

An. Şt. Univ. Ovidius Constanța

On the hyper order of solutions of a class of higher order linear differential equations

Benharrat BELAÏDI and Saïd ABBAS

Abstract

In this paper, we investigate the order and the hyper order of entire solutions of the higher order linear differential equation

$$f^{(k)} + A_{k-1}(z) e^{P_{k-1}(z)} f^{(k-1)} + \dots + A_1(z) e^{P_1(z)} f' + A_0(z) e^{P_0(z)} f = 0 \quad (k \ge 2),$$

where $P_j(z)$ (j = 0, ..., k - 1) are nonconstant polynomials such that deg $P_j = n$ (j = 0, ..., k - 1) and $A_j(z) (\not\equiv 0)$ (j = 0, ..., k - 1) are entire functions with $\rho(A_j) < n$ (j = 0, ..., k - 1). Under some conditions, we prove that every solution $f(z) \not\equiv 0$ of the above equation is of infinite order and $\rho_2(f) = n$.

1 Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory (see [8], [12]). Let $\rho(f)$ denote the order of an entire function fand the hyper order $\rho_2(f)$ is defined by (see [9], [13])

$$\rho_2(f) = \lim_{r \to +\infty} \frac{\log \log T(r, f)}{\log r} = \lim_{r \to +\infty} \frac{\log \log \log M(r, f)}{\log r}, \quad (1.1)$$

Key Words: Linear differential equations; Entire solutions; Hyper order.

Received: January, 2008 Accepted: September, 2008

Mathematics Subject Classification: 34M10, 30D35.

where T(r, f) is the Nevanlinna characteristic function of f and $M(r, f) = \max_{|z|=r} |f(z)|$. See [8], [12], [13] for notations and definitions.

Several authors [2, 6, 9] have studied the second order linear differential equation

$$f'' + A_1(z) e^{P_1(z)} f' + A_0(z) e^{P_0(z)} f = 0,$$
(1.2)

where $P_1(z)$, $P_0(z)$ are nonconstant polynomials, $A_1(z)$, $A_0(z) (\neq 0)$ are entire functions such that $\rho(A_1) < \deg P_1(z)$, $\rho(A_0) < \deg P_0(z)$. Gundersen showed in [6, p. 419] that, if $\deg P_1(z) \neq \deg P_0(z)$, then every nonconstant solution of (1.2) is of infinite order. If $\deg P_1(z) = \deg P_0(z)$, then (1.2) may have nonconstant solutions of finite order. For instance $f(z) = e^z + 1$ satisfies $f'' + e^z f' - e^z f = 0$.

In [9], Kwon has investigated the case when deg $P_1(z) = \deg P_0(z)$ and has proved the following:

Theorem A [9] Let $P_1(z)$ and $P_0(z)$ be nonconstant polynomials such that

$$P_1(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$
(1.3)

$$P_0(z) = b_n z^n + b_{n-1} z^{n-1} + \dots + b_1 z + b_0, \qquad (1.4)$$

where a_i, b_i (i = 0, 1, ..., n) are complex numbers, $a_n \neq 0, b_n \neq 0$, let $A_1(z)$ and $A_0(z) \neq 0$ be entire functions with $\rho(A_j) < n$ (j = 0, 1). Then the following four statements hold:

(i) If either $\arg a_n \neq \arg b_n$ or $a_n = cb_n$ (0 < c < 1), then every nonconstant solution f of (1.2) has infinite order with $\rho_2(f) \ge n$.

(ii) Let $a_n = b_n$ and $deg(P_1 - P_0) = m \ge 1$, and let the orders of $A_1(z)$ and $A_0(z)$ be less than m. Then every nonconstant solution f of (1.2) has infinite order with $\rho_2(f) \ge m$.

(iii) Let $a_n = cb_n$ with c > 1 and $deg(P_1 - cP_0) = m \ge 1$. Suppose that $\rho(A_1) < m$ and $A_0(z)$ is an entire function with $0 < \rho(A_0) < 1/2$. Then every nonconstant solution f of (1.2) has infinite order with $\rho_2(f) \ge \rho(A_0)$. (iv) Let $a_n = cb_n$ with $c \ge 1$ and $P_1(z) - cP_0(z)$ be a constant. Suppose that $\rho(A_1) < \rho(A_0) < 1/2$. Then every nonconstant solution f of (1.2) has infinite order with $\rho_2(f) \ge \rho(A_0)$.

