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Weight and metrizability of inverses under
hereditarily irreducible mappings

Ivan LONČAR

Abstract

The main purpose of this paper is to study the weight under hered-
itarily irreducible mappings between continua. The main result states
that if f : X → Y is an hereditarily irreducible and surjective mapping
of a D-continuum X, then w(X) = w(Y ).

1 Introduction

A topological space X is called a compact space [5, p. 165] if X is a Hausdorff
space and every open cover of X has a finite subcover.

Definition 1.1 Let X be a compact space. The weight of a space X is the
least cardinal of a basis for X and is denoted by w(X).

Let X, Y be compact spaces. A mapping f : X → Y is light (zero-
dimensional) if all fibers f−1(y) are hereditarily disconnected (zero-dimensional
or empty) [5, p. 450], i.e., if f−1(y) does not contain any connected subsets of
cardinality larger that one (dim f−1(y) ≤ 0). Every zero-dimensional map-
ping is light, and in the realm of mappings with compact fibers the two classes
of mappings coincide.

The problem of estimating the weight of inverses under light mappings has
been investigated by Mardešić [17, Theorem 1, p. 162]. His result reads as
follows.
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Theorem 1.1 Let X and Y be two compact spaces, and f : X → Y a con-
tinuous light mapping onto Y . If X is locally connected, then w(X) = w(Y )
whenever w(Y ) is infinite; if w(Y ) is finite, then w(X) is finite too, and
w(X) ≥ w(Y ).

An analogue of this theorem for non-compact spaces has been given by
Proizvolov [21].

In the paper [6], the assumption that X is a locally connected space is
replaced by the assumption that Y is locally connected and that f satisfies
some additional conditions, i.e., that f is locally confluent.

The following very interesting result has been obtained by Tuncali [22,
Theorem 1.4, p. 465].

Theorem 1.2 Let f : X → Y be a light mapping of a non-degenerate con-
tinuum X onto a space Y . If X admits a basis of open sets whose boundaries
have wight ≤ w(Y ), then w(X) = w(Y ).

The notion of an irreducible mapping was introduced by Whyburn [23, p.
162]. If X is a continuum, a surjection f : X → Y is irreducible provided no
proper subcontinuum of X maps onto all of Y under f . Some theorems for
the case when X is semi-locally-connected are given in [23, p. 163].

Definition 1.2 A mapping f : X → Y is said to be hereditarily irreducible
[19, p. 204, (1.212.3)] provided that for any given subcontinuum Z of X, no
proper subcontinuum of Z maps onto f(Z).

Every hereditarily irreducible mapping is light.
Let X be a topological space. We define its hyperspaces as the following

sets:
2X = {F ⊆ X : F is closed and nonempty},
C(X) = {F ∈ 2X : F is connected},
C2(X) = C(C(X)),
X(n) = {F ∈ 2X : F has at most n points}, n ∈ N.

For any finitely many subsets S1, ..., Sn, let

〈S1, ..., Sn〉 =
{

F ∈ 2X : F ⊂
n⋃

i=1

Si, and F ∩ Si 
= ∅, for each i

}
.

The topology on 2X is the Vietoris topology, i.e., the topology with a base
{< U1, ..., Un >: Ui is an open subset of X for each i and each n < ∞ }, and
C(X), X(n) are subspaces of 2X . Moreover, X(1) is homeomorphic to X .

Let X and Y be topological spaces and let f : X → Y be a mapping.
Define 2f : 2X → 2Y by 2f(F ) = f(F ) for F ∈ 2X . By [18, p. 170, Theorem
5.10], 2f is continuous and 2f (C(X)) ⊂ C(Y ), 2f(X(n)) ⊂ Y (n)). The
restriction of 2f to C(X) is denoted by C(f).
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Proposition 1 [19, p. 204, (1.212.3)] If f : X → Y is a mapping between
continua, then C(f) : C(X) → C(Y ) is light if and only if f is hereditarily
irreducible.

Let Λ be a subspace of 2X . By a Whitney map for Λ [19, p. 24, (0.50)] we
will mean any mapping g : Λ → [0, +∞) satisfying

a) if {A}, {B} ∈ Λ such that A ⊂ B, A 
= B, then g({A}) < g({B}) and
b) g({x}) = 0 for each x ∈ X such that {x} ∈ Λ.
If X is a metric continuum, then there exists a Whitney map for 2X and

C(X) ([19, pp. 24-26], [9, p. 106]). On the other hand, if X is non-metrizable,
then it admits no Whitney map for 2X [2]. It is known that there exist non-
metrizable continua which admit and ones which do not admit a Whitney
map for C(X) [2]. Moreover, if X is a non-metrizable locally connected or
a rim-metrizable continuum, then X admits no Whitney map for C(X) [11,
Theorem 8, Theorem 11].

