

An. Şt. Univ. Ovidius Constanța

Some isotopy-isomorphy conditions for m-inverse quasigroups and loops

Tèmítópé Gbóláhàn JAÍYÉOLÁ

Abstract

This work presents a special type of middle isotopism under which m-inverse quasigroups are isotopic invariant. Two distinct isotopy-isomorphy conditions for m-inverse loops are established. Only one of them characterizes isotopy-isomorphy in m-inverse loops while the other is just a sufficient condition for isotopy-isomorphy for specially middle isotopic m-inverse quasigroup.

1 Introduction

Let L be a non-empty set. Define a binary operation (\cdot) on L: If $x \cdot y \in L$ for all $x, y \in L$, (L, \cdot) is called a groupoid. If the system of equations ;

 $a \cdot x = b$ and $y \cdot a = b$

have unique solutions for x and y respectively, then (L, \cdot) is called a quasigroup. For each $x \in L$, the elements $x^{\rho} = xJ_{\rho}, x^{\lambda} = xJ_{\lambda} \in L$ such that $xx^{\rho} = e$ and $x^{\lambda}x = e$ are called the right, left inverses of x respectively. Now, if there exists a unique element $e \in L$ called the identity element such that for all $x \in L$, $x \cdot e = e \cdot x = x, (L, \cdot)$ is called a loop.

Key Words: *m*-inverse quasigroups; *m*-inverse loops; \mathcal{T}_m , isotopy.

Mathematics Subject Classification: Primary 20NO5 ; Secondary 08A05 Received: March, 2008

Accepted: September, 2008

Karklin's and Karklin' [10] introduced *m*-inverse loops. A loop is an *m*-inverse loop(m-IL) if and only if it obeys any of the equivalent conditions

$$(xy)J_{\rho}^{m} \cdot xJ_{\rho}^{m+1} = yJ_{\rho}^{m}$$
 and $xJ_{\lambda}^{m+1} \cdot (yx)J_{\lambda}^{m} = yJ_{\lambda}^{m}$.

Keedwell and Shcherbacov [12] originally defined an *m*-inverse quasigroup(*m*-IQ) as a quasigroup that obeys the identity $(xy)J^m \cdot xJ^{m+1} = yJ^m$, where *J* is a permutation. For the sake of this present study, we shall take $J = J_{\rho}$ and so *m*-IQs obey the equivalent identities that define *m*-ILs.

m-IQs and *m*-ILs are generalizations of WIPLs and CIPLs, which corresponds to m = -1 and m = 0 respectively. After the study of *m*-inverse loops by Keedwell and Shcherbacov [12], they have also generalized them to quasigroups called (r, s, t)-inverse quasigroups in [13] and [14]. Keedwell and Shcherbacov [12] investigated the existence of *m*-inverse quasigroups and loops with long inverse cycle such that $m \ge 1$. They have been able to establish that the direct product of two *m*-inverse quasigroups is an *m*-inverse quasigroup.

Consider (G, \cdot) and (H, \circ) two distinct groupoids (quasigroups, loops). Let A, B and C be three distinct non-equal bijective mappings, that map G onto H. The triple $\alpha = (A, B, C)$ is called an *isotopism* of (G, \cdot) onto (H, \circ) if

$$xA \circ yB = (x \cdot y)C \ \forall \ x, y \in G.$$

- If $\alpha = (A, B, B)$, then the triple is called a *left isotopism* and the groupoids(quasigroups, loops) are called *left isotopes*.
- If $\alpha = (A, B, A)$, then the triple is called a *right isotopism* and the groupoids(quasigroups, loops) are called *right isotopes*.
- If $\alpha = (A, A, B)$, then the triple is called a *middle isotopism* and the groupoids are called *middle isotopes*.

