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Some results on an iterative method for
nonexpansive mappings in different spaces

Xiaolong QIN, Changqun WU and Meijuan SHANG

Abstract

In this paper, we introduce a modified three-step iterative scheme for
approximating a fixed point of nonexpansive mappings in the framework
of uniformly smooth Banach spaces and the reflexive Banach spaces
which have a weakly continuous duality map, respectively. we establish
the strong convergence of the modified three-step iterative scheme. The
results improve and extend recent ones given by other authors.

1. Introduction and preliminaries

Throughout this paper, we assume that E is a real Banach space, C is a
nonempty closed convex subset of E, and T : C → C is a nonlinear mapping.

Recall that T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x − y‖ ∀x, y ∈ C.

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F (T ) the
set of fixed points of T ; that is, F (T ) = {x ∈ C : Tx = x}. It is assumed
throughout the paper that T is a nonexpansive mapping such that F (T ) �= ∅.

One classical way to study nonexpansive mappings is to use contractions
to approximate a nonexpansive mapping (Browder [2], Reich [19]). More pre-
cisely, take t ∈ (0, 1) and define a contraction Tt : C → C by

Ttx = tu + (1 − t)Tx x ∈ C, (1.1)
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where u ∈ C is a fixed point. Banach’s Contraction Mapping Principle guar-
antees that Tt has a unique fixed point xt in C. It is unclear, in general, what
is the behavior of xt as t → 0, even if T has a fixed point. However, in the
case of T having a fixed point, Browder [2] proved that if E is a Hilbert space,
then xt does converge strongly to a fixed point of T that is nearest to u. Reich
[19] extended Browder’ result to the setting of Banach spaces and proved the
if E is a uniformly smooth Banach space, then xt converges strongly to a fixed
point of T and the limit defines the (unique) sunny nonexpansive retraction
from C onto F (T ).

In 1967, Halpern [7] first introduced the following iteration scheme (see
also Browder [3]) {

x0 = x ∈ C chosen arbitrarily,

xn+1 = αnu + (1 − αn)Txn, n ≥ 0.
(1.2)

He pointed out that the conditions limn→∞ αn = 0 and
∑∞

n=1 αn = ∞ are
necessary in the sense that, if the iteration scheme (1.2) converges to a fixed
point of T , then these conditions must be satisfied.

Two classical iteration processes are often used to approximate a fixed
point of a nonexpansive mapping. The first one is introduced by Mann [11]
and is defined as

xn+1 = αnxn + (1 − αn)Txn, n ≥ 0, (1.3)

where the initial guess x0 is taken in C arbitrarily and the sequence {αn}∞n=0

is in the interval [0, 1].
The second iteration process is referred to as Ishikawa’s iteration process

[8] which is defined recursively by{
yn = βnxn + (1 − βn)Txn,

xn+1 = αnxn + (1 − αn)Tyn, n ≥ 0,
(1.4)

where the initial guess x0 is taken in C arbitrarily, {αn} and {βn} are sequences
in the interval [0, 1]. But both (1.3) and (1.4) have only weak convergence,
in general (see [6,24] for an example). For example, Reich [18], showed that
if E is a uniformly convex and has a Fréchet differentiable norm and if the
sequence {αn} is such that αn(1−αn) = ∞, then the sequence {xn} generated
by processes (1.3) converges weakly to a point in F (T ). (An extension of
this result to processes (1.4) can be found in [24].) Therefore, many authors
attempt to modify (1.3) and (1.4) to have strong convergence [9,15,16,21,26].

Recently, Noor [12] and Xu and Noor [27] suggested and analyzed three-
step iterative methods for solving different classes of variational inequalities. It



Some results on an iterative method 93

has been shown that three-step schemes are numerically better than two-step
and one-step methods. Therefore, many authors [4,12-14,17,22,27,28] studied
the three-step iterative process for nonexpansive mappings and asymptotically
nonexpansive mappings. Related to the variational inequalities, it is the prob-
lem of finding the fixed points of the nonexpansive mappings, which is the
subject of current interest in functional analysis. Motivated by the research
going on these fields, we introduce a modified three-step iterative methods for
finding a fixed point of nonexpansive mappings. We prove the convergence
criteria of this new iterative schemes under some mild conditions and also
give two strong convergence theorems of modified Ishikawa (two-step) itera-
tive process and modified Mann (one-step) iterative process as spacial cases.

