(t)\right)+\frac{1}{2 \pi i} \int_{\gamma_{2}} \eta_{2}(2)\left(x_{2}(t), y(t)\right) \tag{4}
\end{equation*}
$$

where

$$
\gamma_{1}=\left\{t:\left|x_{1}(t)\right| \geq 1,|y(t)|=1\right\}=\left\{t: t=e^{i \frac{\theta}{2}}, \theta \in[0, \pi]\right\}
$$

and

$$
\gamma_{2}=\left\{t:\left|x_{2}(t)\right| \geq 1,|y(t)|=1\right\}=\left\{t: t=e^{i \frac{\theta}{2}}, \theta \in[\pi, 2 \pi]\right\}
$$

Using Tate's formula, we get

$$
\begin{aligned}
\eta_{2}(2)(t-1, t) & =-\eta_{2}(2)(t, 1-t) \\
\eta_{2}(2)(t+1, t) & =-\eta_{2}(2)(-t, 1+t) \\
\eta_{2}(2)\left(1+t^{3}, t^{3}\right) & =-\eta_{2}(2)\left(-t^{3}, 1+t^{3}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
\eta_{2}(2)\left(x_{1}(t), y(t)\right) & =\frac{2}{3} \eta_{2}(2)\left(1-t^{3}, t^{3}\right)-\frac{2}{3} \eta_{2}(2)\left(1+t^{3}, t^{3}\right) \\
& +2 \eta_{2}(2)(t+1, t)-2 \eta_{2}(2)(t-1, t) \\
& =-\frac{2}{3} \eta_{2}(2)\left(t^{3}, 1-t^{3}\right)+\frac{2}{3} \eta_{2}(2)\left(-t^{3}, 1+t^{3}\right) \\
& -2 \eta_{2}(2)(-t, 1+t)+2 \eta_{2}(2)(t, 1-t)
\end{aligned}
$$

Hence
$\frac{1}{2 \pi i} \int_{\gamma_{1}} \eta_{2}(2)\left(x_{1}(t), y(t)\right)=\frac{i}{2 \pi i}\left[-\frac{2}{3} D\left(t^{3}\right)+\frac{2}{3} D\left(-t^{3}\right)-2 D(-t)+2 D(t)\right]_{1}^{i}$
which gives

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\gamma_{1}} \eta_{2}(2)\left(x_{1}(t), y(t)\right)=\frac{8}{3 \pi} D(i) \tag{5}
\end{equation*}
$$

By the same arguments we get

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\gamma_{2}} \eta_{2}(2)\left(x_{2}(t), y(t)\right)=\frac{8}{3 \pi} D(i) \tag{6}
\end{equation*}
$$

Using (5) and (6), (4) becomes

$$
m(P)=\frac{16}{3 \pi} D(i)=\frac{8}{3} L^{\prime}\left(\chi_{-4},-1\right)
$$

Theorem 2 We have the following identity

$$
m\left(y^{2}(x+1)^{2}+y\left(x^{2}-10 x+1\right)+(x+1)^{2}\right)=\frac{20}{3} L^{\prime}\left(\chi_{-3},-1\right)
$$

Proof. Let Q be the polynomial defined by

$$
Q(x, y)=y^{2}(x+1)^{2}+y\left(x^{2}-10 x+1\right)+(x+1)^{2}
$$

It defines a rational curve with the double point $(1,1)$.
Let $x=X+1$ et $y=Y+1$, so $Q(x, y)=0$ becomes,

$$
((X+2) Y)^{2}=-3 X^{2}(Y+1)
$$

i.e.

$$
Y+1=-\left(\frac{(X+2) Y}{\sqrt{3} X}\right)^{2}
$$

Let $t=\frac{(X+2) Y}{\sqrt{3} X}$, so $y=-t^{2}$ and the equation $Q(x, y)=0$ becomes

$$
(x+1)^{2} t^{4}-\left(x^{2}-10 x+1\right) t^{2}+(x+1)^{2}=0
$$

Hence we get the following parametrization

$$
y(t)=-t^{2}, x_{1}(t)=-\frac{t^{2}+\sqrt{3} t+1}{t^{2}-\sqrt{3} t+1}, x_{2}(t)=-\frac{t^{2}-\sqrt{3} t+1}{t^{2}+\sqrt{3} t+1}
$$

We have

$$
m(Q)=\frac{1}{2 \pi i} \int_{|y|=1} \log |x| \frac{d y}{y}=\frac{1}{2 \pi i} \int_{\gamma} \eta_{2}(2)(x, y)
$$

where

$$
\gamma=\left\{(x+1)^{2} y^{2}+\left(x^{2}-10 x+1\right) y+(x+1)^{2}=0\right\} \cap\{|y|=1,|x| \geq 1\}
$$