If $(G, \cdot) = (H, \circ)$, then the triple $\alpha = (A, B, C)$ of bijections on (G, \cdot) is called an *autotopism* of the groupoid(quasigroup, loop) (G, \cdot) . Such triples form a group $AUT(G, \cdot)$ called the *autotopism group* of (G, \cdot) . Furthermore, if A = B = C, then A is called an *automorphism of the groupoid* (quasigroup, loop) (G, \cdot) . Such bijections form a group $AUM(G, \cdot)$ called the *automorphism* group of (G, \cdot) .

As it was observed by Osborn [15], a loop is a WIPL and an AIPL if and only if it is a CIPL. The past efforts of Artzy [1, 4, 3, 2], Belousov and Tzurkan [5] and recent studies of Keedwell [11], Keedwell and Shcherbacov [12, 13, 14] are of great significance in the study of WIPLs, AIPLs, CIPQs and CIPLs, their generalizations (i.e. m-inverse loops and quasigroups, (r,s,t)inverse quasigroups) and applications to cryptography.

The universality of WIPLs and CIPLs have been addressed by Osborn [15] and Artzy [2] respectively. Artzy showed that isotopic CIPLs are isomorphic. In 1970, Basarab [7] continued the work of Osborn since 1961 on universal WIPLs by studying isotopes of WIPLs that are also WIPLs after he had studied a class of WIPLs([6]) in 1967. Osborn [15], while investigating the universality of WIPLs, discovered that a universal WIPL (G, \cdot) obeys the identity

$$yx \cdot (zE_y \cdot y) = (y \cdot xz) \cdot y \ \forall \ x, y, z \in G \tag{1}$$

where $E_{y} = L_{y}L_{y^{\lambda}} = R_{y^{\rho}}^{-1}R_{y}^{-1} = L_{y}R_{y}L_{y}^{-1}R_{y}^{-1}$.

Eight years after Osborn's [15] 1960 work on WIPL, in 1968, Huthnance Jr. [9] studied the theory of generalized Moufang loops. He named a loop that obeys (1) a generalized Moufang loop and later on in the same thesis, he called them M-loops. On the other hand, he called a universal WIPL an Osborn loop and the same definition was adopted by Chiboka [8].

Moreover, it can be seen that neither WIPLs nor CIPLs have been shown to be isotopic invariant. In fact, it is yet to be shown that there exists a special type of isotopism(e.g left, right or middle isotopism) under which the WIPs or CIPs are isotopic invariant. Aside this, there has never been any investigation into the isotopy of *m*-inverse quasigroups and loops.

The aim of the present study is to present a special type of middle isotopism under which *m*-inverse quasigroups are isotopic invariant. Two distinct isotopy-isomorphy conditions for m-inverse loops are established. Only one of them characterizes isotopy-isomorphy in *m*-inverse loops while the other is just a sufficient condition for isotopy-isomorphy for specially middle isotopic *m*-inverse quasigroup.

2 Preliminaries

Definition 2.1 Let L be a quasigroup and $m \in \mathbb{Z}$. A mapping $\alpha \in SYM(L)$ where SYM(L) is the group of all bijections on L which obeys the identity $x^{\rho^m} = [(x\alpha)^{\rho^m}]\alpha$ is called an n-weak right inverse permutation. Their set is represented by $S_{(\rho,m)}(L)$. Here, $x^{\rho^m} = x J^m_{\rho}$ and $x^{\lambda^m} = x J^m_{\lambda}$. Similarly, if α obeys the identity $x^{\lambda^m} = [(x\alpha)^{\lambda^m}]\alpha$ it is called an m-weak

left inverse permutation. Their set is denoted by $S_{(\lambda,m)}(L)$

If α satisfies both, it is called a weak inverse permutation. Their set is denoted by $S'_m(L)$.

It can be shown that $\alpha \in SYM(L)$ is an *m*-weak right inverse if and only if it is an *m*-weak left inverse permutation. So, $S'_m(L) = S_{(\rho,m)}(L) = S_{(\lambda,m)}(L)$. And thus, α is called an *m*-weak inverse permutation.

Remark 2.1 Every permutation of order 2 that preserves the right(left) inverse of each element in an m-inverse quasigroup is an m-weak right(left) inverse permutation.