In this paper, we introduces the following modified iteration scheme⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C,

wn = δnxn + (1 − δn)Txn,

zn = γnxn + (1 − γn)Twn,

yn = βnxn + (1 − βn)Tzn,

xn+1 = αnu + α′
nxn + α′′

nyn, n ≥ 0,

(1.5)

where the initial guess x0 is taken in C arbitrarily, u ∈ C is an arbitrary (but
fixed) element in C and sequence {αn}, {α′

n}, {α′′
n}, {βn}, {γn} and {δn} are

sequences in (0, 1). We prove, under certain appropriate assumptions on the
control sequences that {xn} defined by (1.5) converges to a fixed point of T .

Next, we consider some special cases of the three-step iterative scheme
(1.5)

If {δn} = 1 for all n ≥ 0 in (1.5), then (1.5) collapses to
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x0 ∈ C,

zn = γnxn + (1 − γn)Txn,

yn = βnxn + (1 − βn)Tzn,

xn+1 = αnu + α′
nxn + α′′

nyn, n ≥ 0.

(1.6)

If {γn} = 1 for all n ≥ 0 in (1.5), then (1.5) reduces to⎧⎪⎨
⎪⎩

x0 ∈ C,

yn = βnxn + (1 − βn)Txn,

xn+1 = αnu + α′
nxn + α′′

nyn, n ≥ 0.

(1.7)

Our purpose in this paper is to introduce this general modified three-step
iteration scheme for approximating a fixed point of nonexpansive mappings in
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the framework of uniformly smooth Banach spaces and reflexive Banach spaces
which have a weakly continuous duality map, respectively. We establish the
strong convergence theorems of the general modified three-step iterative pro-
cess and also give two strong convergence theorems of modified Ishikawa and
modified Mann iterative process under some mild conditions as applications.
The results improve and extend results announced by many other authors.

Let E be a real Banach space and let J denote the normalized duality
mapping from E into 2E∗

given by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, x ∈ E,

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality
pairing. The norm of E is said to be Gâteaux differentiable (and E is said to
be smooth) if

lim
t→0

‖x + ty‖ − ‖x‖
t

(1.8)

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. It is said to be
uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the
limit in (1.8) is attained uniformly for (x, y) ∈ U × U .

We need the following definitions and lemmas for the proof of our main
results.

Recall that a gauge is a continuous strictly increasing function ϕ : [0,∞) →
[0,∞) such that ϕ(0) = 0 and ϕ(t) → ∞ as t → ∞. Associated to a gauge ϕ
is the duality map Jϕ : E → E∗ defined by

Jϕ(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖ϕ(‖x‖), ‖x∗‖ = ϕ(‖x‖)}, x ∈ E.

Following Browder [3], we say that a Banach space X has a weakly continuous
duality map if there exists a gauge ϕ for which the duality map Jϕ(x) is single-
valued and weak-to-weak∗ sequentially continuous (i.e., if {xn} is a sequence
in X weakly convergent to a point x, then the sequence Jϕ(xn) converges
weak∗ly to Jϕ). It is known that lp has a weakly continuous duality map for
all 1 < p < ∞. Set

Φ(t) =
∫ t

0

ϕ(τ)dτ , t ≥ 0.

Then
Jϕ(x) = ∂Φ(‖x‖), x ∈ E,

where ∂ denotes the sub-differential in the sense of convex analysis. The first
part of the next Lemma is an immediate consequence of the sub-differential
inequality and the proof of the second part can be found in [10].



Some results on an iterative method 95

Lemma 1.1. Assume that E has a weakly continuous duality map Jϕ with
gauge ϕ.
(i) For all x, y ∈ E, there holds the inequality

Φ(‖x + y‖) ≤ Φ(‖x‖) + 〈y, Jϕ(x + y)〉.
(ii) Assume that a sequence xn in E is weakly convergent to a point x. The
there holds the identity

lim sup
n→∞

Φ(‖xn − y‖) = lim sup
n→∞

Φ(‖xn − x‖) + Φ(‖y − x‖), x, y ∈ E.

Notation: ” ⇀ ” stands for weak convergence and ” → ” for strong conver-
gence.

Lemma 1.2. A Banach space E is uniformly smooth if and only if the duality
map J is single-valued and norm-to-norm uniformly continuous on bounded
sets of E.