Using the parametrization, we get

$$
m(Q)=\frac{1}{2 \pi i} \int_{\gamma_{1}} \eta_{2}(2)\left(x_{1}(t), y(t)\right)=\frac{1}{2 \pi i} \int_{\gamma_{2}} \eta_{2}(2)\left(x_{2}(t), y(t)\right)
$$

where

$$
\gamma_{1}=\left\{t:\left|x_{1}(t)\right| \geq 1,|y(t)|=1\right\}=\left\{t: t=i e^{i \frac{\theta}{2}}, \theta \in[0,2 \pi]\right\}
$$

and

$$
\gamma_{2}=\left\{t:\left|x_{2}(t)\right| \geq 1,|y(t)|=1\right\}=\left\{t: t=-i e^{i \frac{\theta}{2}}, \theta \in[0,2 \pi]\right\}
$$

Using Tate's formula, we get

$$
\begin{aligned}
\eta_{2}(2)\left(x_{1}(t), y(t)\right) & =2 \eta_{2}(2)\left(\frac{t-\xi_{6}}{-\xi_{6}}, 1-\frac{t-\xi_{6}}{-\xi_{6}}\right)+2 \eta_{2}(2)\left(\frac{t-\overline{\xi_{6}}}{-\overline{\xi_{6}}}, 1-\frac{t-\overline{\xi_{6}}}{-\overline{\xi_{6}}}\right) \\
& +2 \eta_{2}(2)\left(\frac{t}{-\xi_{6}}, 1-\frac{t}{-\xi_{6}}\right)+2 \eta_{2}(2)\left(\frac{t}{-\overline{\xi_{6}}}, 1-\frac{t}{-\overline{\xi_{6}}}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
m(Q) & =\frac{2}{2 \pi i} \int_{\gamma_{1}}\left(d \widehat{D}\left(\frac{t-\xi_{6}}{-\xi_{6}}\right)+d \widehat{D}\left(\frac{t-\overline{\xi_{6}}}{-\overline{\xi_{6}}}\right)+d \widehat{D}\left(\frac{t}{-\xi_{6}}\right)+d \widehat{D}\left(\frac{t}{-\overline{\xi_{6}}}\right)\right) \\
& =\frac{2 i}{2 \pi i}\left[\left(D\left(\frac{t-\xi_{6}}{-\xi_{6}}\right)+D\left(\frac{t-\overline{\xi_{6}}}{-\overline{\xi_{6}}}\right)+D\left(\frac{t}{-\xi_{6}}\right)+D\left(\frac{t}{-\overline{\xi_{6}}}\right)\right)\right]_{i}^{-i}
\end{aligned}
$$

where $\xi_{6}=e^{i \frac{\pi}{6}}$. So

$$
\begin{equation*}
m(Q)=\frac{4}{\pi}\left[D\left(i \xi_{6}\right)-D\left(-i \xi_{6}\right)\right] \tag{7}
\end{equation*}
$$

Using the fact that $i \xi_{6}=j$ and $D(-j)=-\frac{3}{2} D(j),(7)$ becomes

$$
m(Q)=\frac{10}{\pi} D(j)=\frac{20}{3} L^{\prime}\left(\chi_{-3},-1\right) .
$$

References

[1] M. J. Bertin, Mesure de Mahler d'une famille de polynômes, J. reine angew. Math., 569(2004), 175-188.
[2] M. J. Bertin, Mesure de Mahler et régulateur elliptique: Preuve de deux relations exotiques, CRM Proc. Lecture Notes, 36(2004), 1-12.
[3] D. W. Boyd, Mahler's measure and special values of L - series, Experiment. Math. 7(1998), 37-82.
[4] F. Rodriguez-Villegas, Modular Mahler measures. I, Topics in Number Theory (S. D. Ahlgren, G. E. Andrews, and K. ono, eds), Kluwer, Dordrecht, 1999, pp. 17-48.
[5] F. Rodriguez-Villegas, Identities between Mahler measures, Number theory for the millennium, III (Urbana, IL, 2000) A K Peters, Natick, MA, 2002, 223-229.
[6] N. Touafek and M. Kerada, Mahler measure and elliptic regulator: some identities, JP J. Algebra Number Theory \& Application, 8(2)(2007), 271-285.
[7] D. Zagier, Dedekind Zeta functions, and the Algebraic K-theory of Fields, Arithmetic algebraic geometry (Texel, 1989), 391-430, Progr. Math., 89, Birkhäuser Boston, Boston, MA, (991.

Equipe de Théorie des Nombres,
Laboratoire de Physique Théorique,
Université de Jijel, Algeria.
e-mail: nstouafek@yahoo.fr

[^0]: Key Words: Bloch-Wigner dilogarithm; Mahler measure.
 Mathematics Subject Classification: 11C08,11G55, 14G10.
 Received: February, 2008
 Accepted: May, 2008