Throughout, we shall employ the use of the bijections $J_{\rho} : x \mapsto x^{\rho}$, $J_{\lambda} : x \mapsto x^{\lambda}$, $L_x : y \mapsto xy$ and $R_x : y \mapsto yx$ for a loop and the bijections $J'_{\rho} : x \mapsto x^{\rho'}$, $J'_{\lambda} : x \mapsto x^{\lambda'}$, $L'_x : y \mapsto xy$ and $R'_x : y \mapsto yx$ for its loop isotope. If the identity element of a loop is e, then that of the isotope shall be denoted by e'.

Lemma 2.1 In a quasigroup, the set of weak inverse permutations that commute forms an abelian group.

Definition 2.2 (T-condition)

Let (G, \cdot) and (H, \circ) be two distinct quasigroups that are isotopic under the triple (A, B, C). (G, \cdot) obeys the $\mathcal{T}_{(1,m)}$ condition if A = B. (G, \cdot) obeys the $\mathcal{T}_{(2,m)}$ condition if $J_{\rho}^{\prime m} = C^{-1}J_{\rho}^{m}A = B^{-1}J_{\rho}^{m}C$. (G, \cdot) obeys the $\mathcal{T}_{(3,m)}$ condition if $J_{\lambda}^{\prime m} = C^{-1}J_{\lambda}^{m}B = A^{-1}J_{\lambda}^{m}C$. So, (G, \cdot) obeys the \mathcal{T}_{m} condition if it obeys $\mathcal{T}_{(1,m)}$ and $\mathcal{T}_{(2,m)}$ conditions or $\mathcal{T}_{(1,m)}$ and $\mathcal{T}_{(3,m)}$ conditions since $\mathcal{T}_{(2,m)} \equiv \mathcal{T}_{(3,m)}$.

It must here by be noted that the \mathcal{T}_m -conditions refer to a pair of isotopic loops at a time. This statement might be omitted at times. That is whenever we say a loop (G, \cdot) has the \mathcal{T}_m -condition, then this is relative to some isotope (H, \circ) of (G, \cdot)

Lemma 2.2 Let L be a quasigroup. The following properties are equivalent.

- 1. L is a m-inverse quasigroup.
- 2. $R_x J^m_\lambda L_{x J^{m+1}_\lambda} = J^m_\lambda \ \forall \ x \in L.$
- 3. $L_x J_{\rho}^m R_{x J_{\rho}^{m+1}} = J_{\rho}^m \ \forall \ x \in L.$

3 Main Results

Theorem 3.1 Let (G, \cdot) and (H, \circ) be two distinct quasigroups that are isotopic under the triple (A, B, C).

1. If the pair of (G, \cdot) and (H, \circ) obeys the \mathcal{T}_m condition, then (G, \cdot) is an *m*-inverse quasigroup if and only if (H, \circ) is an *m*-inverse quasigroup.

2. If (G, \cdot) and (H, \circ) are m-inverse quasigroups, then $J_{\rho}^{m}R_{xJ_{\rho}^{m+1}}J_{\lambda}^{m}B = CJ_{\rho}^{\prime m}R'_{xAJ_{\rho}^{\prime m+1}}J_{\lambda}^{\prime m}$ and $J_{\lambda}^{m}L_{xJ_{\lambda}^{m+1}}J_{\rho}^{m}A = CJ_{\lambda}^{\prime m}L'_{xBJ_{\lambda}^{\prime m+1}}J_{\rho}^{\prime m}$, for all $x \in G$.