Lemma 1.3. In a Banach space E, there holds the inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, x, y ∈ E,

where j(x + y) ∈ J(x + y).

Recall that, if C and D are nonempty subsets of a Banach space E such
that C is nonempty closed convex and D ⊂ C, then a map Q : C → D is
sunny ([5], [20]) provided Q(x + t(x − Q(x))) = Q(x) for all x ∈ C and t ≥ 0
whenever x + t(x − Q(x)) ∈ C. A sunny nonexpansive retraction is a sunny
retraction,which is also nonexpansive. Sunny nonexpansive retractions play
an important role in our argument. They are characterized as follows [1,5,20]:
if E is a smooth Banach space, then Q : C → D is a sunny nonexpansive
retraction if and only if there holds the inequality

〈x − Qx, J(y − Qx)〉 ≤ 0 ∀x ∈ C, and y ∈ D.

Reich [19] showed that, if E is uniformly smooth and if D is the fixed
point set of a nonexpansive mapping from C into itself, then there is a sunny
nonexpansive retraction from C onto D and it can be constructed as follows.

Lemma 1.4. Let E be a uniformly smooth Banach space and let T : C → C
be a nonexpansive mapping with a fixed point xt ∈ C of the contraction C 
x �→ tu + (1 − t)Tx converging strongly as t → 0 to a fixed point of T . Define
Q : C → F (T ) by Qu = s− lim

t→0
xt. Then Q is the unique sunny nonexpansive

retract from C onto F (T ); that is, Q satisfies the property

〈u − Qu, J(z − Qu)〉 ≤ 0, u ∈ C, z ∈ F (T ). (1.9)
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Lemma 1.5 (Xu [25]). Let {αn} be a sequence of nonnegative real numbers
satisfying the property

αn+1 ≤ (1 − γn)αn + γnσn, n ≥ 0,

where {γn}∞n=0 ⊂ (0, 1) and {σn}∞n=0 such that

(i) limn→∞ γn = 0 and
∑∞

n=0 γn = ∞,

(ii) either lim supn→∞ σn ≤ 0 or
∑∞

n=0 |γnσn| < ∞.

Then {αn}∞n=0 converges to zero.

Lemma 1.6 (Xu [26]). Let X be a reflexive Banach space and have a weakly
continuous duality map Jϕ(x). Let C be closed convex subset of X and let
T : C → C be a nonexpansive mapping. Fix u ∈ C and t ∈ (0, 1). Let xt ∈ C
be the unique solution in C to Eq.(1.1). Then T has a fixed point if and only
if xt remains bounded as t → 0+, and in this case, {xt} converges as t → 0+

strongly to a fixed point of T .
Under the condition of Lemma 1.6, we define a map Q : C → F (T ) by

Q(u) := lim
t→0

xt, u ∈ C. From [26 Theorem 3.2] we know Q is the sunny

nonexpansive retraction from C onto F (T ).

Lemma 1.7 (Suzuki [23]). Let {xn} and {yn} be bounded sequences in a
Banach space X and let βn be a sequence in [0,1] with 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1. Suppose xn+1 = (1− βn)yn + βnxn for all integers n ≥ 0
and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

2. Main Results

Theorem 2.1. Let C be a closed convex subset of a uniformly smooth Banach
space E and T : C → C a nonexpansive mapping. Given a point u ∈ C,
the initial guess x0 ∈ C is chosen arbitrarily and given sequences {αn}∞n=0,
{α′

n}∞n=0, {α′′
n}∞n=0, {βn}∞n=0, {γn}∞n=0 and {δn}∞n=0 in [0, 1], the following

conditions are satisfied

(i)
∑∞

n=0 αn = ∞, limn→∞ αn = 0;

(ii) αn + α′
n + α′′

n = 1;
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(iii) 0 < lim infn→∞ α′
n ≤ lim supn→∞ α′

n < 1;

(iv) βn + (1 + βn)(1 − γn)(2 − δn) ≤ a < 1, for some a ∈ (0, 1);

(v) limn→∞ |βn+1 − βn| = 0, limn→∞ |γn+1 − γn| = 0 and limn→∞ |δn+1 −
δn| = 0.

Let {xn}∞n=1 be the composite process defined by (1.5). Then {xn}∞n=1 con-
verges strongly to a fixed point of T .