Recently in [3], [4], Chen and Shon have investigated the order of a class of higher order linear differential and have proved the following results:

Theorem B [3] Let $h_j(z)$ (j = 0, 1, ..., k-1) $(k \ge 2)$ be entire functions with $\rho(h_j) < 1$, and $H_j(z) = h_j(z) e^{a_j z}$, where a_j (j = 0, ..., k-1) are complex numbers. Suppose that there exists a_s such that $h_s \neq 0$, and for $j \neq s$, if $H_j \neq 0$, $a_j = c_j a_s$ $(0 < c_j < 1)$; if $H_j \equiv 0$, we define $c_j = 0$. Then every transcendental solution f of the linear differential equation

$$f^{(k)} + H_{k-1}(z) f^{(k-1)} + \dots + H_s(z) f^{(s)} + \dots + H_0(z) f = 0$$
(1.5)

is of infinite order.

Furthermore, if $\max\{c_1, ..., c_{s-1}\} < c_0$, then every solution $f(z) \neq 0$ of (1.5) is of infinite order.

Theorem C [4] Assume that $H_j(z) = h_j(z) e^{a_j z}$ (j = 0, ..., k - 1) $(k \ge 2)$, where $h_j(z)$ (j = 0, 1, ..., k - 1) are entire functions with $\rho(h_j) < 1$. Let $a_j = d_j e^{i\theta_j} (d_j \ge 0, \ \theta_j \in [0, 2\pi))$ be complex constants. If $h_j \ne 0$, then $a_j \ne 0$. Suppose that in $\{\theta_j\}$ (j = 0, ..., k - 1), there are s $(1 \le s \le k)$ distinct values $\theta_{t_1}, ..., \theta_{t_s}$ $(0 \le t_1 < t_2 < ... < t_s \le k - 1)$. Set $A_m = \{a_j : \arg a_j = \theta_{t_m}\}$ (m = 1, ..., s). If there exists an a_{t_m} such that $d_j < d_{t_m}$ for $a_j \in A_m$ $(j \ne t_m)$, then every transcendental solution f of

$$f^{(k)} + H_{k-1}f^{(k-1)} + \dots + H_1f' + H_0f = 0$$
(1.6)

is of infinite order.

Furthermore, if $t_1 = 0$, then every solution $f \neq 0$ of (1.6) is of infinite order and $\rho_2(f) = 1$.

In this paper, we will extend and improve Theorem A(i), Theorem B and Theorem C to some higher order linear differential equations. In the following Theorem 1.1, we obtain the more precisely estimation " $\rho_2(f) = n$ " than in the Theorem B. In fact, we will prove:

Theorem 1.1 Let $P_j(z) = \sum_{i=0}^n a_{i,j} z^i$ (j = 0, ..., k - 1) be nonconstant polynomials, where $a_{0,j}, ..., a_{n,j}$ (j = 0, 1, ..., k - 1) are complex numbers such that $a_{n,j}a_{n,s} \neq 0$ $(j \neq s)$, let $A_j(z) (\not\equiv 0)$ (j = 0, ..., k - 1) be entire functions. Suppose that $a_{n,j} = c_j a_{n,s}$ $(0 < c_j < 1)$ $(j \neq s)$, $\rho(A_j) < n$ (j = 0, ..., k - 1). Then every transcendental solution f of

$$f^{(k)} + A_{k-1}(z) e^{P_{k-1}(z)} f^{(k-1)} + \dots + A_s(z) e^{P_s(z)} f^{(s)} + \dots + A_0(z) e^{P_0(z)} f = 0,$$
(1.7)

where $k \geq 2$, satisfies $\rho(f) = \infty$ and $\rho_2(f) = n$.

Furthermore, if $\max\{c_1, ..., c_{s-1}\} < c_0$, then every solution $f(z) \not\equiv 0$ of (1.7) satisfies $\rho(f) = \infty$ and $\rho_2(f) = n$.