Proof

 $\begin{array}{ll} 1. \ (A,B,C) \ : \ G \to H \ \text{is an isotopism} \Leftrightarrow xA \circ yB = (x \cdot y)C \Leftrightarrow yBL'_{xA} = yL_xC \Leftrightarrow BL'_{xA} = L_xC \Leftrightarrow L'_{xA} = B^{-1}L_xC \Leftrightarrow \end{array}$

$$L_x = BL'_{xA}C^{-1} \tag{2}$$

Also, (A, B, C) : $G \to H$ is an isotopism $\Leftrightarrow xAR'_{yB} = xR_yC \Leftrightarrow AR'_{yB} = R_yC \Leftrightarrow R'_{yB} = A^{-1}R_yC \Leftrightarrow$

$$R_y = A R'_{yB} C^{-1} \tag{3}$$

Let G be an m-inverse quasigroup. Applying (2) and (3) to Lemma 2.2 separately, we have : $L_x J_\rho^m R_{x J_\rho^{m+1}} = J_\rho^m$, $R_x J_\lambda^m L_{x J_\lambda^{m+1}} = J_\lambda^m \Rightarrow (AR'_{xB}C^{-1})J_\lambda^m (BL'_{x J_\lambda^{m+1}A}C^{-1}) = J_\lambda^m$, $(BL'_{xA}C^{-1})J_\rho^m (AR'_{x J_\rho^{m+1}B}C^{-1}) = J_\rho^m \Leftrightarrow AR'_{xB}(C^{-1}J_\lambda^m B)L'_{x J_\lambda^{m+1}A}C^{-1} = J_\lambda^m$, $BL'_{xA}(C^{-1}J_\rho^m A)R'_{x J_\rho^{m+1}B}C^{-1} = J_\rho^m \Leftrightarrow$

$$R'_{xB}(C^{-1}J^m_{\lambda}B)L'_{xJ^{m+1}_{\lambda}A} = A^{-1}J^m_{\lambda}C, \ L'_{xA}(C^{-1}J^m_{\rho}A)R'_{xJ^{m+1}_{\rho}B} = B^{-1}J^m_{\rho}C.$$
(4)

Let
$$J_{\lambda}^{\prime m} = C^{-1} J_{\lambda}^{m} B = A^{-1} J_{\lambda}^{m} C$$
, $J_{\rho}^{\prime m} = C^{-1} J_{\rho}^{m} A = B^{-1} J_{\rho}^{m} C$. Then,
 $J_{\lambda}^{\prime} = C^{-1} J_{\lambda} B$, $J_{\rho}^{\prime} = C^{-1} J_{\rho} A$. So, $J_{\lambda}^{\prime m+1} = (A^{-1} J_{\lambda}^{m} C)(C^{-1} J_{\lambda} B) = A^{-1} J_{\lambda}^{m+1} B$, $J_{\rho}^{\prime m+1} = (B^{-1} J_{\rho}^{m} C)(C^{-1} J_{\rho}^{A}) = B^{-1} J_{\rho}^{m+1} A$.

Then, from (4) and using the \mathcal{T}_m -condition, we have

$$\begin{aligned} R'_{xB}J'^{m}_{\lambda}L'_{xJ^{m+1}_{\lambda}A} &= J'^{m}_{\lambda} = R'_{xB}J'^{m}_{\lambda}L'_{xAJ^{\prime m+1}_{\lambda}B^{-1}A} = R'_{xA}J'^{m}_{\lambda}L'_{xAJ^{\prime m+1}_{\lambda}}, \end{aligned}$$
(5)
$$L'_{xA}J'^{m}_{\rho}R'_{xJ^{m+1}_{\rho}B} &= J'^{m}_{\rho} = L'_{xA}J'^{m}_{\rho}R'_{xBJ^{\prime m+1}_{\rho}A^{-1}B} = L'_{xB}J'^{m}_{\rho}R'_{xBJ^{\prime m+1}_{\rho}}. \end{aligned}$$
(6)

Thus, by Lemma 2.2, (5) and (6), H is an *m*-inverse quasigroup. This completes the proof of the forward part. To prove the converse, carry out the same procedure, assuming the \mathcal{T}_m -condition and the fact that (H, \circ) is an *m*-inverse quasigroup.