Proof. First, we observe that {xn}∞n=0 is bounded. Indeed, taking a fixed
point p of T , we have

‖wn − p‖ ≤ δn‖xn − p‖ + (1 − δn)‖Txn − p‖ ≤ ‖xn − p‖.
It follows that

‖zn − p‖ ≤ γn‖xn − p‖ + (1 − γn)‖Twn − p‖
≤ γn‖xn − p‖ + (1 − γn)‖wn − p‖
≤ γn‖xn − p‖ + (1 − γn)‖xn − p‖

and
‖yn − p‖ ≤ βn‖xn − p‖ + (1 − βn)‖Tzn − p‖

≤ βn‖xn − p‖ + (1 − βn)‖zn − p‖
≤ ‖xn − p‖.

Hence, we have

‖xn+1 − p‖ ≤ αn‖u − p‖ + (1 − αn)‖yn − p‖
≤ αn‖u − p‖ + (1 − αn)‖xn − p‖
≤ max{‖u − p‖, ‖xn − p‖}.

Now, an induction yields

‖xn − p‖ ≤ max{‖u − p‖, ‖x0 − p‖}, n ≥ 0.

This implies that {xn} is bounded, so are {yn}, {zn} and {wn}.
Next, we claim that

lim
n→∞ ‖xn+1 − xn‖ = 0. (2.1)

In order to prove (2.1), from{
wn = δnxn + (1 − δn)Txn,

wn−1 = δn−1xn−1 + (1 − δn−1)Txn−1,
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we obtain

wn−wn−1 = (1−δn)(Txn−Txn−1)+δn(xn−xn−1)+(δn−1−δn)(Txn−1−xn−1).

It follows that

‖wn − wn−1‖ ≤ ‖xn − xn−1‖ + |δn−1 − δn|M1, (2.2)

where M1 is an appropriate constant such that M1 ≥ supn≥1{‖Txn−1−xn−1‖}
Observing that {

zn = γnxn + (1 − γn)Twn,

zn−1 = γn−1xn−1 + (1 − γn−1)Twn−1,

we have

zn − zn−1 = γn(xn − xn−1) + (1 − γn)(Twn − Twn−1)+
+ (γn − γn−1)(xn−1 − Twn−1).

It follows from (2.2) that

‖zn − zn−1‖ ≤
≤ γn‖xn − xn−1‖ + (1 − γn)‖wn − wn−1‖ + |γn − γn−1|‖xn−1 − Twn−1‖ ≤
≤ γn‖xn − xn−1‖ + (1 − γn)(‖xn − xn−1‖ + |δn−1 − δn|M1)+
+ |γn − γn−1|‖xn−1 − Twn−1‖ ≤
≤ ‖xn − xn−1‖ + M2(|δn−1 − δn| + |γn − γn−1|),

where M2 is an appropriate constant such that

M2 = max{M1, sup
n≥1

{‖xn−1 − Twn−1‖}}.

Similarly, we can prove that

‖yn − yn−1‖ ≤‖xn − xn−1‖ + M3(|δn−1 − δn| + |γn − γn−1| + |βn − βn−1|),
(2.3)

where M3 is an appropriate constant such that

M3 = max{M1, M2, sup
n≥1

{‖Tzn−1 − xn−1‖}}.

Put ln = xn+1−α′
nxn

1−α′
n

. That is, xn+1 = (1 − α′
n)ln + α′

nxn. Now, we compute
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ln−1 − ln. Observing that

ln−1 − ln =
αn−1u + α′′

n−1yn−1

1 − α′
n−1

− αnu + α′′
nyn

1 − α′
n

=

= (
αn−1

1 − α′
n−1

− αn

1 − α′
n

)u +
α′′

n−1

1 − α′
n−1

(yn−1 − yn) + (
α′′

n−1

1 − α′
n−1

− α′′
n

1 − α′
n

)yn =

= (
αn−1

1 − α′
n−1

− αn

1 − α′
n

)(u − yn) +
α′′

n−1

1 − α′
n−1

(yn−1 − yn),

(2.4)
we have

‖ln−1 − ln‖ ≤ | αn−1

1 − α′
n−1

− αn

1 − α′
n

|‖u − yn‖ +
α′′

n−1

1 − α′
n−1

‖yn−1 − yn‖. (2.5)

Substituing (2.3) into (2.5) yields that

‖ln−1 − ln‖ ≤| αn−1

1 − α′
n−1

− αn

1 − α′
n

|‖u − yn‖ + ‖xn − xn−1‖

+ M3(|δn−1 − δn| + |γn − γn−1| + |βn − βn−1|).
It follows that

‖ln−1 − ln‖ − ‖xn − xn−1‖ ≤ | αn−1

1 − α′
n−1

− αn

1 − α′
n

|‖u − yn‖+

+ M3(|δn−1 − δn| + |γn − γn−1| + |βn − βn−1|).