Theorem 1.2 Let $P_j(z) = \sum_{i=0}^n a_{i,j} z^i$ (j = 0, ..., k - 1) be nonconstant polynomials, where $a_{0,j}, ..., a_{n,j}$ (j = 0, 1, ..., k - 1) are complex numbers such that $a_{n,j}a_{n,s} \neq 0$ $(j \neq s)$, let $A_j(z) (\not\equiv 0)$ (j = 0, ..., k - 1) be entire functions. Suppose that $\arg a_{n,j} \neq \arg a_{n,s}$ $(j \neq s)$, $\rho(A_j) < n$ (j = 0, ..., k - 1). Then every transcendental solution f of (1.7) satisfies $\rho(f) = \infty$ and $\rho_2(f) = n$.

Theorem 1.3 Let $P_j(z) = \sum_{i=0}^n a_{i,j} z^i$ (j = 0, ..., k - 1) be nonconstant polynomials, where $a_{0,j}, ..., a_{n,j}$ (j = 0, 1, ..., k - 1) are complex numbers. Let $H_j(z) = h_j(z) e^{P_j(z)}$, where $h_j(z) (j = 0, 1, ..., k - 1)$ $(k \ge 2)$ are entire functions with $\rho(h_j) < n$. Let $a_{n,j} = d_j e^{i\theta_j}$ $(d_j > 0, \theta_j \in [0, 2\pi))$. If $h_j \ne 0$, then $a_{n,j} \ne 0$. Suppose that in $\{\theta_j\}$, there are s $(1 \le s \le k)$ distinct values $\theta_{t_1}, ..., \theta_{t_s}$ $(0 \le t_1 < ... < t_s \le k - 1)$. Set $A_m = \{a_{n,j} : \arg a_{n,j} = \theta_{t_m}\}$ (m = 1, ..., s). If there exists an a_{n,t_m} such that $d_j < d_{t_m}$ for $a_{n,j} \in A_m$ $(j \ne t_m)$, then every transcendental solution f of

$$f^{(k)} + H_{k-1}f^{(k-1)} + \dots + H_1f' + H_0f = 0$$
(1.8)

satisfies $\rho(f) = \infty$. If $t_1 = 0$, then every solution $f \neq 0$ of (1.8) satisfies $\rho(f) = \infty$ and $\rho_2(f) = n$.

2 Lemmas

Our proofs depend mainly upon the following Lemmas.

Lemma 2.1 [5] Let f be a transcendental meromorphic function of finite order ρ , let $\Gamma = \{(k_1, j_1), (k_2, j_2), ..., (k_m, j_m)\}$ denote a finite set of distinct pairs of integers that satisfy $k_i > j_i \ge 0$ (i = 1, ..., m), and let $\varepsilon > 0$ be a given constant. Then there exists a set $E_0 \subset [0, 2\pi)$ which has linear measure zero, such that if $\psi_0 \in [0, 2\pi) - E_0$, then there is a constant $R_0 = R_0(\psi_0) > 1$ such that for all z satisfying $\arg z = \psi_0$ and $|z| \ge R_0$ and for all $(k, j) \in \Gamma$, we have

$$\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \le |z|^{(k-j)(\rho-1+\varepsilon)}.$$
(2.1)

Lemma 2.2 [3] Let $P(z) = (\alpha + i\beta) z^n + ..., (\alpha, \beta \text{ are real numbers, } |\alpha| + |\beta| \neq 0)$ be a polynomial with degree $n \geq 1$, and let $A(z) (\neq 0)$ be an entire function with $\rho(A) < n$. Set $f(z) = A(z) e^{P(z)}, z = re^{i\theta}, \delta(P,\theta) = \alpha \cos n\theta - \beta \sin n\theta$. Then for any given $\varepsilon > 0$, there exists a set $E_1 \subset [0, 2\pi)$ which has linear measure zero, such that for any $\theta \in [0, 2\pi) \setminus (E_1 \cup E_2)$, where $E_2 =$

 $\{\theta \in [0, 2\pi) : \delta(P, \theta) = 0\}$ is a finite set, there is $R_1 > 0$ such that for $|z| = r > R_1$, we have (i) if $\delta(P, \theta) > 0$, then

$$\exp\left\{\left(1-\varepsilon\right)\delta\left(P,\theta\right)r^{n}\right\} \leq \left|f\left(re^{i\theta}\right)\right| \leq \exp\left\{\left(1+\varepsilon\right)\delta\left(P,\theta\right)r^{n}\right\},\qquad(2.2)$$