2. If (H, \circ) is an *m*-inverse quasigroup, then

$$L'_{x}J'^{m}_{\rho}R'_{xJ'^{m+1}_{\rho}} = J'^{m}_{\rho} \Leftrightarrow R'_{x}J'^{m}_{\lambda}L'_{xJ'^{m+1}_{\lambda}} = J'^{m}_{\lambda} \ \forall \ x \in H, \tag{7}$$

while since G is an m-inverse quasigroup,

$$L_x J^m_\rho R_{x J^{m+1}_\rho} = J^m_\rho \Leftrightarrow R_x J^m_\lambda L_{x J^{m+1}_\lambda} = J^m_\lambda \ \forall \ x \in G.$$
(8)

From (7), we get

$$R'_{x} = J_{\lambda}^{\prime m} L_{xJ_{\lambda}^{\prime m+1}}^{\prime -1} J_{\rho}^{\prime m} \Leftrightarrow L'_{x} = J_{\rho}^{\prime m} R_{xJ_{\rho}^{\prime m+1}}^{\prime -1} J_{\lambda}^{\prime m} \ \forall \ x \in H,$$
(9)

while from (8), we obtain

$$R_x = J^m_{\lambda} L^{-1}_{xJ^{m+1}_{\lambda}} J^m_{\rho} \Leftrightarrow L_x = J^m_{\rho} R^{-1}_{xJ^{m+1}_{\rho}} J^m_{\lambda} \quad \forall \ x \in G.$$
(10)

The fact that G and H are isotopic implies that

$$L_x = BL'_{xA}C^{-1} \ \forall \ x \in G \tag{11}$$

and

$$R_x = AR'_{xB}C^{-1} \ \forall \ x \in G.$$

So, using (9) and (10) in (11), we get

$$J_{\rho}^{m} R_{x J_{\rho}^{m+1}}^{-1} J_{\lambda}^{m} = B J_{\rho}^{\prime m} R_{x A J_{\rho}^{\prime m+1}}^{\prime -1} J_{\lambda}^{\prime m} C^{-1} \ \forall \ x \in G,$$
(13)

while, using (9) and (10) in (12), we get

$$J_{\lambda}^{m} L_{x J_{\lambda}^{m+1}}^{-1} J_{\rho}^{m} = A J_{\lambda}^{\prime m} L_{x B J_{\lambda}^{\prime m+1}}^{\prime -1} J_{\rho}^{\prime m} C^{-1} \ \forall \ x \in G.$$
(14)

Thus, (13) becomes

$$\begin{split} J^m_\rho R_{xJ^{m+1}_\rho}J^m_\lambda &= CJ'^m_\rho R'_{xAJ'^{m+1}}J^{\prime m}_\lambda B^{-1} \Leftrightarrow \\ \Leftrightarrow J^m_\rho R_{xJ^{m+1}_\rho}J^m_\lambda B &= CJ'^m_\rho R'_{xAJ'^{m+1}_\rho}J^{\prime m}_\lambda \; \forall \; x \in G \end{split}$$

while (14) becomes

$$\begin{split} J^m_{\lambda} L_{xJ^{m+1}_{\lambda}} J^m_{\rho} &= C J^{\prime m}_{\lambda} L^{\prime}_{xBJ^{\prime m+1}_{\lambda}} J^{\prime m}_{\rho} A^{-1} \Leftrightarrow \\ \Leftrightarrow J^m_{\lambda} L_{xJ^{m+1}_{\lambda}} J^m_{\rho} A &= C J^{\prime m}_{\lambda} L^{\prime}_{xBJ^{\prime m+1}_{\lambda}} J^{\prime m}_{\rho} \; \forall \; x \in G. \end{split}$$

These completes the proof.

