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On the hyper order of solutions of a class of
higher order linear differential equations

Benharrat BELAÏDI and Säıd ABBAS

Abstract

In this paper, we investigate the order and the hyper order of entire
solutions of the higher order linear differential equation

f (k)+Ak−1 (z) ePk−1(z)f (k−1)+...+A1 (z) eP1(z)f
′
+A0 (z) eP0(z)f = 0 (k ≥ 2) ,

where Pj (z) (j = 0, ..., k − 1) are nonconstant polynomials such that
deg Pj = n (j = 0, ..., k − 1) and Aj (z) ( �≡ 0) (j = 0, ..., k − 1) are entire
functions with ρ (Aj) < n (j = 0, ..., k − 1). Under some conditions, we
prove that every solution f (z) �≡ 0 of the above equation is of infinite
order and ρ2 (f) = n.

1 Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna’s value distribu-
tion theory (see [8] , [12]). Let ρ (f) denote the order of an entire function f
and the hyper order ρ2 (f) is defined by (see [9] , [13])

ρ2 (f) = lim
r→+∞

log logT (r, f)
log r

= lim
r→+∞

log log log M (r, f)
log r

, (1.1)
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where T (r, f) is the Nevanlinna characteristic function of f and M (r, f) =
max|z|=r |f (z)| . See [8] , [12] , [13] for notations and definitions.

Several authors [2, 6, 9] have studied the second order linear differential
equation

f
′′

+A1 (z) eP1(z)f
′
+A0 (z) eP0(z)f = 0, (1.2)

where P1 (z) , P0 (z) are nonconstant polynomials, A1 (z) , A0 (z) (�≡ 0) are en-
tire functions such that ρ (A1) < degP1 (z) , ρ (A0) < degP0 (z). Gundersen
showed in [6, p. 419] that, if degP1 (z) �= degP0 (z) , then every nonconstant
solution of (1.2) is of infinite order. If degP1 (z) = degP0 (z) , then (1.2) may
have nonconstant solutions of finite order. For instance f (z) = ez +1 satisfies
f

′′
+ ezf

′ − ezf = 0.

In [9], Kwon has investigated the case when degP1 (z) = degP0 (z) and
has proved the following:

Theorem A [9] Let P1 (z) and P0 (z) be nonconstant polynomials such that

P1 (z) = anz
n + an−1z

n−1 + ...+ a1z + a0 (1.3)

P0 (z) = bnz
n + bn−1z

n−1 + ...+ b1z + b0, (1.4)

where ai, bi (i = 0, 1, .., n) are complex numbers, an �= 0, bn �= 0, let A1 (z) and
A0 (z) (�≡ 0) be entire functions with ρ (Aj) < n (j = 0, 1) . Then the following
four statements hold :
(i) If either arg an �= arg bn or an = cbn (0 < c < 1) , then every nonconstant
solution f of (1.2) has infinite order with ρ2 (f) ≥ n.
(ii) Let an = bn and deg(P1 − P0) = m ≥ 1, and let the orders of A1 (z) and
A0 (z) be less than m. Then every nonconstant solution f of (1.2) has infinite
order with ρ2 (f) ≥ m.
(iii) Let an = cbn with c > 1 and deg(P1 − cP0) = m ≥ 1. Suppose that
ρ (A1) < m and A0 (z) is an entire function with 0 < ρ (A0) < 1/2. Then
every nonconstant solution f of (1.2) has infinite order with ρ2 (f) ≥ ρ (A0).
(iv) Let an = cbn with c ≥ 1 and P1 (z) − cP0 (z) be a constant . Suppose that
ρ (A1) < ρ (A0) < 1/2. Then every nonconstant solution f of (1.2) has infinite
order with ρ2 (f) ≥ ρ (A0).

Recently in [3] , [4] , Chen and Shon have investigated the order of a class
of higher order linear differential and have proved the following results:
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Theorem B [3] Let hj (z) (j = 0, 1, ..., k−1) (k ≥ 2) be entire functions with
ρ (hj) < 1, and Hj (z) = hj (z) eajz, where aj (j = 0, ..., k − 1) are complex
numbers. Suppose that there exists as such that hs �≡ 0, and for j �= s, if
Hj �≡ 0, aj = cjas (0 < cj < 1); if Hj ≡ 0, we define cj = 0. Then every
transcendental solution f of the linear differential equation

f (k) +Hk−1 (z) f (k−1) + ....+Hs (z) f (s) + ...+H0 (z) f = 0 (1.5)

is of infinite order.
Furthermore, if max {c1, ..., cs−1} < c0, then every solution f (z) �≡ 0 of

(1.5) is of infinite order.

Theorem C [4] Assume that Hj (z) = hj (z) eajz (j = 0, ..., k − 1) (k ≥ 2) ,
where hj (z) (j = 0, 1, ..., k − 1) are entire functions with ρ (hj) < 1. Let
aj = dje

iθj (dj ≥ 0, θj ∈ [0, 2π)) be complex constants. If hj �≡ 0, then aj �= 0.
Suppose that in {θj} (j = 0, ..., k − 1) , there are s (1 ≤ s ≤ k) distinct val-
ues θt1 , ..., θts (0 ≤ t1 < t2 < ... < ts ≤ k − 1). Set Am = {aj : arg aj = θtm}
(m = 1, ..., s) . If there exists an atm such that dj < dtm for aj ∈ Am (j �= tm) ,
then every transcendental solution f of

f (k) +Hk−1f
(k−1) + ....+H1f

′
+H0f = 0 (1.6)

is of infinite order.
Furthermore, if t1 = 0, then every solution f �≡ 0 of (1.6) is of infinite

order and ρ2 (f) = 1.