Observe the conditions (i), (v) and take the limits as n → ∞, which gets

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn‖) ≤ 0.

We can obtain limn→∞ ‖ln − xn‖ = 0 easily by Lemma 1.7. It follows that

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞(1 − α′
n)‖ln − xn‖ = 0. (2.6)

Observing that

‖yn − xn‖ ≤ ‖xn+1 − xn‖ + ‖xn+1 − yn‖
≤ ‖xn+1 − xn‖ + αn‖γf(xn) − Ayn‖ + α′

n‖xn − yn‖,

and the conditions (i) and (iii), we can easily get

lim
n→∞ ‖yn − xn‖ = 0. (2.7)
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It follows that

‖Txn − xn‖ ≤‖xn − yn‖ + ‖yn − Tzn‖ + ‖Tzn − Txn‖ ≤
≤‖xn − yn‖ + βn‖xn − Tzn‖ + ‖Tzn − Txn‖ ≤
≤‖xn − yn‖ + βn‖xn − Txn‖ + (1 + βn)‖Tzn − Txn‖ ≤
≤‖xn − yn‖ + βn‖xn − Txn‖ + (1 + βn)(1 − γn)‖Twn − xn‖ ≤
≤‖xn − yn‖ + βn‖xn − Txn‖ + (1 + βn)(1 − γn)‖Txn − xn‖+

+ (1 + βn)(1 − γn)‖wn − xn‖ ≤
≤‖xn − yn‖ + βn‖xn − Txn‖ + (1 + βn)(1 − γn)‖Txn − xn‖+

+ (1 + βn)(1 − γn)(1 − δn)‖Txn − xn‖.

From the condition (iv), we have

lim
n→∞ ‖Txn − xn‖ = 0. (2.8)

Next, we claim that

lim sup
n→∞

〈u − q, J(xn − q)〉 ≤ 0,

where q = Qu = s− limt→0 zt with zt being the fixed point of the contraction

z �→ tu + (1 − t)Tz.

From that zt solves the fixed point equation

zt = tu + (1 − t)Tzt,

we have
‖zt − xn‖ = ‖(1 − t)(Tzt − xn) + t(u − xn)‖.

It follows from Lemma 1.3 that

‖zt − xn‖2 ≤ (1 − t)2‖Tzt − xn‖2 + 2t〈u − xn, J(zt − xn)〉 ≤
≤ (1 − t)2(‖Tzt − Txn‖ + Txn − xn‖)2 + 2t〈u − xn, J(zt − xn)〉 ≤
≤ (1 − 2t + t2)‖zt − xn‖2 + fn(t)+

+ 2t〈u − zt, J(zt − xn)〉 + 2t‖zt − xn‖2,
(2.9)

where

lim
n→∞ fn(t) = (2‖zt − xn‖ + ‖xn − Txn‖)‖xn − Txn‖ = 0. (2.10)
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It follows that

〈zt − u, J(zt − xn)〉 ≤ t

2
‖zt − xn‖2 +

1
2t

fn(t). (2.11)

Letting n → ∞ in (2.11) and noting (2.10), we obtain

lim sup
n→∞

〈zt − u, J(zt − xn)〉 ≤ t

2
M, (2.12)

where M > 0 is a constant such that M ≥ ‖zt − xn‖2 for all t ∈ (0, 1) and
n ≥ 1. Letting t → 0 from (2.12) we have

lim sup
t→0

lim sup
n→∞

〈zt − u, J(zt − xn)〉 ≤ 0.