The following external characterization of non-metric continua which admit
a Whitney map for C(X) is given in [12, Theorem 2.3] and uses hereditarily
irreducible mappings.

Theorem 1.3 Let X be a non-metric continuum. Then X admits a Whitney
map for C(X) if and only if for each σ-directed inverse system X = {Xa,
pab, A} of continua which admit Whitney maps for C(Xa) and X = limX
there exists a cofinal subset B ⊂ A such that for every b ∈ B the projection
pb : limX → Xb is hereditarily irreducible.

Hereditarily irreducible mappings play an important role in the dissertation
[7] and in the paper [8].

Definition 1.3 [7, Definition 3.1., p. 22] Let f : X → Y be a continuous
function between continua. Then f is said to be Whitney preserving if there
are Whitney maps µ : C(X) → R and υ : C(Y ) → R such that for every real
number s ∈ [0, µ(X)], C(f)(µ−1(s)) = υ−1(t) for some t ∈ [0, υ(Y )].

Definition 1.4 [7, Definition 3.14.] A Whitney preserving mapping, f :
X → Y between continua, is said to be strictly Whitney preserving if for
any two different Whitney levels µ−1(s) and µ−1(r) of C(X) we have that
C(f)(µ−1(s))∩C(f)(µ−1(r)) = ∅. In other words, the images of two different
Whitney levels under C(f) are different Whitney levels.

Strictly Whitney preserving mappings are related to hereditarily irreducible
mappings.

Theorem 1.4 [7, Theorem 3.16.]. If f : X → Y is strictly Whitney preserv-
ing, then f is hereditarily irreducible.
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Proposition 2 [7, Proposition 3.18.] Let f : X → Y be hereditarily irre-
ducible. If f is Whitney preserving, then f is strictly Whitney preserving.

Lemma 1.5 If f : X → Y is a hereditarily irreducible and monotone mapping
between continua, then f is one-to-one.

It is clear that the lightness of 2f : 2X → 2Y implies the lightness of
C(f) : C(X) → C(Y ), but not conversely. The following result is known.

Theorem 1.6 [1, Theorem 5.4] Let continua X and Y and a mapping f :
X → Y be given. Consider the following conditions:

(3.11) C(f) : C(X) → C(Y ) is light.

(5.3) For every two continua P, Q ∈ C(X)�X(1) with P ∩ Q = ∅ the in-
equality f(P )�f(Q) 
= ∅ holds.

(3.12) 2f : 2X → 2Y is light.

Then (3.12) implies (5.3), and (5.3) implies (3.11). Consequently, (3.12)
implies (3.11). The other implications do not hold.

A family N = {Ms : s ∈ S} of subsets of a topological space X is a network
for X if for every point x ∈ X and any neighbourhood U of x there exists an
s ∈ S such that x ∈ Ms ⊂ U [5, p. 170]. The network weight of a space X
is defined as the smallest cardinal number of the form card(N ), where N is a
network for X ; this cardinal number is denoted by nw(X).

Theorem 1.7 [5, p. 171, Theorem 3.1.19] For every compact space X we
have nw(X) = w(X).

In the sequel we shall use the following result [20, p.226, Exercise 11.52].

Lemma 1.8 If X is a continuum and if A and B are mutually disjoint subcon-
tinua of X, then there is a component K of X�(A∪B) such that Cl K∩A 
= ∅
and Cl K ∩ B 
= ∅.

2 Hereditarily irreducible mappings onto arboroids

A generalized arc is a Hausdorff continuum with exactly two non-separating
points (end points) x, y. Each separable arc is homeomorphic to the closed
interval I = [0, 1].

We say that a space X is arcwise connected if for every pair x, y of points
of X there exists a generalized arc L with end points x, y.
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A well-known theorem of G. T. Whyburn [23, Theorem 2.4, p. 188] says
that, if f : X → Y is a light open mapping from a compact space X onto Y ,
and a dendrite D is contained in Y , then for each point x0 ∈ f−1(D) there is
a dendrite D′ ⊂ X with x0 ∈ D′ such that f maps D′ homeomorphically onto
D. This result has been extended in several ways (see e.g. [15] and [16]). It is
shown in [3] that the property considered in Whyburn’s theorem characterizes
dendrites among all continua. In the paper [4] the characterization is further
generalized.

In this section we will consider hereditarily irreducible mappings onto ar-
boroids and we will show result similar in some sense to Whyburn’s theorem.

An arboroid is a hereditarily unicoherent arcwise connected continuum. A
metrizable arboroid is a dendroid. If X is an arboroid and x, y ∈ X , then
there exists a unique arc [x, y] in X with endpoints x and y.