In this paper, we will extend and improve Theorem A(i), Theorem B and
Theorem C to some higher order linear differential equations. In the following
Theorem 1.1, we obtain the more precisely estimation ” ρ2 (f) = n ” than in
the Theorem B. In fact, we will prove:

Theorem 1.1 Let Pj (z) =
n∑

i=0

ai,jz
i (j = 0, ..., k − 1) be nonconstant polyno-

mials, where a0,j , ...., an,j (j = 0, 1, ..., k − 1) are complex numbers such that
an,jan,s �= 0 (j �= s) , let Aj (z) ( �≡ 0) (j = 0, ..., k − 1) be entire functions.
Suppose that an,j = cjan,s (0 < cj < 1) (j �= s) , ρ (Aj) < n (j = 0, ..., k − 1) .
Then every transcendental solution f of

f (k) +Ak−1 (z) ePk−1(z)f (k−1) + ...+As (z) ePs(z)f (s) + ...+A0 (z) eP0(z)f = 0,
(1.7)

where k ≥ 2, satisfies ρ (f) = ∞ and ρ2 (f) = n.
Furthermore, if max{c1, ..., cs−1} < c0, then every solution f (z) �≡ 0 of

(1.7) satisfies ρ (f) = ∞ and ρ2 (f) = n.
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Theorem 1.2 Let Pj (z) =
n∑

i=0

ai,jz
i (j = 0, ..., k − 1) be nonconstant polyno-

mials, where a0,j, ...., an,j (j = 0, 1, ..., k − 1) are complex numbers such that
an,jan,s �= 0 (j �= s) , let Aj (z) (�≡ 0) (j = 0, ..., k − 1) be entire functions.
Suppose that arg an,j �= arg an,s (j �= s) , ρ (Aj) < n (j = 0, ..., k − 1) . Then
every transcendental solution f of (1.7) satisfies ρ (f) = ∞ and ρ2 (f) = n.

Theorem 1.3 Let Pj (z) =
n∑

i=0

ai,jz
i (j = 0, ..., k − 1) be nonconstant poly-

nomials, where a0,j , ...., an,j (j = 0, 1, ..., k − 1) are complex numbers. Let
Hj (z) = hj (z) ePj(z), where hj (z) (j = 0, 1, ..., k − 1) (k ≥ 2) are entire func-
tions with ρ (hj) < n. Let an,j = dje

iθj (dj > 0, θj ∈ [0, 2π)). If hj �≡ 0,
then an,j �= 0. Suppose that in {θj} , there are s (1 ≤ s ≤ k) distinct val-
ues θt1 , ..., θts (0 ≤ t1 < ... < ts ≤ k − 1) . Set Am = {an,j : arg an,j = θtm}
(m = 1, ..., s) . If there exists an an,tm such that dj < dtm for an,j ∈ Am

(j �= tm) , then every transcendental solution f of

f (k) +Hk−1f
(k−1) + ....+H1f

′
+H0f = 0 (1.8)

satisfies ρ (f) = ∞. If t1 = 0, then every solution f �≡ 0 of (1.8) satisfies
ρ (f) = ∞ and ρ2 (f) = n.

2 Lemmas

Our proofs depend mainly upon the following Lemmas.

Lemma 2.1 [5] Let f be a transcendental meromorphic function of finite
order ρ, let Γ = {(k1, j1) , (k2, j2) , ..., (km, jm)} denote a finite set of distinct
pairs of integers that satisfy ki > ji ≥ 0 (i = 1, ...,m) , and let ε > 0 be a
given constant. Then there exists a set E0 ⊂ [0, 2π) which has linear measure
zero, such that if ψ0 ∈ [0, 2π)−E0, then there is a constant R0 = R0 (ψ0) > 1
such that for all z satisfying arg z = ψ0 and |z| ≥ R0 and for all (k, j) ∈ Γ,
we have ∣∣∣∣f

(k) (z)
f (j) (z)

∣∣∣∣ ≤ |z|(k−j)(ρ−1+ε)
. (2.1)

Lemma 2.2 [3] Let P (z) = (α+ iβ) zn + .... (α, β are real numbers, |α| +
|β| �= 0) be a polynomial with degree n ≥ 1, and let A (z) (�≡ 0) be an entire
function with ρ (A) < n. Set f (z) = A (z) eP (z), z = reiθ, δ (P, θ) = α cosnθ−
β sinnθ. Then for any given ε > 0, there exists a set E1 ⊂ [0, 2π) which has
linear measure zero, such that for any θ ∈ [0, 2π) \ (E1 ∪ E2) , where E2 =
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{θ ∈ [0, 2π) : δ (P, θ) = 0} is a finite set, there is R1 > 0 such that for |z| =
r > R1, we have
(i) if δ (P, θ) > 0, then

exp {(1 − ε) δ (P, θ) rn} ≤ ∣∣f (
reiθ

)∣∣ ≤ exp {(1 + ε) δ (P, θ) rn} , (2.2)