So, for any ε > 0, there exists a positive number δ1 such that, for t ∈ (0, δ1)
we get

lim sup
n→∞

〈zt − u, J(zt − xn)〉 ≤ ε

2
. (2.13)

On the other hand, since zt → q as t → 0, from Lemma 1.2, there exists δ2 > 0
such that, for t ∈ (0, δ2), we have

|〈u − q, J(xn − q)〉 − 〈zt − u, J(zt − xn)〉| ≤
≤ |〈u − q, J(xn − q)〉 − 〈u − q, J(xn − zt)〉|+
+ |〈u − q, J(xn − zt)〉 − 〈zt − u, J(zt − xn)〉| ≤
≤ |〈u − q, J(xn − q) − J(xn − zt)〉| + |〈zt − q, J(xn − zt)〉| ≤
≤ ‖u − q‖‖J(xn − q) − J(xn − zt)‖ + ‖zt − q‖‖xn − zt‖ <

ε

2
.

Choosing δ = min{δ1, δ2}, ∀t ∈ (0, δ), we arrive at

〈u − q, J(xn − q)〉 ≤ 〈zt − u, J(zt − xn)〉 +
ε

2
.

That is,

lim sup
n→∞

〈u − q, J(xn − q)〉 ≤ lim
n→∞〈zt − u, J(zt − xn)〉 +

ε

2
.

It follows from (2.13) that

lim sup
n→∞

〈u − q, J(xn − q)〉 ≤ ε.

Since ε is chosen arbitrarily, we obtain

lim sup
n→∞

〈u − q, J(xn − q)〉 ≤ 0. (2.14)
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Finally, we show that xn → q strongly and this concludes the proof. From
Lemma 1.3, we obtain

‖xn+1 − q‖2 = ‖α′′
n(yn − q) + α′

n(xn − q) + αn(u − q)‖2 ≤
≤ ‖α′′

n(yn − q) + α′
n(xn − q)‖2 + 2αn〈u − q, J(xn+1 − q)〉 ≤

≤ (1 − αn)‖xn − q‖2 + 2αn〈u − q, J(xn+1 − q)〉.
It is easy to see that ‖xn − q‖ → 0 as n → ∞ by Lemma 1.5. This completes
the proof.

Next, we consider the iterative algorithm 1.5 in a reflexive Banach spaces.

Theorem 2.2. Let E be a reflexive Banach space which has a weakly contin-
uous duality map Jϕ with gauge ϕ. Let {xn} T , C, {αn}, {α′

n}, {α′′
n}, {βn},

{γn} and {δn} be as Theorem 2.1. Then {xn}∞n=1 converges strongly to a fixed
point of T .

Proof. We only include the differences. Observe that

‖Txn − xn+1‖ ≤ ‖xn − xn+1‖ + ‖xn − Txn‖.
It follows from (2.6) and (2.8) that

lim
n→∞ ‖Txn − xn+1‖ = 0. (2.15)

Next, we prove that

lim sup
n→∞

〈u − Q(u), Jϕ(xn − Q(u)〉 ≤ 0. (2.16)

By Lemma 1.6, we have the sunny nonexpansive retraction Q : C → F (T ).
Take a subsequence {xnk

} of {xn} such that

lim sup
n→∞

〈u − Q(u), Jϕ(xn − Q(u)〉 = lim
k→∞

〈u − Q(u), Jϕ(xnk
− Q(u)〉. (2.17)

Since E is reflexive, we may further assume that xnk
⇀ p, for some p ∈ C.

Since Jϕ is weakly continuous, we have by Lemma 1.1,

lim sup
n→∞

Φ(‖xnk
− x‖) = lim sup

n→∞
Φ(‖xnk

− p‖) + Φ(‖x − p‖), x, y ∈ E.

Put
f(x) = lim sup

n→∞
Φ(‖xnk

− x‖), x ∈ E.

It follows that
f(x) = f(p) + Φ(‖x − p‖), x ∈ E.
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From Theorem 2.1, we get

‖xnk
− Txnk

‖ → 0.

It follows that

f(Tp) = lim sup
n→∞

Φ(‖xnk
− Tp‖) = lim sup

n→∞
Φ(‖Txnk

− Tp‖)
≤ lim sup

n→∞
Φ(‖xnk

− p‖) = f(p).
(2.18)

On the other hand, we have

f(Tp) = f(p) + Φ(‖Tp− p‖). (2.19)

Combine (2.18) and (2.19) yields that

Φ(‖Tp− p‖) ≤ 0.

Hence Tp = p and p ∈ F (T ). That is, p ∈ F. Hence by (2.17) and (1.9) we
have

lim sup
n→∞

〈u − Q(u), Jϕ(xn − Q(u))〉 = 〈u − Q(u), Jϕ(p − Q(u))〉 ≤ 0.