A point t of an arboroid X is said to be a ramification point of X if t is
the only common point of some three arcs such that it is the only common
point of any two, and an end point of each of them.

If an arboroid X has only one ramification point t, it is called a generalized
fan with the top t. A metrizable generalized fan is called a fan.

Lemma 2.1 If X is an arcwise connected continuum and if Y is an arboroid
which contains finitely many ramification points, then every hereditarily irre-
ducible and surjective mapping f : X → Y is a homeomorphism.

Proof. Suppose that f is not a homeomorphism. Then there exists a
point y ∈ Y such that f−1(y) is not a single point. This means that there
exist points x1, x2 ∈ X such that f(x1) = f(x2) = y. Since X is an arboroid
there exists a generalized arc Z in X such that x1, x2 are end points of Z.

Claim 1. There exists a segment [a, b] of Z such that f−1(y) ∩(a, b) = ∅
and f−1(y) ∩ [a, b] = {a, b}. It is clear that f−1(y) is not dense in Z. In the
opposite case we have that Z is a proper subcontinuum of f−1(y). This is
impossible since f−1(y) contains no continuum. It follows that there exists a
segment [c, d] ⊂ Z such that f−1(y) ∩ Z ⊂ [c, d] and {c, d} ⊂ f−1(y) ∩ Z. It
is again clear that there exists a subinterval (a1, b1) of [c, d] such that f−1(y)
∩(a1, b1) = ∅. Let A be a family of all segments (aα, bα) which contains (a1,
b1) and f−1(y) ∩(aα, bα) = ∅. It is clear that the union of all elements of A
is a subsegment (a, b) of [c, d]. Let us prove that a, b ∈ f−1(y). Suppose that
a /∈ f−1(y). Then f(a) 
= y. There exists an open set U containing a such
that f(U) does not contain the point y. It is clear that there exists a segment
(e, h) contained in U . Then (a, b)∪(e, h) is a segment which contains (a1, b1).
It is clear that (a, b) ∪ (e, h) is not in A, a contradiction. Hence, a ∈ f−1(y).
Similarly, one can prove that b ∈ f−1(y).
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In the remaining part of the proof we shall consider the restriction g =
f |[a, b]. Let us recall that g is hereditarily irreducible and that W = f([a, b]),
as a subcontinuum of Y , is an arboroid. Thus we have a hereditarily irreducible
surjection g of the arc [a, b] onto a dendroid W such that g−1(y) = {a, b}.

Claim 2. There exist subarcs [a, x] and [z, b] such that g([a, x]) ⊂ g([z, b])
or g([a, x]) ⊇ g([z, b]).

Let Uy be a neighborhood of y such that Uy�{y} does not contain ramifica-
tion points. There exist segments [a, x] and [z, b] such that g([a, x]) ⊂ Uy and
g([z, b]) ⊂ Uy. It follows that g([a, x]) and g([z, b]) are arcs since g((a, x]) and
g([z, b)) do not contain ramification points. Suppose that g([a, x])∩g([z, b]) =
{y}. Then C = g([a, x]) ∪ g([z, b]) is a continuum. Because of Claim 1,
g([x, z]) is a continuum not containing the point y. It follows that C ∩g([x, z])
is not a continuum since C ∩g([x, z]) contains {y} and two disjoint sub-
sets g([a, x]) ∩ g([x, z] ⊇ {g(x)} and g([x, z]) ∩ g([z, b] ⊇ {g(z)} not contain-
ing {y}. This is impossible since is W is hereditarily unicoherent. Hence,
D = g([a, x]) ∩ g([z, b]) is a non-degenerate continuum containing the point
{y}. It is clear that D does not contain ramification points. It follows that
g([a, x]) ⊂ g([z, b]) or g([a, x]) ⊇ g([z, b]) since in the opposite case we obtain
a triod in Uy.

Claim 3. We may assume that g([a, x]) ⊇ g([z, b]). Now, g([a, z]) =
g([a, b]) since g([a, x]) ⊇ g([z, b]). This is impossible since g is hereditarily
irreducible. Hence, f is one-to-one and, consequently, a homeomorphism.

Corollary 2.2 If X is an arcwise connected continuum and if Y is a general-
ized fan, then every hereditarily irreducible and surjective mapping f : X → Y
is a homeomorphism.

We say that a surjection f : X → Y is weakly confluent if for every
subcontinuum C of Y there exists a subcontinuum D of X such that f(D) = C.

Theorem 2.3 Let X be an arcwise connected continuum and let Y be a hered-
itarily unicoherent continuum. If f : X → Y is a hereditarily irreducible and
weakly confluent mapping, then f is a homeomorphism.