(ii) if δ (P, θ) < 0, then

exp {(1 + ε) δ (P, θ) rn} ≤ ∣∣f (
reiθ

)∣∣ ≤ exp {(1 − ε) δ (P, θ) rn} . (2.3)

Lemma 2.3 ([10] , [7, Lemma 3]) Let f (z) be an entire function and suppose
that

∣∣f (k) (z)
∣∣ is unbounded on some ray arg z = θ. Then there exists an

infinite sequence of points zn = rne
i θ (n = 1, 2, ...) , where rn → +∞, such

that f (k) (zn) → ∞ and
∣∣∣∣ f

(j) (zn)
f (k) (zn)

∣∣∣∣ ≤ 1
(k − j)!

(1 + o (1)) |zn|k−j (j = 0, ..., k − 1) . (2.4)

Lemma 2.4 [3] Let f (z) be an entire function with ρ (f) = ρ <∞. Suppose
that there exists a set E3 ⊂ [0, 2π) that has linear measure zero, such that for
any ray arg z = θ0 ∈ [0, 2π) \E3,

∣∣f (
reiθ0

)∣∣ ≤ Mrk, where M = M (θ0) > 0
is a constant and k (> 0) is a constant independent of θ0. Then f (z) is a
polynomial with deg f ≤ k.

Lemma 2.5 [11, pp. 253-255] Let P0 (z) =
n∑

i=0

biz
i, where n is a positive

integer and bn = αne
iθn , αn > 0, θn ∈ [0, 2π) . For any given ε (0 < ε < π/4n),

we introduce 2n closed angles

Sj : −θn

n
+(2j − 1)

π

2n
+ε ≤ θ ≤ −θn

n
+(2j + 1)

π

2n
−ε (j = 0, 1, ..., 2n− 1) .

(2.5)
Then there exists a positive number R2 = R2 (ε) such that for |z| = r > R2,

ReP0 (z) > αnr
n (1 − ε) sin (nε) , (2.6)

if z = reiθ ∈ Sj , when j is even; while

ReP0 (z) < −αnr
n (1 − ε) sin (nε) , (2.7)

if z = reiθ ∈ Sj , when j is odd.
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Lemma 2.6 [2] Let f (z) be an entire function of order ρ (f) = α < +∞.
Then for any given ε > 0, there exists a set E4 ⊂ [1,+∞) that has finite
linear measure and finite logarithmic measure, such that for all z satisfying
|z| = r /∈ [0, 1] ∪E4, we have

exp
{−rα+ε

} ≤ |f (z)| ≤ exp
{
rα+ε

}
. (2.8)

Lemma 2.7 [5] Let f (z) be a transcendental meromorphic function, and let
α > 1 be a given constant. Then there exist a set E5 ⊂ (1,+∞) of finite
logarithmic measure and a constant B > 0 that depends only on α and (m,n)
(m, n positive integers with m < n) such that for all z satisfying |z| = r /∈
[0, 1] ∪ E5,we have

∣∣∣∣ f
(n) (z)

f (m) (z)

∣∣∣∣ ≤ B

[
T (αr, f)

r
(logα r) logT (αr, f)

]n−m

. (2.9)

Lemma 2.8 [3] Let f (z) be a transcendental entire function. Then there is
a set E6 ⊂ (1,+∞) that has finite logarithmic measure, such that, for all z
with |z| = r /∈ [0, 1] ∪ E6 at which |f (z)| = M (r, f) , we have

∣∣∣∣ f (z)
f (s) (z)

∣∣∣∣ ≤ 2rs (s ∈ N) . (2.10)

Lemma 2.9 [3] Let A0 (z) , ..., Ak−1 (z) be entire functions of finite order. If
f is a solution of the equation

f (k) +Ak−1 (z) f (k−1) + ...+A1 (z) f
′
+A0 (z) f = 0, (2.11)

then ρ2 (f) ≤ max {ρ (A0) , ..., ρ (Ak−1)} .

Lemma 2.10 [1] Let Pj (z) =
n∑

i=0

ai,jz
i (j = 0, ..., k − 1) be nonconstant poly-

nomials where a0,j, ..., an,j (j = 0, 1, ..., k − 1) are complex numbers such that
an,jan,0 �= 0 (j = 1, ..., k − 1) , let Aj (z) (�≡ 0) (j = 0, ..., k − 1) be entire
functions. Suppose that arg an,j �= arg an,0 or an,j = cjan,0 (0 < cj < 1)
(j = 1, ..., k − 1) and ρ (Aj) < n (j = 0, ..., k − 1) . Then every solution f (z) �≡
0 of the equation

f (k)+Ak−1 (z) ePk−1(z)f (k−1)+...+A1 (z) eP1(z)f
′
+A0 (z) eP0(z)f = 0, (2.12)

is of infinite order and ρ2 (f) = n.
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3 Proof of Theorem 1.1