Hence (2.16) holds. Finally, we prove that xn → p as n → ∞. Notice that

Φ(‖wn − p‖) = Φ(‖δn(xn − p) + (1 − δn)(Txn − p)‖) ≤
≤ Φ(δn‖xn − p‖ + (1 − δn)‖Txn − p‖) ≤
≤ Φ(‖xn − p‖).

Similarly, we can prove Φ(‖zn − p‖) ≤ Φ(‖xn − p‖) and

Φ(‖yn − p‖) ≤ Φ(‖xn − p‖). (2.20)

Therefore, from (2.20) we obtain

Φ(‖xn+1 − p‖) = Φ(‖αn(u − p) + α′
n(xn − p) + α′′

n(yn − p)‖) ≤
≤ Φ(‖α′

n(xn − p) + α′′
n(yn − p)‖) + αn〈u − p, Jϕ(xn+1 − p)〉 ≤

≤ (1 − αn)Φ(‖xn − p‖) + αn〈u − p, Jϕ(xn+1 − p)〉.

An application of Lemma 1.5 yields that Φ(‖xn−p‖) → 0; that is ‖xn−p‖ → 0
as n → ∞. This completes the proof.
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3. Applications

In this section, we shall prove two strong convergence theorems of modified
Ishikawa (two-step) iterative process and modified Mann (one-step) iterative
process under some mild conditions in Banach spaces.

Theorem 3.1. Let C be a closed convex subset of a uniformly smooth Banach
space E and T : C → C a nonexpansive mapping. Given a point u ∈ C,
the initial guess x0 ∈ C is chosen arbitrarily and given sequences {αn}∞n=0,
{α′

n}∞n=0, {α′′
n}∞n=0, {βn}∞n=0 and {γn}∞n=0 in [0, 1], the following conditions

are satisfied

(i)
∑∞

n=0 αn = ∞, limn→∞ αn = 0;

(ii) αn + α′
n + α′′

n = 1;

(iii) 0 < lim infn→∞ α′
n ≤ lim supn→∞ α′

n < 1;

(iv) βn + (1 + βn)(1 − γn) ≤ a < 1, for some a ∈ (0, 1);

(v) limn→∞ |βn+1 − βn| = 0, limn→∞ |γn+1 − γn| = 0.

Let {xn}∞n=1 be the composite process defined by (1.6). Then {xn}∞n=1 con-
verges strongly to a fixed point of T .

Proof. By taking {δn} = 1 in Theorem 2.1, it is easy to get the desired
conclusion.

Theorem 3.2. Let C be a closed convex subset of a uniformly smooth Banach
space E and let T : C → C be a nonexpansive mapping. Given a point u ∈ C,
the initial guess x0 ∈ C is chosen arbitrarily and given sequences {αn}∞n=0,
{α′

n}∞n=0, {α′′
n}∞n=0 and {βn}∞n=0 in [0,1], the following conditions are satisfied

(i)
∑∞

n=0 αn = ∞, limn→∞ αn = 0;

(ii) αn + α′
n + α′′

n = 1;

(iii) 0 < lim infn→∞ α′
n ≤ lim supn→∞ α′

n < 1;
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(iv) βn ≤ a < 1, for some a ∈ (0, 1);

(v) limn→∞ |βn+1 − βn| = 0.

Let {xn}∞n=1 be the composite process defined by (1.7). Then {xn}∞n=1 con-
verges strongly to a fixed point of T .

Proof. By taking {γn} = 1 in Theorem 2.1, we can obtain the desired con-
clusion immediately.

Remark 3.3. Theorem 3.2 relaxes the assumptions imposed on the control
sequences by Kim and Xu [9]. To be more precise, we remove βn → 0 and also
relaxes the restricts on {αn}, respectively.

Remark 3.4. From the proof of Theorem 2.2, we see that Theorem 3.1 and
Theorem 3.2 still hold in the framework of reflexive Banach spaces.

Remark 3.5. If f : C → C is a contraction map and we replace u by f(xn)
in the recursion formula (1.5), we obtain what some authors now call viscosity
iteration method. We note that our theorems in this paper carry over trivially
to the so-called viscosity process. One simply replaces u by f(xn), and using
the fact that f is a contraction map, one can repeat the argument of this
paper.
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