Proof. The proof is broken into several steps. Let us note that f is light.
It suffices to prove that f is one-to-one.

Step 1. Suppose that f is not one-to-one. There exists a point y ∈ Y
such that f−1(y) contains two different points x1 and x2. There exists an arc
L with endpoints x1 and x2 since X is an arboroid.

Step 2. There exists an subarc [x3, x4] of L such that f(x3) = f(x4) = y
and ([x3, x4]�{x3, x4})∩f−1(y) = ∅. The set [x1, x2]∩f−1(y) is closed and not
dense on L since then [x1, x2]∩f−1(y) = L. We infer that L ⊂ f−1(y). This is
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impossible since f is light. Thus, there exists open interval (a, b) ⊂ L such that
f−1(y) ∩ (a, b) = ∅. Let F be a family of such intervals. It is easy to see that
the union of every chain of intervals in F is an interval in F . This means that
there exists a maximal interval (x3, x4) with property f−1(y) ∩ (x3, x4) = ∅.
Let us prove that f(x3) = y and f(x4) = y. Suppose that f(x3) 
= y. There
exists an open interval U containing x3 such that y /∈ f(U). This means that
(x3, x4) ∪ U is an open interval disjoint with f−1(y). This is impossible since
(x3, x4) is a maximal such interval. Similarly, it follows that f(x4) = y.

Step 3. Let x5 be any point of [x3, x4]�{x3, x4}. It follows that f(x5) 
= y.
The intersection f([x3, x5]) ∩ f([x5, x4]) contains y and f(x5). Hence, the
intersection f([x3, x5]) ∩ f([x5, x4]) is a non-degenerate continuum since Y is
hereditarily unicoherent. There exists a continuum K ⊂ X such that f(K) =
f([x3, x5]) ∩ f([x5, x4]). If K intersects [x3, x4], then L = K ∪ [x3, x4] is
a continuum. It follows that f(L) = f(K), a contradiction if L ⊃ K. If
K ⊂ [x3, x4] is a segment which must contain either x3 or x4 or both, since
y is in f([x3, x5]) ∩ f([x5, x4]) and ([x3, x4]�{x3, x4}) ∩ f−1(y) = ∅. Suppose
that x3 ∈ K. Hence K is an arc [x3, a], where x3 < a < x4. If we suppose that
a ≥ x5, then f([x3, a]) ⊆ f([x3, x5). This means that f([x3, a]) = f([x3, x5), a
contradiction since f is hereditarily irreducible. The proof is similar if x4 ∈ K.
It remains to consider the case when K∩[x3, x4] = ∅. Let a ∈ K and b ∈ [x3, x4]
and let L = [a, b]. If [x3, x4] ∪ L is a proper subcontinuum of [x3, x4] ∪ L∪ K,
then f([x3, x4]∪L) = f([x3, x4]∪L∪K) contradicts the assumption that f is
hereditarily irreducible. If [x3, x4] ∪ L = [x3, x4] ∪ L ∪ K, then K = L. Hence
K is a subarc [a, c] of L. Let L1 = [b, c]. Now, f([x3, x4] ∪ L1) = f([x3, x4] ∪
L1 ∪ K). This is impossible since [x3, x4] ∪ L1 is a proper subcontinuum of
[x3, x4] ∪ L1 ∪ K and f is hereditarily irreducible.

Corollary 2.4 Let X be an arcwise connected continuum and let Y be a hered-
itarily unicoherent continuum. If f : X → Y is a hereditarily irreducible, then
f is a homeomorphism if and only if f is a weakly confluent mapping.

We say that a surjective mapping f : X → Y is arc-preserving provided
for each arc L ⊂ X the image f(L) is an arc or a point.

Theorem 2.5 Let f : X → Y be an arc-preserving mapping of an arcwise
connected continuum X onto a dendroid Y . Then f is hereditarily irreducible
if and only if f is a homeomorphism.

Proof. Suppose that f is not one-to-one. There exists a point y ∈ Y
such that f−1(y) is not a single point. This means that there exist points
x1, x2 ∈ X such that f(x1) = f(x2) = y. Since X is an arboroid there exists
a generalized arc Z in X such that x1, x2 are end points of Z. By Step
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2 of the proof of Theorem 2.3 there exists an arc [x3, x4] of X such that
f(x3) = f(x4) = y and ([x3, x4]�{x3, x4}) ∩ f−1(y) = ∅. It follows that
f([x3, x4]) is not a point. Hence f([x3, x4]) is an arc L1. From the continuity
of f, it follows that there exist two subsegments [x3, a] and [b, x4] of [x3, x4]
such that f([x3, a]) and f([b, x4]) are contained in L1. We may assume that
x3 < a < b < x4. Now we have the following cases: a) f([x3, a]) ⊂ f([b, x4]),
b) f([x3, a]) = f([b, x4]) and c) f([x3, a]) ⊃ f([b, x4]). If a) then we have
f([x4, a]) = f([x3, x4]). Hence, f is not hereditarily irreducible. For the
case b) we have that f([x4, a]) = f([x3, x4]). Hence f is not hereditarily
irreducible. If c) then f([x3, b]) = f([x3, x4]). This is impossible since f is
hereditarily irreducible. Finally, we conclude that f is one-to-one, i.e., f is a
homeomorphism.