Assume f (z) is a transcendental solution of (1.7) , we show that ρ (f) = ∞.
Suppose that ρ (f) = ρ < ∞. Set c = max {cj : j �= s} , then 0 < c < 1.
By Lemma 2.1, there exists a set E0 ⊂ [0, 2π) with linear measure zero, for
θ ∈ [0, 2π) \E0 there is a constant R0 = R0 (θ) > 1 such that for all z satisfying
arg z = θ and |z| ≥ R0, we have

∣∣∣∣f
(j) (z)
f (s) (z)

∣∣∣∣ ≤ |z|(j−s)(ρ−1+ε) (j = s+ 1, ..., k) . (3.1)

Let Ps (z) = an,sz
n + ..., (an,s = α+ iβ �= 0) , δ (Ps, θ) = α cosnθ − β sinnθ.

By Lemma 2.2, As �≡ 0 and ρ (Aj) < n (j = 0, ..., k − 1) there exists a set E1 ⊂
[0, 2π) with linear measure zero such that for θ ∈ [0, 2π) \ (E0 ∪ E1 ∪ E2) ,
where E2 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0} , is a finite set, for any given ε (0 <
3ε < 1 − c), we obtain for sufficiently large r :
(i) If δ (Ps, θ) > 0, then

exp {(1 − ε) δ (Ps, θ) rn} ≤
∣∣∣As (z) ePs(z)

∣∣∣ ≤ exp {(1 + ε) δ (Ps, θ) rn} (3.2)

and ∣∣∣Aj (z) ePj(z)
∣∣∣ ≤ exp {(1 + ε) δ (Ps, θ) crn} (j �= s) . (3.3)

(ii) If δ (Ps, θ) < 0, then
∣∣∣As (z) ePs(z)

∣∣∣ ≤ exp {(1 − ε) δ (Ps, θ) r n} , (3.4)

∣∣∣Aj (z) ePj(z)
∣∣∣ ≤ exp {(1 − ε) δ (Ps, θ) cjrn} (j �= s) . (3.5)

For any θ ∈ [0, 2π) \ (E0 ∪ E1 ∪ E2) , then δ (Ps, θ) > 0 or δ (Ps, θ) < 0. We
divide it into two cases.
Case (i) : δ (Ps, θ) > 0. Now we prove that

∣∣f (s)
(
reiθ

)∣∣ is bounded on the ray
arg z = θ. If

∣∣f (s)
(
reiθ

)∣∣ is unbounded on the ray arg z = θ, then by Lemma
2.3, there exists an infinite sequence of points zq = rqe

iθ (q = 1, 2, ...) such
that as q → +∞ we have rq → +∞, f (s) (zq) → ∞ and

∣∣∣∣f
(j) (zq)

f (s) (zq)

∣∣∣∣ ≤ 1
(s− j)!

(1 + o (1)) |zq|s−j (j = 0, ..., s− 1) . (3.6)

Substituting (3.1) − (3.3) and (3.6) into (1.7) , we obtain

exp
{
(1 − ε) δ (Ps, θ) r n

q

} ≤
∣∣∣As (zq) ePs(zq)

∣∣∣
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≤
∣∣∣∣f

(k) (zq)
f (s) (zq)

∣∣∣∣ + ...+
∣∣∣∣As+1 (zq) ePs+1(zq) f

(s+1) (zq)
f (s) (zq)

∣∣∣∣

+
∣∣∣∣As−1 (zq) ePs−1(zq) f

(s−1) (zq)
f (s) (zq)

∣∣∣∣ + ...+
∣∣∣∣A0 (zq) eP0(zq) f (zq)

f (s) (zq)

∣∣∣∣
≤ d1 exp

{
(1 + ε) δ (Ps, θ) crn

q

} |zq|d2 , (3.7)

where (d1 > 0, d2 > 0) are some constants. By (3.7), we obtain

exp
{

1
3

(1 − c) δ (Ps, θ) r n
q

}
≤ d1r

d2
q . (3.8)

This is a contradiction. Hence
∣∣f (s)

(
reiθ

)∣∣ ≤ M on arg z = θ. By s-fold
iterated integration along the line segment [0, z], we obtain

∣∣f (
reiθ

)∣∣ ≤ |f (0)| +
∣∣∣f ′

(0)
∣∣∣ r
1!

+
∣∣∣f ′′

(0)
∣∣∣ r2

2!
+ ...+M

rs

s!
, (3.9)

on the ray arg z = θ.
Case (ii) : δ (Ps, θ) < 0. By (1.7) , we get

−1 = Ak−1 (z) ePk−1(z) f
(k−1) (z)
f (k) (z)

+ ...+As (z) ePs(z) f
(s) (z)
f (k) (z)

+...+A0 (z) eP0(z) f (z)
f (k) (z)

. (3.10)

Now we prove that
∣∣f (k)

(
reiθ

)∣∣ is bounded on the ray arg z = θ. If
∣∣f (k)

(
reiθ

)∣∣
is unbounded on the ray arg z = θ, then by Lemma 2.3, there exists an infinite
sequence of points zq = rqe

iθ (q = 1, 2, ...) such that as q → +∞ we have
rq → +∞, f (k) (zq) → ∞ and

∣∣∣∣ f
(j) (zq)
f (k) (zq)

∣∣∣∣ ≤ 1
(k − j)!