Theorem 3.2 Let (G, \cdot) be an *m*-inverse loop with identity element *e* and (H, \circ) be an arbitrary loop isotope of (G, \cdot) with identity element *e'* under the triple $\alpha = (A, B, C)$. If (H, \circ) is an *m*-inverse loop then

- $\begin{array}{l} 1. \ (G, \cdot) \stackrel{C}{\cong} (H, \circ) \Leftrightarrow \left(J_{\lambda}^{m} L_{bJ_{\lambda}^{m+1}} J_{\rho}^{m}, J_{\rho}^{m} R_{aJ_{\rho}^{m+1}} J_{\lambda}^{m}, I\right) \in AUT(G, \cdot) \ where \\ a = e'A^{-1}, b = e'B^{-1}. \end{array}$
- $\begin{array}{ll} 2. \ (G, \cdot) \stackrel{C}{\cong} (H, \circ) \Leftrightarrow \left(J_{\lambda}^{\prime m} L_{b^{\prime} J_{\lambda}^{\prime m+1}}^{\prime} J_{\rho}^{\prime m}, J_{\rho}^{\prime m} R_{a^{\prime} J_{\rho}^{\prime m+1}}^{\prime} J_{\lambda}^{\prime m}, I\right) \in AUT(H, \circ) \\ where \ a^{\prime} = eA, b^{\prime} = eB. \end{array}$
- $\begin{array}{l} 3. \ (G,\cdot) \stackrel{C}{\cong} (H,\circ) \Leftrightarrow (L_{b^{\lambda^{m+1}}},R_{a^{\rho^{m+1}}},I) \in AUT(G,\cdot), \ a \ = \ e'A^{-1}, b \ = \ e'B^{-1} \ provided \ (x \cdot y)^{\rho^m} = x^{\rho^m} \cdot y^{\lambda^m} \ or \ (x \cdot y)^{\lambda^m} = x^{\lambda^m} \cdot y^{\rho^m} \ \forall \ x,y \in G. \\ Hence, \ (G,\cdot) \ and \ (H,\circ) \ are \ isomorphic \ m-inverse \ loops \ while \\ R_{a^{\rho^{m+1}}}L_{b^{\lambda^{m+1}}} = I, \ b^{\lambda^{m+1}}a^{\rho^{m+1}} = e. \end{array}$
- $\begin{array}{l} \text{4. } (G,\cdot) \stackrel{C}{\cong} (H,\circ) \Leftrightarrow (L'_{b'\lambda'^{m+1}},R'_{a'\rho^{m+1}},I) \in AUT(H,\circ), \ a'=eA,b'=eB\\ provided \ (x\circ y)^{\rho'^m} = x^{\rho'^m} \circ y^{\lambda'^m} \ or \ (x\circ y)^{\lambda'^m} = x^{\lambda'^m} \circ y^{\rho'^m} \ \forall \ x,y \in H.\\ Hence, \ (G,\cdot) \ and \ (H,\circ) \ are \ isomorphic \ m-inverse \ loops \ while\\ R'_{a'\rho^{m+1}}L'_{b'\lambda'^{m+1}} = I, \ b'^{\lambda'^{m+1}}a'^{\rho^{m+1}} = e'. \end{array}$

Proof

Consider the second part of Theorem 3.1.