3 D-continua

A continuum X is called a D-continuum if for every pair C, D of its disjoint
non-degenerate subcontinua there exists a subcontinuum E ⊂ X such that
C ∩ E 
= ∅ 
= D ∩ E and (C ∪ D)�E 
= ∅.
Lemma 3.1 [13, Lemma 2.3]. If X is an arcwise connected continuum, then
X is a D-continuum.

Lemma 3.2 [13, Lemma 2.4]. If X is a locally connected continuum, then X
is D-continuum.

Theorem 3.3 Let X be a continuum. Then Con(X)) is a D-continuum.

Proof. Con(X) is arcwise connected and, consequently, D-continuum.

A continuum X is said to be colocally connected provided that for each
point x ∈ X and each open se U � x there exists an open set V containing x
such that V ⊂ U and X�U is connected.

Lemma 3.4 Each colocally connected continuum X is a D-continuum.

Proof. Let C, D be a pair of non-degenerate disjoint subcontinua of X .
Let x be a point in C. There exists an open set U such that x ∈ U, C�U 
= ∅
and U ∩ D = ∅. From the colocal connectedness of X, it follows that there
exists an open set V such that x ∈ V ⊂ U and X�V is connected. Setting
E = X�V we see that C ∩E 
= ∅ 
= D ∩E and (C ∪D)�E 
= ∅. Hence, X is
a D-continuum.

Lemma 3.5 The cartesian product of two non-degenerate continua is a colo-
cally connected continuum.
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Proof. Let (x, y) be a point of X×Y . We have to prove that there exists a
neighbourhood U = Ux ×Uy of (x, y) such that E = X ×Y �U is connected.
We may assume that Ux 
= X and Uy 
= Y . Let (x1, y1), (x2, y2) be a pair of
different points in E. For each point (z, w) ∈ X ×Y, we consider a continuum

Ezw = {(z, y) : y ∈ Y } ∪ {(x, w) : x ∈ X}.
Claim 1. For each point (x′, y′) ∈ E, there exists a point (z, w) ∈ E such that
(x′, y′) ∈ Ezw and Ezw∩U = ∅. If Ex′y′∩U = ∅ the proof is completed. In the
opposite case we have either {(x′, y) : y ∈ Y }∩U 
= ∅ or {(x, y′) : x ∈ X}∩U 
=
∅. Suppose that {(x′, y) : y ∈ Y } ∩ U 
= ∅. Then {(x, y′) : x ∈ X} ∩ U = ∅.
There exists a point z ∈ X such that z /∈ U . Setting y′ = w, we obtain a
point (z, w) ∈ E such that (x′, y′) ∈ Ezw and Ezw ∩ U = ∅. The proof in the
case {(x, y′) : x ∈ X} ∩ U 
= ∅ is similar.

Now, by Claim 1, for (x1, y1) there exists a continuum Ez1,w1 such that
Ez1w1 ∩U = ∅ and (x1, y1) ∈ Ez1,w1 . Similarly, there exist a continuum Ez2,w2

such that Ez2w2 ∩ U = ∅ and (x2, y2) ∈ Ez2,w2 .
Claim 2. The union Ez1,w1 ∪ Ez2,w2 is a continuum which contains the

points (x1, y1), (x2, y2) and is contained in E = X × Y �U . Obvious.
Finally, we infer that E = X×Y �U is connected. The proof is completed.

Theorem 3.6 The cartesian product of two non-degenerate continua is a D-
continuum.

Proof. Apply Lemmas 3.5 and 3.4.
A surjective mapping f : X → Y is said to be confluent provided for every

subcontinuum K of Y each component L of f−1(K) maps under f onto K,
i.e., f(L) = K.

Now we shall prove the following result.

Theorem 3.7 Let X be a D-continuum. Each confluent hereditarily irre-
ducible mapping f : X → Y is a homeomorphism.