(1 + o (1)) |zq|k−j (j = 0, ..., k − 1) . (3.11)

By (3.4) and (3.11) , we have as q → +∞
∣∣∣∣As (zq) ePs(zq) f

(s) (zq)
f (k) (zq)

∣∣∣∣
≤ 1

(k − s)!
(1 + o (1)) exp

{
(1 − ε) δ (Ps, θ) r n

q

}
r k−s
q → 0. (3.12)

By (3.5), (3.11) and cj > 0, we have as q → +∞
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∣∣∣∣Aj (zq) ePj(zq) f
(j) (zq)
f (k) (zq)

∣∣∣∣
≤ 1

(k − j)!
(1 + o (1)) exp

{
(1 − ε) δ (Ps, θ) cjr n

q

}
r k−j
q → 0 (j �= s) . (3.13)

Substituting (3.12) and (3.13) into (3.10) , we obtain as q → +∞
1 ≤ 0. (3.14)

This is a contradiction. Hence
∣∣f (k)

(
reiθ

)∣∣ ≤M1 on arg z = θ. Therefore,

∣∣f (
reiθ

)∣∣ ≤ |f (0)| +
∣∣∣f ′

(0)
∣∣∣ r
1!

+
∣∣∣f ′′

(0)
∣∣∣ r2

2!
+ ...+M1

rk

k!
(3.15)

holds on arg z = θ. By Lemma 2.4, combining (3.9) and (3.15) and the fact
that E0 ∪E1 ∪E2 has linear measure zero, we know that f (z) is a polynomial
which contradicts our assumption, therefore ρ (f) = ∞.

Assume max {c1, ..., cs−1} < c0 and f (z) is a polynomial solution of
(1.7) that the degree of f (z) , deg f (z) = m. If m ≥ s, then we take θ ∈
[0, 2π) \ (E0 ∪E1 ∪ E2) satisfying δ (Ps, θ) > 0. For any given

ε1

(
0 < 3ε1 < min

{
1 − c, c0 − c

′} (
c
′
= max {c1, ..., cs−1}

)
< c0

)
.

By (1.7) and Lemma 2.2, we have

exp {(1 − ε1) δ (Ps, θ) r n} d3r
m−s ≤

∣∣∣As

(
reiθ

)
ePs(reiθ)f (s)

(
reiθ

)∣∣∣
≤

∑
j �=s

∣∣∣Aj

(
reiθ

)
ePj(reiθ)f (j)

(
reiθ

)∣∣∣
≤ d4r

m exp ((1 + ε1) δ (Ps, θ) cr n) , (3.16)

where (d3 > 0, d4 > 0) are some constants. By (3.16) , we get

exp
{

1
3

(1 − c) δ (Ps, θ) r n

}
≤ d4

d3
rs. (3.17)

Hence, (3.17) is a contradiction. If m < s taking θ as above, by (1.7) and
Lemma 2.2, we have

exp {(1 − ε1) δ (Ps, θ) c0r n} d5r
s−1 ≤

∣∣∣A0

(
reiθ

)
eP0(reiθ)f

(
reiθ

)∣∣∣
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≤
s−1∑
j=1

∣∣∣Aj

(
reiθ

)
ePj(reiθ)f (j)

(
reiθ

)∣∣∣

≤ d6r
s−2 exp

{
(1 + ε1) δ (Ps, θ) c

′
r n

}

and

exp
{

1
3

(
c0 − c

′)
δ (Ps, θ) r n

}
≤ d6

d5r
, (3.18)

where (d5 > 0, d6 > 0) are some constants. This is a contradiction. Therefore,
when max {c1, ..., cs−1} < c0, every solution f �≡ 0 of (1.7) has infinite order.

Now we prove that ρ2 (f) = n. Put c = max {cj : j �= s} , then 0 < c <
1. Since degPs > deg (Pj − cjPs) (j �= s) , by Lemma 2.5, there exist real
numbers b > 0, λ, R2 and θ1 < θ2 such that for all r ≥ R2 and θ1 ≤ θ ≤ θ2,
we have

RePs

(
reiθ

)
> brn, Re

(
Pj

(
reiθ

) − cjPs

(
reiθ

))
< λ (j �= s) . (3.19)

Re
(
Pj

(
reiθ

) − cPs

(
reiθ

))
= Re

(
Pj

(
reiθ

) − cjPs

(
reiθ

))
+ (cj − c)RePs

(
reiθ

)
< λ (j �= s) . (3.20)

Let max {ρ (Aj) (j = 0, ..., k − 1)} = β < n. Then by Lemma 2.6, there ex-
ists a set E3 ⊂ [1,+∞) that has finite linear measure and finite logarithmic
measure, such that for all z satisfying |z| = r /∈ [0, 1] ∪ E3, for any given ε
(0 < ε < n− β), we have

exp
{−rβ+ε

} ≤ |Aj (z)| ≤ exp
{
rβ+ε

}
(j = 0, ..., k − 1) . (3.21)