- 1. Let y = xA in (13) and replace y by e'. Then $J_{\rho}^{m}R_{e'A^{-1}J_{\rho}^{m+1}}J_{\lambda}^{m}B = CJ_{\rho}^{m}R_{e'J_{\rho}^{m+1}}J_{\lambda}^{m}B = C \Rightarrow C = J_{\rho}^{m}R_{aJ_{\rho}^{m+1}}J_{\lambda}^{m}B \Rightarrow B = J_{\rho}^{m}R_{aJ_{\rho}^{m+1}}J_{\lambda}^{m}C$. Let y = xB in (14) and replace y by e'. Then $J_{\lambda}^{m}L_{e'B^{-1}J_{\lambda}^{m+1}}J_{\rho}^{m}A = CJ_{\lambda}^{m}L_{e'J_{\lambda}^{m+1}}J_{\rho}^{m} = C \Rightarrow C = J_{\lambda}^{m}L_{bJ_{\lambda}^{m+1}}J_{\rho}^{m}A \Rightarrow A = J_{\lambda}^{m}L_{bJ_{\lambda}^{m+1}}J_{\rho}^{m}C$. So, $\alpha = (A, B, C) = (J_{\lambda}^{m}L_{bJ_{\lambda}^{m+1}}^{-1}J_{\rho}^{m}C, J_{\rho}^{m}R_{aJ_{\rho}^{m+1}}^{-1}J_{\lambda}^{m}C, C) = (J_{\lambda}^{m}L_{bJ_{\lambda}^{m+1}}^{-1}J_{\rho}^{m}, J_{\rho}^{m}R_{aJ_{\rho}^{m+1}}^{-1}J_{\lambda}^{m}, I)(C, C, C)$. Thus, $(J_{\lambda}^{m}L_{bJ_{\lambda}^{m+1}}J_{\rho}^{m}, J_{\rho}^{m}R_{aJ_{\rho}^{m+1}}^{-1}J_{\lambda}^{m}, I) \in AUT(G, \cdot) \Leftrightarrow (G, \cdot) \stackrel{C}{\cong} (H, \circ).$
- 2. This is similar to the above proof for (1) but we only need to replace x by e in (13) and (14).
- 3. This is achieved by simply breaking the autotopism in (1.).
- 4. Do what was done in (3.) to (2.).

Corollary 3.1 Let (G, \cdot) and (H, \circ) be two distinct quasigroups that are isotopic under the triple (A, B, C). If G is an m-inverse quasigroup with the \mathcal{T}_m -condition, then H is an m-inverse quasigroup and so:

1. there exist $\alpha, \beta \in S'_m(G)$ i.e α and β are m-weak inverse permutations and

2.
$$J'_{\rho} = J'_{\lambda} \Leftrightarrow J_{\rho} = J_{\lambda}$$
.

Proof

By Theorem 3.1, A = B and $J_{\rho}^{\prime m} = C^{-1}J_{\rho}^{m}A = B^{-1}J_{\rho}^{m}C$ or $J_{\lambda}^{\prime m} = C^{-1}J_{\lambda}^{m}B = A^{-1}J_{\lambda}^{m}C$.

- 1. $C^{-1}J^m_{\rho}A = B^{-1}J^m_{\rho}C \Leftrightarrow J^m_{\rho}A = CB^{-1}J^m_{\rho}C \Leftrightarrow J^m_{\rho} = CB^{-1}J^m_{\rho}CA^{-1} = CA^{-1}J^m_{\rho}CA^{-1} = \alpha J^m_{\rho}\alpha$ where $\alpha = CA^{-1}$. This implies that $\alpha = CA^{-1} \in S'_m(G, \cdot)$.
- 2. $C^{-1}J_{\lambda}^{m}B = A^{-1}J_{\lambda}^{m}C \Leftrightarrow J_{\lambda}^{m}B = CA^{-1}J_{\lambda}^{m}C \Leftrightarrow J_{\lambda}^{m} = CA^{-1}J_{\lambda}^{m}CB^{-1} = CB^{-1}J_{\lambda}^{m}CB^{-1} = \beta J_{\lambda}^{m}\beta$ where $\beta = CB^{-1}$. This implies that $\alpha = \beta = CB^{-1} \in S'_{m}(G, \cdot)$.
- $\begin{array}{ll} 3. \ J_{\rho}^{\prime m}=C^{-1}J_{\rho}^{m}A=B^{-1}J_{\rho}^{m}, \ J_{\lambda}^{\prime m}=C^{-1}J_{\lambda}^{m}B. \ J_{\rho}^{\prime}=J_{\lambda}^{\prime}\Leftrightarrow J_{\rho}^{\prime m}=J_{\lambda}^{\prime m}\Leftrightarrow \\ C^{-1}J_{\rho}^{m}A=C^{-1}J_{\lambda}^{m}B=C^{-1}J_{\lambda}^{m}A\Leftrightarrow J_{\lambda}^{m}=J_{\rho}^{m}\Leftrightarrow J_{\lambda}=J_{\rho}. \end{array}$

Lemma 3.1 Let (G, \cdot) be an *m*-inverse quasigroup with the \mathcal{T}_m -condition and isotopic to another quasigroup (H, \circ) . (H, \circ) is an *m*-inverse quasigroup and G has a weak inverse permutation.