Proof. Let K be a subcontinuum of Y . Let us prove that f−1(K) has
only one component. Suppose that C and D are two different component of
f−1(K). This means that C∩D = ∅. There exists a subcontinuum E such that
C ⊂ E, D 
= D∩E 
= ∅ since X is a D-continuum. Now f(E∪D) = f(E) which
is impossible since f is hereditarily irreducible. Hence f−1(K) has only one
component. This means that f−1(K) is connected for every non-degenerate
continuum K ⊂ Y . We shall prove that f is monotone, i.e., for y ∈ Y the
fiber f−1(y) is connected. Suppose that f−1(y) is not connected. Then there
exists a pair U, V of disjoint open subsets of X such that f−1(y) ⊂ U ∪ V .
There exists an open se W of Y such that y ∈ W and f−1(W ) ⊂ U ∪V. Let Z
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be an open set such that y ∈ Z ⊂ ClZ ⊂ W. There exists a component C of
Cl Z such that y ∈ C and C∩ BdZ 
= ∅. This means that C is non-degenerate
and f−1(y) ⊂ f−1(C) ⊂ U ∪ V . This is impossible since f−1(C) is connected.
Finally, Lemma 1.5 completes the proof.

If f : X → Y is not confluent, the we have the following result.

Theorem 3.8 Let f : X → Y be an hereditarily irreducible and surjective
mapping of a D-continuum X. Then w(X) = w(Y ).

Proof. It is obvious that w(Y ) ≤ w(X) [5, p. 171, Theorem 3.1.22]. Let
us prove that w(Y ) ≥ w(X). The proof is broken into several steps.

Step 1. C(f) : C(X) → C(Y ) is one-to-one on C(X)�X(1). Moreover,
C(f) is a homeomorphism of C(X)�X(1) onto C(f)(C(X)�X(1)). Suppose
that C(f) is not one-to-one. Then there exist a continuum F in Y and two
continua C, D in X such that f(C) = f(D) = F . It is impossible that C ⊂ D
or D ⊂ C since f is hereditarily irreducible. Otherwise, If C ∩ D 
= ∅, then
for a continuum Z = C ∪ D we have that C and D are subcontinua of Z
and f(Z) = f(C) = f(D) = F which is impossible since f is hereditarily
irreducible. We infer that C ∩ D = ∅. There exists a subcontinuum E such
that C ⊂ E, D 
= D ∩ E 
= ∅ since X is a D-continuum. Now f(E ∪ D) =
f(E) which is impossible since f is hereditarily irreducible. Furthermore,
C(f)−1(Y (1)) = X(1) since from the hereditarily irreducibility of f it follows
that no non-degenerate subcontinuum of X maps under f onto a point.We
infer that C(f)−1[Y �Y (1)] = C(X)�X(1). It follows that the restriction
P = C(f)|(C(X)�X(1)) is one-to-one and closed [5, p. 95, Proposition 2.1.4].
From C(f)−1[Y �Y (1)] = C(X)�X(1) it follows that P is surjective. Hence,
P is a homeomorphism.

Step 2. w(C(X)�X(1)) ≤ w(Y ). Now we have w(C(X)�X(1)) =
w(C(f)|(C(X)�X(1))) ≤ w(C(Y )�Y (1)) ≤ w(2X) = w(Y ) since w(2X) =
w(Y ) [5, p. 306, Problem 3.12.26 (a)].

Step 3. w(X) � w(Y ). Let B = {Bα : α ∈ A} be a base of C(X)�X(1).
For each Bα let Cα = {x ∈ X : x ∈ B, B ∈ Bα}, i.e., the union of all continua
B contained in Bα.

Claim 1. The family {Cα : α ∈ A} is a network of X . Let X be a point
of X and let U be an open subset of X such that x ∈ U . There exists an open
set V such that x ∈ V ⊂ ClV ⊂ U . Let K be a component of ClV containing
x. By Boundary Bumping Theorem [20, p. 73, Theorem 5.4] K is non-
degenerate and, consequently, K ∈ C(X)�X(1). Now, 〈U〉 ∩ (C(X)�X(1))
is a neighbourhood of K in C(X)�X(1). It follows that there exists a Bα ∈ B
such that K ∈ Bα ⊂ 〈U〉∩ (C(X)�X(1)). It is clear that Cα ⊂ U and x ∈ Cα

since x ∈ K. Hence the family {Cα : α ∈ A} is a network of X .
Claim 2. nw(X) = w(C(X)�X(1)). Apply Claim 1.
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Claim 3. w(X) = w(C(X)�X(1)). By Claim 2 we have nw(X) =
w(C(X)�X(1)). Moreover, by Theorem 1.7 w(X) = w(C(X)�X(1)).