By Lemma 2.7, there is a set E4 ⊂ (1,+∞) with finite logarithmic measure
such that, for all z satisfying |z| = r /∈ [0, 1] ∪ E4, we have

∣∣∣∣f
(j) (z)
f (s) (z)

∣∣∣∣ ≤ Br [T (2r, f)]j−s+1 (j = s+ 1, ..., k) (3.22)

and
∣∣∣∣f

(j) (z)
f (z)

∣∣∣∣ ≤ Br [T (2r, f)]j+1 (j = 1, ..., s− 1) . (3.23)

It follows from (1.7) that

∣∣∣As (z) e(1−c)Ps(z)
∣∣∣ ≤

∣∣∣e−cPs(z)
∣∣∣
∣∣∣∣∣
f

(k)
(z)

f (s) (z)

∣∣∣∣∣+
∣∣∣Ak−1 (z) ePk−1(z)−cPs(z)

∣∣∣
∣∣∣∣∣
f

(k−1)
(z)

f (s) (z)

∣∣∣∣∣
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+...+
∣∣∣As+1 (z) ePs+1(z)−cPs(z)

∣∣∣
∣∣∣∣f

(s+1) (z)
f (s) (z)

∣∣∣∣+
∣∣∣As−1 (z) ePs−1(z)−cPs(z)

∣∣∣
∣∣∣∣f

(s−1) (z)
f (s) (z)

∣∣∣∣

+...+
∣∣∣A1 (z) eP1(z)−cPs(z)

∣∣∣
∣∣∣∣ f

′ (z)
f (s) (z)

∣∣∣∣ +
∣∣∣A0 (z) eP0(z)−cPs(z)

∣∣∣
∣∣∣∣ f (z)
f (s) (z)

∣∣∣∣

=
∣∣∣e−cPs(z)

∣∣∣
∣∣∣∣∣
f

(k)
(z)

f (s) (z)

∣∣∣∣∣ +
∣∣∣Ak−1 (z) ePk−1(z)−cPs(z)

∣∣∣
∣∣∣∣f

(k−1) (z)
f (s) (z)

∣∣∣∣ + ...

+
∣∣∣As+1 (z) ePs+1(z)−cPs(z)

∣∣∣
∣∣∣∣f

(s+1) (z)
f (s) (z)

∣∣∣∣

+
∣∣∣∣ f (z)
f (s) (z)

∣∣∣∣
[∣∣∣As−1 (z) ePs−1(z)−cPs(z)

∣∣∣
∣∣∣∣f

(s−1) (z)
f (z)

∣∣∣∣

+...+
∣∣∣A1 (z) eP1(z)−cPs(z)

∣∣∣
∣∣∣∣f

′ (z)
f (z)

∣∣∣∣ +
∣∣∣A0 (z) eP0(z)−cPs(z)

∣∣∣
]
. (3.24)

By Lemma 2.8, there is a set E5 ⊂ (1,+∞) that has finite logarithmic measure
such that, for all z with |z| = r /∈ [0, 1] ∪ E5 at which |f (z)| = M (r, f) , we
have

∣∣∣∣ f (z)
f (s) (z)

∣∣∣∣ ≤ 2rs (s ∈ N) . (3.25)

Hence by (3.19)− (3.25) , we get for all z with |z| = r /∈ [0, 1]∪E3 ∪E4 ∪E5,
r ≥ R2, θ1 ≤ θ ≤ θ2 at which |f (z)| = M (r, f)

exp
{−rβ+ε

}
exp {(1 − c) brn}

≤ [
exp {−cbrn} + (k − s− 1) exp

{
rβ+ε

}
exp {λ}]Br [T (2r, f)]k−s+1

+2srs exp {λ} exp
{
rβ+ε

}
Br [T (2r, f)]s

≤M1r
s+1 exp

{
rβ+ε

}
[T (2r, f)]k ,

where M1 > 0 is a constant. Thus n > β + ε implies ρ2 (f) ≥ n. By Lemma
2.9, we have ρ2 (f) = n.
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4 Proof of Theorem 1.2

Assume f (z) is a transcendental solution of (1.7) . Then it follows from Lemma
2.5 that there exists real number α > 0, R3 and θ3 < θ4, such that, for all
r ≥ R3 and θ3 ≤ θ ≤ θ4, we have

RePj

(
reiθ

)
< 0 (j �= s) and RePs

(
reiθ

)
> αr n. (4.1)

We have from (1.7)

∣∣∣As (z) ePs(z)
∣∣∣ ≤

∣∣∣∣∣
f

(k)
(z)

f (s) (z)

∣∣∣∣∣ +
∣∣∣Ak−1 (z) ePk−1(z)

∣∣∣
∣∣∣∣f

(k−1) (z)
f (s) (z)

∣∣∣∣ + ...