(ii) if $\delta(P,\theta) < 0$, then

$$\exp\left\{\left(1+\varepsilon\right)\delta\left(P,\theta\right)r^{n}\right\} \leq \left|f\left(re^{i\theta}\right)\right| \leq \exp\left\{\left(1-\varepsilon\right)\delta\left(P,\theta\right)r^{n}\right\}.$$
(2.3)

Lemma 2.3 ([10], [7, Lemma 3]) Let f(z) be an entire function and suppose that $|f^{(k)}(z)|$ is unbounded on some ray $\arg z = \theta$. Then there exists an infinite sequence of points $z_n = r_n e^{i\theta}$ (n = 1, 2, ...), where $r_n \to +\infty$, such that $f^{(k)}(z_n) \to \infty$ and

$$\left|\frac{f^{(j)}(z_n)}{f^{(k)}(z_n)}\right| \le \frac{1}{(k-j)!} \left(1+o\left(1\right)\right) \left|z_n\right|^{k-j} \quad (j=0,...,k-1).$$
(2.4)

Lemma 2.4 [3] Let f(z) be an entire function with $\rho(f) = \rho < \infty$. Suppose that there exists a set $E_3 \subset [0, 2\pi)$ that has linear measure zero, such that for any ray $\arg z = \theta_0 \in [0, 2\pi) \setminus E_3$, $|f(re^{i\theta_0})| \leq Mr^k$, where $M = M(\theta_0) > 0$ is a constant and k(>0) is a constant independent of θ_0 . Then f(z) is a polynomial with deg $f \leq k$.

Lemma 2.5 [11, pp. 253-255] Let $P_0(z) = \sum_{i=0}^n b_i z^i$, where *n* is a positive integer and $b_n = \alpha_n e^{i\theta_n}$, $\alpha_n > 0$, $\theta_n \in [0, 2\pi)$. For any given ε ($0 < \varepsilon < \pi/4n$), we introduce 2n closed angles

$$S_j : -\frac{\theta_n}{n} + (2j-1)\frac{\pi}{2n} + \varepsilon \le \theta \le -\frac{\theta_n}{n} + (2j+1)\frac{\pi}{2n} - \varepsilon \quad (j = 0, 1, ..., 2n-1).$$
(2.5)

Then there exists a positive number $R_2 = R_2(\varepsilon)$ such that for $|z| = r > R_2$,

$$ReP_0(z) > \alpha_n r^n (1-\varepsilon) \sin(n\varepsilon),$$
 (2.6)

if $z = re^{i\theta} \in S_j$, when j is even; while

$$ReP_0(z) < -\alpha_n r^n (1-\varepsilon) \sin(n\varepsilon),$$
 (2.7)

if $z = re^{i\theta} \in S_j$, when j is odd.

Lemma 2.6 [2] Let f(z) be an entire function of order $\rho(f) = \alpha < +\infty$. Then for any given $\varepsilon > 0$, there exists a set $E_4 \subset [1, +\infty)$ that has finite linear measure and finite logarithmic measure, such that for all z satisfying $|z| = r \notin [0,1] \cup E_4$, we have

$$\exp\left\{-r^{\alpha+\varepsilon}\right\} \le |f(z)| \le \exp\left\{r^{\alpha+\varepsilon}\right\}.$$
(2.8)

Lemma 2.7 [5] Let f(z) be a transcendental meromorphic function, and let $\alpha > 1$ be a given constant. Then there exist a set $E_5 \subset (1, +\infty)$ of finite logarithmic measure and a constant B > 0 that depends only on α and (m, n) (m, n) positive integers with m < n such that for all z satisfying $|z| = r \notin [0, 1] \cup E_5$, we have

$$\left|\frac{f^{(n)}(z)}{f^{(m)}(z)}\right| \le B\left[\frac{T(\alpha r, f)}{r}(\log^{\alpha} r)\log T(\alpha r, f)\right]^{n-m}.$$
(2.9)