Claim 4.Finally, w(X) ≤ w(Y ). Apply Step 2 and Claim 3.
The proof is complete since we have w(X) ≤ w(Y ) and w(Y ) ≤ w(X).
The proof above can be modified to prove the following theorem.

Theorem 3.9 Let f : X → Y be an hereditarily irreducible mapping of a
continuum X. If for every two continua P, Q ∈ C(X)�F1(X) with P ∩Q = ∅
the inequality f(P )�f(Q) 
= ∅ holds, then w(X) = w(Y ).

Proof. Modify the proof of Theorem 3.8 in such a way that Step1 is
replaced by the following.

Step 1*. C(f) : C(X) → C(Y ) is one-to-one on C(X)�X(1). Moreover,
C(f) is a homeomorphism of C(X)�X(1) onto C(f)(C(X)�X(1)). Suppose
that C(f) is not one-to-one. Then there exist a continuum F in Y and two
continua C, D in X such that f(C) = f(D) = F . It is impossible that C ⊂ D
or D ⊂ C, since f is hereditarily irreducible. Otherwise, if C ∩ D 
= ∅, then
for a continuum Z = C ∪ D we have that C and D are subcontinua of Z
and f(Z) = f(C) = f(D) = F which is impossible since f is hereditarily
irreducible. We infer that C ∩D = ∅. Now, C ∩D = ∅ and f(C) = f(D) = F ,
i.e., f(C)�f(D) = ∅. This contradicts the assumption of the Theorem.

Theorem 3.9 can be reformulated as follows.

Theorem 3.10 Let f : X → Y be an hereditarily irreducible mapping of a
continuum X onto Y . If 2f : 2X → 2Y is light, then w(X) = w(Y ).

Proof. Apply Theorems 1.6 and 3.9.

The following two results are consequences of Theorem 3.8.

Corollary 3.11 Let X × Y be a product of two non-degenerate continua. If
there exists a hereditarily irreducible mapping f : X×Y → Z, then w(X×Y ) =
w(Z).

Proof. Apply Theorems 3.6 and 3.8.

Corollary 3.12 Let X be a continuum. If f : Con(X) → Y is a hereditarily
irreducible mapping, then w(Con(X)) = w(Y ).

Proof. Apply Theorems 3.3 and 3.8.

A continuum X is said to be τ-rim-d-continuum if X admits a basis of
open sets whose boundaries are the union of ≤ τ D-continua.

Now we shall prove the following generalization of Theorem 1.2.
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Theorem 3.13 If f : X → Y is a hereditarily irreducible mapping of τ-rim-
d-continuum X onto a continuum Y such that w(Y ) = τ , then w(X) = w(Y ).

Proof. Let B = {Bα : α ∈ A} be a basis of open sets of X such that every
Bd(Bα) is the union of ≤ τ D-continua Cαµ. Consider the restriction fαµ of
f onto Cαµ, i.e., fαµ : Cαµ → fαµ(Cαµ). From Theorem 3.8 it follows that
w(Cαµ) = w(fαµ(Cαµ)) ≤ w(Y ) = τ since fαµ is hereditarily irreducible. By
[5, p. 171, Theorem 3.1.20] we have w(Bd(Bα)) ≤ τ = w(Y ). Using Theorem
1.2 we complete the proof since each hereditarily irreducible mapping is light.

4 Near locally connected continua

A continuum X is said to be near locally connected at a point x ∈ X provided
for every open set U containing x there is a continuum C such that x ∈ C ⊂ U
and Int(C) 
= ∅. A continuum is said to be a NLC-continuum provided it is
near locally connected at every of its point. Each locally connected continuum
is NLC-continuum.

The concept of aposyndesis was introduced by Jones in [10]. A continuum
is said to be semi-aposyndetic [9, p. 238, Definition 29.1], if for every p 
= q
in X , there exists a subcontinuum M of X such that IntX(M) contains one
of the points p, q and X�M contains the other one. Each locally connected
continuum is semi-aposyndetic.

Example. There exists a non-locally connected non-semi-aposyndetic NLC-
continuum X . Let R2 be the Euclidean plane endowed with the ordinary
rectangular coordinate system Oxy. We define the continuum X as a subcon-
tinuum of R2 which is the union of the following sets:

a) [−1, 0]× [−1, 1],
b)

{
(x, sin 1

x ) : 0 < x ≤ 1
}
,

c)
{

(x, sin 1
2−x ) : 1 ≤ x < 2

}
,

d) [2, 3]× [−1, 1].
It is clear that X is not locally connected. It is not semi-aposyndetic.