+
∣∣∣As+1 (z) ePs+1(z)

∣∣∣
∣∣∣∣f

(s+1) (z)
f (s) (z)

∣∣∣∣ +
∣∣∣As−1 (z) ePs−1(z)

∣∣∣
∣∣∣∣f

(s−1) (z)
f (s) (z)

∣∣∣∣

+...+
∣∣∣A1 (z) eP1(z)

∣∣∣
∣∣∣∣ f

′ (z)
f (s) (z)

∣∣∣∣ +
∣∣∣A0 (z) eP0(z)

∣∣∣
∣∣∣∣ f (z)
f (s) (z)

∣∣∣∣

=

∣∣∣∣∣
f

(k)
(z)

f (s) (z)

∣∣∣∣∣ +
∣∣∣Ak−1 (z) ePk−1(z)

∣∣∣
∣∣∣∣f

(k−1) (z)
f (s) (z)

∣∣∣∣ + ...

+
∣∣∣As+1 (z) ePs+1(z)

∣∣∣
∣∣∣∣f

(s+1) (z)
f (s) (z)

∣∣∣∣ +
∣∣∣∣ f (z)
f (s) (z)

∣∣∣∣
[∣∣∣As−1 (z) ePs−1(z)

∣∣∣
∣∣∣∣f

(s−1) (z)
f (z)

∣∣∣∣

+...+
∣∣∣A1 (z) eP1(z)

∣∣∣
∣∣∣∣f

′ (z)
f (z)

∣∣∣∣ +
∣∣∣A0 (z) eP0(z)

∣∣∣
]
. (4.2)

Hence by (3.21) − (3.23) , (3.25) and (4.1) − (4.2) , we get for all z with |z| =
r /∈ [0, 1] ∪E3 ∪ E4 ∪ E5, r ≥ R3, θ3 ≤ θ ≤ θ4 at which |f (z)| = M (r, f)

exp
{−rβ+ε

}
exp {αrn} ≤ (

1 + (k − s− 1) exp
{
rβ+ε

})
Br [T (2r, f)]k−s+1

+2srs exp
{
rβ+ε

}
Br [T (2r, f)]s

≤Mrs+1 exp
{
rβ+ε

}
[T (2r, f)]k, (4.3)

where M > 0 is a constant. Thus n > β + ε implies that ρ (f) = ∞ and
ρ2 (f) ≥ n. By Lemma 2.9, we have ρ2 (f) = n.
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5 Proof of Theorem 1.3

Assume that f (z) is a transcendental entire solution of (1.8) with ρ (f) = ρ <
∞. Set

E = {θ ∈ [0, 2π) : cos (nθ + θtm) = 0

or dtm cos (nθ + θtm) = dtl
cos (nθ + θtl

) (m ≥ 0, l ≤ s, m �= l)} .
Then, E is clearly a finite set. If Hj �≡ 0 (j = 0, ..., k − 1) then by Lemma 2.2,
there exists a set E1 ⊂ [0, 2π) with linear measure zero such that, for any θ ∈
[0, 2π) \ (E ∪ E1) there exists R > 0, and when |z| = r > R, we have:
(i) if cos (nθ + θj) > 0, then

exp {(1 − ε) djr
n cos (nθ + θj)} ≤ ∣∣Hj

(
reiθ

)∣∣ ≤ exp {(1 + ε) djr
n cos (nθ + θj)} ;

(5.1)
(ii) if cos (nθ + θj) < 0, then

exp {(1 + ε) djr
n cos (nθ + θj)} ≤ ∣∣Hj

(
reiθ

)∣∣ ≤ exp {(1 − ε) djr
n cos (nθ + θj)} .

(5.2)
Now, by Lemma 2.1 and ρ (f) < ∞ there exists a set E2 ⊂ [0, 2π) with
linear measure zero such that for all z satisfying arg z = θ /∈ E2 and |z| = r
sufficiently large and for d > j (j, d ∈ {0, ..., k − 1})

∣∣∣∣f
(d) (z)
f (j) (z)

∣∣∣∣ ≤ |z|M
′ (

M
′
> 0

)
. (5.3)

For any θ ∈ [0, 2π) \ (E ∪ E1 ∪ E2) , set δ
′
m = dtm cos (nθ + θtm) . Then δ

′
m �=

δ
′
l (m �= l) and δ

′
m �= 0 by θ /∈ E and an,j �= 0. Set δ

′
= max

{
δ
′
m : m = 1, ..., s

}
.

Then there exists δ
′
l = δ

′
(l ∈ {1, ..., s}) and δ

′
> δ

′
m (m ∈ {1, ..., s} \ {l}) . We

consider the following two cases:
Case 1: δ

′
> 0. Set δ

′′
= max {0, dj cos (nθ + θj) : {0 ≤ j ≤ k − 1} ∩ {j �= tl}} .