Lemma 2.8 [3] Let f(z) be a transcendental entire function. Then there is a set $E_6 \subset (1, +\infty)$ that has finite logarithmic measure, such that, for all z with $|z| = r \notin [0, 1] \cup E_6$ at which |f(z)| = M(r, f), we have

$$\left|\frac{f(z)}{f^{(s)}(z)}\right| \le 2r^s \quad (s \in \mathbf{N}).$$

$$(2.10)$$

Lemma 2.9 [3] Let $A_0(z), ..., A_{k-1}(z)$ be entire functions of finite order. If f is a solution of the equation

$$f^{(k)} + A_{k-1}(z) f^{(k-1)} + \dots + A_1(z) f' + A_0(z) f = 0, \qquad (2.11)$$

then $\rho_{2}(f) \leq \max \{\rho(A_{0}), ..., \rho(A_{k-1})\}.$

Lemma 2.10 [1] Let $P_j(z) = \sum_{i=0}^n a_{i,j} z^i$ (j = 0, ..., k - 1) be nonconstant polynomials where $a_{0,j}, ..., a_{n,j}$ (j = 0, 1, ..., k - 1) are complex numbers such that $a_{n,j}a_{n,0} \neq 0$ (j = 1, ..., k - 1), let $A_j(z) \ (\neq 0)$ (j = 0, ..., k - 1) be entire functions. Suppose that $\arg a_{n,j} \neq \arg a_{n,0}$ or $a_{n,j} = c_j a_{n,0}$ $(0 < c_j < 1)$ (j = 1, ..., k - 1) and $\rho(A_j) < n$ (j = 0, ..., k - 1). Then every solution $f(z) \neq 0$ of the equation

$$f^{(k)} + A_{k-1}(z) e^{P_{k-1}(z)} f^{(k-1)} + \dots + A_1(z) e^{P_1(z)} f' + A_0(z) e^{P_0(z)} f = 0, \quad (2.12)$$

is of infinite order and $\rho_2(f) = n$.

3 Proof of Theorem 1.1

Assume f(z) is a transcendental solution of (1.7), we show that $\rho(f) = \infty$. Suppose that $\rho(f) = \rho < \infty$. Set $c = \max\{c_j : j \neq s\}$, then 0 < c < 1. By Lemma 2.1, there exists a set $E_0 \subset [0, 2\pi)$ with linear measure zero, for $\theta \in [0, 2\pi) \setminus E_0$ there is a constant $R_0 = R_0(\theta) > 1$ such that for all z satisfying arg $z = \theta$ and $|z| \geq R_0$, we have

$$\left|\frac{f^{(j)}(z)}{f^{(s)}(z)}\right| \le |z|^{(j-s)(\rho-1+\varepsilon)} \quad (j=s+1,...,k).$$
(3.1)

Let $P_s(z) = a_{n,s}z^n + ..., (a_{n,s} = \alpha + i\beta \neq 0), \ \delta(P_s, \theta) = \alpha \cos n\theta - \beta \sin n\theta$. By Lemma 2.2, $A_s \not\equiv 0$ and $\rho(A_j) < n \ (j = 0, ..., k - 1)$ there exists a set $E_1 \subset [0, 2\pi)$ with linear measure zero such that for $\theta \in [0, 2\pi) \setminus (E_0 \cup E_1 \cup E_2)$, where $E_2 = \{\theta \in [0, 2\pi) : \delta(P_s, \theta) = 0\}$, is a finite set, for any given $\varepsilon \ (0 < 3\varepsilon < 1 - c)$, we obtain for sufficiently large r: (i) If $\delta(P_s, \theta) > 0$, then

$$\exp\left\{\left(1-\varepsilon\right)\delta\left(P_{s},\theta\right)r^{n}\right\} \leq \left|A_{s}\left(z\right)e^{P_{s}\left(z\right)}\right| \leq \exp\left\{\left(1+\varepsilon\right)\delta\left(P_{s},\theta\right)r^{n}\right\} \quad (3.2)$$

and

$$A_j(z) e^{P_j(z)} \le \exp\left\{ (1+\varepsilon) \,\delta\left(P_s, \theta\right) c r^n \right\} \ (j \neq s) \,. \tag{3.3}$$

(ii) If $\delta(P_s, \theta) < 0$, then

$$\left|A_{s}(z) e^{P_{s}(z)}\right| \leq \exp\left\{\left(1-\varepsilon\right) \delta\left(P_{s},\theta\right) r^{n}\right\},\tag{3.4}$$

$$A_j(z)e^{P_j(z)} \le \exp\left\{ (1-\varepsilon)\,\delta\left(P_s,\theta\right)c_j r^n\right\} \ (j\neq s)\,. \tag{3.5}$$

For any $\theta \in [0, 2\pi) \setminus (E_0 \cup E_1 \cup E_2)$, then $\delta(P_s, \theta) > 0$ or $\delta(P_s, \theta) < 0$. We divide it into two cases.