Namely, if (0, 1
3 ) and (0, 1

2 ) are two points of X , then each continuum with
non-empty interior which contains (0, 1

3 ) contains also (0, 1
2 ). It is clear that

X is locally connected at each point of X�({0}×[−1, 1]∪{2}×[−1, 1]). Hence,
X is NLC-continuum at each point of X�({0} × [−1, 1] ∪ {2} × [−1, 1]). On
the other hand, at every point A of {0} × [−1, 1]∪ {2}× [−1, 1] and for every
open set containing A, there exists a continuum K containing A such that
Int(K) 
= ∅. Hence X is a NLC-continuum.

Now we shall consider subspace Cint(X) of C(X) containing all subcon-
tinua of X with nonempty interior. It is clear that Cint(X) is non-empty since
X ∈ Cint(X).
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Lemma 4.1 The hyperspace Cint(X) is arcwise connected.

Proof. Let K ∈ Cint(X). There exists an order arc α from K to X ∈
C(X) [14, p. 1209, Theorem]. It is clear that each L ∈ α has a non-empty
interior (in X) since K ⊂ L and K has a non-empty interior in X . Thus,
α ⊂ Cint(X).

It is a question when Cint(X) = C(X). We say that a continuum X
is completely regular if each non-degenerate subcontinuum of X has a non-
empty interior in X . Each completely regular continuum is hereditarily locally
connected.

Lemma 4.2 If X is a continuum, then Cint(X) = C(X) if and only if X is
completely regular.

Theorem 4.3 If X is a NLC-continuum and f : X → Y is hereditarily irre-
ducible mapping, then w(X) = w(Y ).

Proof. It is obvious that w(Y ) ≤ w(X) [5, p. 171, Theorem 3.1.22]. Let
us prove that w(Y ) ≥ w(X). The proof is broken into several steps.

Step 1. For every pair C, D of disjoint non-degenerate subcontinua of X
with non-empty interiors, there exists a non-degenerate subcontinuum E ⊂ X
such that C∩E 
= ∅ 
= D∩E and (C∪D)�E 
= ∅. It suffices to apply Lemma
1.8 to the union C ∪ D and we obtain a component K of X�(C ∪ D) such
that ClK ∩ C 
= ∅ and ClK ∩ D 
= ∅. Then E = ClK is a continuum with
properties C ∩ E 
= ∅ 
= D ∩ E and (C ∪ D)�E 
= ∅ since IntX(C) ∩E = ∅ or
IntX(D) ∩ E = ∅.

Step 2. Every restriction

C(f)|Cint(X) : Cint(X) → C(f)(Cint(X)) ⊂ C(Y )

is one-to-one and closed. Hence, it is a homeomorphism. See the proof of
Step 1 of the proof of Theorem 3.8.

Step 3. w(Cint(X)) ≤ w(Y ). Now we have

w(Cint(X)) = w(C(f)|(Cint(X)) ≤ w(C(Y )) ≤ w(2X) = w(Y ),

since w(2X) = w(Y ) [5, p. 306, Problem 3.12.26 (a)].
Step 4. Let B = {Bµ : µ ∈ M} be a base of Cint(X). For each Bµ let Cµ

= ∪{x ∈ X : x ∈ B, B ∈ Bµ}, i.e., the union of all continua B contained in
Bi.

Claim 1. The family {Cµ : µ ∈ M} is a network of X . Let X be a
point of X and let U be an open subsets of X such that x ∈ U . There exists
an open set V such that x ∈ V ⊂ ClV ⊂ U . Let K be a component of
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ClV containing x. By Boundary Bumping Theorem [20, p. 73, Theorem 5.4]
K is non-degenerate and, consequently, K ∈ Cint(X) since X is an NLC-
continuum. Now, 〈U〉 ∩ (Cint(X)) is a neighbourhood of K in Cint(X). It
follows that there exists a Bµ ∈ B such that K ∈ Bµ ⊂ 〈U〉 ∩ (Cint(X)).
It is clear that Cµ ⊂ U and x ∈ Cµ since x ∈ K ⊂ U . Hence the family
{Cµ : µ ∈ M} is a network of X .

Claim 2. nw(X) = w(Cint(X)) ≤ w(Y ). Apply Claim 1.
Claim 3. w(X) ≤ w(Y ). Apply Claim 2 and Step 1.
Finally, from Claim 3 and w(Y ) ≤ w(X), it follows that w(X) = w(Y ).
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[15] T. Maćkowiak and E. D. Tymchatyn, Some classes of locally connected continua,
Colloq. Math., 52(1987), 39-52.

[16] J. Mioduszewski, Twierdzenie o selektorach funkcyj wielowarto sciowych na dendry-
tach [A theorem on the selectors of multi-valued functions on dendrites], Prace Mat.,
5(1961), 73-77, in Polish; Russian and English summaries.
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