Then δ
′′
< δ

′
. For any given ε

(
0 < ε < δ

′−δ
′′

3δ′

)
, by (5.1) there exists an

R1 > 0, such that as r > R1

∣∣Htl

(
reiθ

)∣∣ ≥ exp
{
(1 − ε) δ

′
rn

}
. (5.4)

And for j �= tl, if cos (nθ + θj) > 0, then by (5.1) there exists an R2 > 0, such
that for r > R2, we have

∣∣Hj

(
reiθ

)∣∣ ≤ exp {(1 + ε) djr
n cos (nθ + θj)}



28 Benharrat BELAÏDI and Säıd ABBAS

≤ exp
{
(1 + ε) δ

′′
rn

}
≤ exp

{
(1 − 2ε) δ

′
rn

}
. (5.5)

If cos (nθ + θj) < 0, then by (5.2) there exists a R3 > 0, as r > R3, we have
∣∣Hj

(
reiθ

)∣∣ ≤ exp {(1 − ε) djr
n cos (nθ + θj) rn} < 1. (5.6)

Now we prove that
∣∣f (tl)

(
reiθ

)∣∣ is bounded on the ray arg z = θ ∈ [0, 2π) \
(E ∪E1 ∪ E2) . If

∣∣f (tl)
(
reiθ

)∣∣ is unbounded on arg z = θ then by Lemma 2.3
there exists an infinite sequence of points zq = rqe

iθ (q = 1, 2, ...) , rq → +∞
such that f (tl) (zq) → ∞, and

∣∣∣∣ f
(j) (zq)

f (tl) (zq)

∣∣∣∣ ≤ 1
(tl − j)!

|zq|tl−j (1 + o (1)) (j = 0, ..., tl − 1) . (5.7)

Then by (5.3) , we have

∣∣∣∣ f
(d) (zq)

f (tl) (zq)

∣∣∣∣ ≤ |zq|M
′

(d = tl + 1, ..., k) . (5.8)

By (1.8) and (5.4) − (5.8) , we obtain that

exp
{
(1 − ε) δ

′
rn
q

}
≤ |Htl

(zq)|

≤
∣∣∣∣ f

(k) (zq)
f (tl) (zq)

∣∣∣∣ +
∣∣∣∣Hk−1 (zq)

f (k−1) (zq)
f (tl) (zq)

∣∣∣∣ + ...+
∣∣∣∣Htl+1 (zq)

f (tl+1) (zq)
f (tl) (zq)

∣∣∣∣

+
∣∣∣∣Htl−1 (zq)

f (tl−1) (zq)
f (tl) (zq)

∣∣∣∣ + ...+
∣∣∣∣H0 (zq)

f (zq)
f (tl) (zq)

∣∣∣∣

≤ k exp
{

(1 − 2ε) δ
′
rn
q

}
|zq|M

′′ (
M

′′
> 0

)
.

This is a contradiction. Hence on arg z = θ, we have
∣∣f (tl)

(
reiθ

)∣∣ ≤ M. By
using the same argument as in the proof of Theorem 1.1, we obtain

∣∣f (
reiθ

)∣∣ ≤ |f (0)| +
∣∣∣f ′

(0)
∣∣∣ r
1!

+
∣∣∣f ′′

(0)
∣∣∣ r2

2!
+ ...+M

rtl

tl!
. (5.9)

Case 2: δ
′
< 0. Then dj cos (nθ + θj) ≤ δ

′
< 0, for all Hj �≡ 0. By (5.2) ,

there exists an R4 > 0, as r > R4, we have

∣∣Hj

(
reiθ

)∣∣ ≤ exp {(1 − ε) djr
n cos (nθ + θj)} ≤ exp

{
(1 − ε) δ

′
rn

}
. (5.10)
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Now we prove that
∣∣f (k)

(
reiθ

)∣∣ is bounded on the ray arg z = θ ∈ [0, 2π) \
(E ∪ E1 ∪ E2) . If

∣∣f (k)
(
reiθ

)∣∣ is unbounded on arg z = θ, then by Lemma 2.3
there exists an infinite sequence of points zq = rqe

iθ (q = 1, 2, ...) , rq → +∞
such that f (k) (zq) → ∞, and

∣∣∣∣ f
(j) (zq)
f (k) (zq)

∣∣∣∣ ≤ 1
(k − j)!

|zq|k−j (1 + o (1)) (j = 0, ..., k − 1) . (5.11)

By (1.8) and (5.10) , (5.11) we have

1 ≤
∣∣∣∣Hk−1 (zq)

f (k−1) (zq)
f (k) (zq)

∣∣∣∣ + ...+
∣∣∣∣H0 (zq)

f (zq)
f (k) (zq)

∣∣∣∣
≤ exp

{
(1 − ε) δ

′
rn
q

}
(1 + o (1)) |zq|k → 0 (q → +∞) .

This is a contradiction. Hence on arg z = θ, we have
∣∣f (k)

(
reiθ

)∣∣ ≤ M1.
Therefore,

∣∣f (
reiθ

)∣∣ ≤ |f (0)| +
∣∣∣f ′

(0)
∣∣∣ r
1!

+
∣∣∣f ′′

(0)
∣∣∣ r2

2!
+ ...+M1

rk

k!
. (5.12)

Combining the above two cases, by (5.9) and (5.12) , we see that

∣∣f (
reiθ

)∣∣ ≤M2r
k (M2 > 0) ,

holds on arg z = θ ∈ [0, 2π) \ (E ∪ E1 ∪ E2). Since E ∪ E1 ∪ E2 is a set with
linear measure zero and by Lemma 2.4, we see that f (z) is a polynomial.
This contradicts our assumption. Therefore ρ (f) = ∞. If t1 = 0, then the
additional hypotheses of Lemma 2.10 are also satisfied. Hence, every solution
f �≡ 0 of (1.8) satisfies ρ2 (f) = n.
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