Case (i) : $\delta(P_s, \theta) > 0$. Now we prove that $|f^{(s)}(re^{i\theta})|$ is bounded on the ray arg $z = \theta$. If $|f^{(s)}(re^{i\theta})|$ is unbounded on the ray arg $z = \theta$, then by Lemma 2.3, there exists an infinite sequence of points $z_q = r_q e^{i\theta}$ (q = 1, 2, ...) such that as $q \to +\infty$ we have $r_q \to +\infty$, $f^{(s)}(z_q) \to \infty$ and

$$\frac{f^{(j)}(z_q)}{f^{(s)}(z_q)} \le \frac{1}{(s-j)!} (1+o(1)) |z_q|^{s-j} \quad (j=0,...,s-1).$$
(3.6)

Substituting (3.1) - (3.3) and (3.6) into (1.7), we obtain

$$\exp\left\{\left(1-\varepsilon\right)\delta\left(P_{s},\theta\right)r_{q}^{n}\right\}\leq\left|A_{s}\left(z_{q}\right)e^{P_{s}\left(z_{q}\right)}\right|$$

$$\leq \left| \frac{f^{(k)}(z_q)}{f^{(s)}(z_q)} \right| + \dots + \left| A_{s+1}(z_q) e^{P_{s+1}(z_q)} \frac{f^{(s+1)}(z_q)}{f^{(s)}(z_q)} \right| \\ + \left| A_{s-1}(z_q) e^{P_{s-1}(z_q)} \frac{f^{(s-1)}(z_q)}{f^{(s)}(z_q)} \right| + \dots + \left| A_0(z_q) e^{P_0(z_q)} \frac{f(z_q)}{f^{(s)}(z_q)} \right| \\ \leq d_1 \exp\left\{ (1+\varepsilon) \,\delta\left(P_s, \theta\right) cr_q^n \right\} |z_q|^{d_2},$$
(3.7)

where $(d_1 > 0, d_2 > 0)$ are some constants. By (3.7), we obtain

$$\exp\left\{\frac{1}{3}(1-c)\,\delta\left(P_{s},\theta\right)r_{q}^{\ n}\right\} \leq d_{1}r_{q}^{d_{2}}.$$
(3.8)

This is a contradiction. Hence $|f^{(s)}(re^{i\theta})| \leq M$ on $\arg z = \theta$. By s-fold iterated integration along the line segment [0, z], we obtain

$$\left| f\left(re^{i\theta} \right) \right| \le \left| f\left(0 \right) \right| + \left| f'\left(0 \right) \right| \frac{r}{1!} + \left| f''\left(0 \right) \right| \frac{r^2}{2!} + \dots + M \frac{r^s}{s!}, \tag{3.9}$$

on the ray $\arg z = \theta$.

Case (ii) : $\delta(P_s, \theta) < 0$. By (1.7), we get

$$-1 = A_{k-1}(z) e^{P_{k-1}(z)} \frac{f^{(k-1)}(z)}{f^{(k)}(z)} + \dots + A_s(z) e^{P_s(z)} \frac{f^{(s)}(z)}{f^{(k)}(z)} + \dots + A_0(z) e^{P_0(z)} \frac{f(z)}{f^{(k)}(z)}.$$
(3.10)

Now we prove that $|f^{(k)}(re^{i\theta})|$ is bounded on the ray $\arg z = \theta$. If $|f^{(k)}(re^{i\theta})|$ is unbounded on the ray $\arg z = \theta$, then by Lemma 2.3, there exists an infinite sequence of points $z_q = r_q e^{i\theta}$ (q = 1, 2, ...) such that as $q \to +\infty$ we have $r_q \to +\infty$, $f^{(k)}(z_q) \to \infty$ and

$$\left|\frac{f^{(j)}(z_q)}{f^{(k)}(z_q)}\right| \le \frac{1}{(k-j)!} \left(1+o\left(1\right)\right) \left|z_q\right|^{k-j} \ (j=0,...,k-1).$$
(3.11)