Proof

From the proof of Corollary 3.1, $\alpha = \beta$, hence the conclusion.

Theorem 3.3 If two distinct quasigroups are isotopic under the \mathcal{T} -condition and any one of them is an m-inverse quasigroup and has a trivial set of m-weak inverse permutations, then the two quasigroups are both m-inverse quasigroups that are isomorphic.

Proof

From Lemma 3.1, $\alpha = I$ is a weak inverse permutation. In the proof of Corollary 3.1, $\alpha = CA^{-1} = I \Rightarrow A = C$. Already, A = B, hence $(G, \cdot) \cong (H, \circ)$.

Remark 3.1 Theorem 3.2 and Theorem 3.3 describes isotopic m-inverse quasigroups and m-inverse loops that are isomorphic by

- 1. an autotopism in either the domain loop or the co-domain loop and
- 2. the T_m -condition(for a special case).

4 Conclusion and Future Study

Keedwell and Shcherbacov [13, 14] have also generalized *m*-inverse quasigroups to quasigroups called (r, s, t)-inverse quasigroups. It will be interesting to study the universality of *m*-inverse loops and (r, s, t)-inverse quasigroups in general sense. These will generalize the works of J. M. Osborn and R. Artzy on universal WIPLs and CIPLs respectively.

References

- [1] R. Artzy, On loops with special property, Proc. Amer. Math. Soc., 6(1995), 448–453.
- [2] R. Artzy, Crossed inverse and related loops, Trans. Amer. Math. Soc., 91(1959), 480– 492.
- [3] R. Artzy, On Automorphic-Inverse Properties in Loops, Proc. Amer. Math. Soc., 10(1959), 588-591.
- [4] R. Artzy, Inverse-Cycles in Weak-Inverse Loops, Proc. Amer. Math. Soc., 68(1978), 132–134.
- [5] V. D. Belousov, B. V. Tsurkan, Crossed inverse quasigroups(CI-quasigroups), Izv. Vyss. Ucebn; Zaved. Matematika, 82(1969), 21–27.
- [6] A. S. Basarab, A class of WIP-loops, Mat. Issled., 2(2)(1967), 3-24.
- [7] A. S. Basarab, Isotopy of WIP loops, Mat. Issled., 5(1970), no 2(16), 3-12.
- [8] V. O. Chiboka, The study of properties and construction of certain finite order Gloops, Ph.D Thesis, Obafemi Awolowo University, Ile-Ife, 1990.
- [9] E. D. Huthnance Jr., A theory of generalised Moufang loops, Ph.D. Thesis, Georgia Institute of Technology, 1968.
- [10] B. B. Karklin's, V. B. Karklin', Inverse loops(Russian), Mat. Issled., 39(1976), 87-101.
- [11] A. D. Keedwell, Crossed-inverse quasigroups with long inverse cycles and applications to cryptography, Australas. J. Combin., 20(1999), 241-250.
- [12] A. D. Keedwell and V. A. Shcherbacov, On m-inverse loops and quasigroups with a long inverse cycle, Australas. J. Combin., 26(2002), 99-119.
- [13] A. D. Keedwell and V. A. Shcherbacov, Construction and properties of (r, s, t)-inverse quasigroups I, Discrete Math., 266(2003), 275-291.
- [14] A. D. Keedwell and V. A. Shcherbacov, Construction and properties of (r, s, t)-inverse quasigroups II, Discrete Math., 288(2004), 61-71.
- [15] J. M. Osborn, Loops with the weak inverse property, Pac. J. Math., 10(1961), 295–304.

Department of Mathematics, Obafemi Awolowo University, Ile Ife, Nigeria. jaiyeolatemitope@yahoo.com, tjayeola@oauife.edu.ng