By (3.4) and (3.11), we have as $q \to +\infty$

$$\left| A_{s}\left(z_{q}\right) e^{P_{s}\left(z_{q}\right)} \frac{f^{\left(s\right)}\left(z_{q}\right)}{f^{\left(k\right)}\left(z_{q}\right)} \right|$$

$$\leq \frac{1}{\left(k-s\right)!} \left(1+o\left(1\right)\right) \exp\left\{\left(1-\varepsilon\right)\delta\left(P_{s},\theta\right)r_{q}^{n}\right\}r_{q}^{k-s} \to 0.$$
(3.12)

By (3.5), (3.11) and $c_j > 0$, we have as $q \to +\infty$

$$\left| A_{j}(z_{q}) e^{P_{j}(z_{q})} \frac{f^{(j)}(z_{q})}{f^{(k)}(z_{q})} \right| \\ \leq \frac{1}{(k-j)!} (1+o(1)) \exp\left\{ (1-\varepsilon) \,\delta\left(P_{s},\theta\right) c_{j} r_{q}^{n} \right\} r_{q}^{k-j} \to 0 \quad (j \neq s) \,. \tag{3.13}$$

Substituting (3.12) and (3.13) into (3.10), we obtain as $q \to +\infty$

$$1 \le 0. \tag{3.14}$$

This is a contradiction. Hence $|f^{(k)}(re^{i\theta})| \leq M_1$ on $\arg z = \theta$. Therefore,

$$\left|f\left(re^{i\theta}\right)\right| \le |f\left(0\right)| + \left|f'\left(0\right)\right|\frac{r}{1!} + \left|f''\left(0\right)\right|\frac{r^{2}}{2!} + \dots + M_{1}\frac{r^{k}}{k!}$$
(3.15)

holds on $\arg z = \theta$. By Lemma 2.4, combining (3.9) and (3.15) and the fact that $E_0 \cup E_1 \cup E_2$ has linear measure zero, we know that f(z) is a polynomial which contradicts our assumption, therefore $\rho(f) = \infty$.

Assume $\max\{c_1, ..., c_{s-1}\} < c_0$ and f(z) is a polynomial solution of (1.7) that the degree of f(z), deg f(z) = m. If $m \ge s$, then we take $\theta \in [0, 2\pi) \setminus (E_0 \cup E_1 \cup E_2)$ satisfying $\delta(P_s, \theta) > 0$. For any given

$$\varepsilon_1 \left(0 < 3\varepsilon_1 < \min\left\{ 1 - c, c_0 - c' \right\} \left(c' = \max\left\{ c_1, ..., c_{s-1} \right\} \right) < c_0 \right).$$

By (1.7) and Lemma 2.2, we have

$$\exp\left\{\left(1-\varepsilon_{1}\right)\delta\left(P_{s},\theta\right)r^{n}\right\}d_{3}r^{m-s} \leq \left|A_{s}\left(re^{i\theta}\right)e^{P_{s}\left(re^{i\theta}\right)}f^{(s)}\left(re^{i\theta}\right)\right|$$
$$\leq \sum_{j\neq s}\left|A_{j}\left(re^{i\theta}\right)e^{P_{j}\left(re^{i\theta}\right)}f^{(j)}\left(re^{i\theta}\right)\right|$$
$$\leq d_{4}r^{m}\exp\left(\left(1+\varepsilon_{1}\right)\delta\left(P_{s},\theta\right)cr^{n}\right),$$
(3.16)

where $(d_3 > 0, d_4 > 0)$ are some constants. By (3.16), we get

$$\exp\left\{\frac{1}{3}\left(1-c\right)\delta\left(P_{s},\theta\right)r^{n}\right\} \leq \frac{d_{4}}{d_{3}}r^{s}.$$
(3.17)

Hence, (3.17) is a contradiction. If m < s taking θ as above, by (1.7) and Lemma 2.2, we have

$$\exp\left\{\left(1-\varepsilon_{1}\right)\delta\left(P_{s},\theta\right)c_{0}r^{n}\right\}d_{5}r^{s-1}\leq\left|A_{0}\left(re^{i\theta}\right)e^{P_{0}\left(re^{i\theta}\right)}f\left(re^{i\theta}\right)\right|$$

$$\leq \sum_{j=1}^{s-1} \left| A_j \left(r e^{i\theta} \right) e^{P_j \left(r e^{i\theta} \right)} f^{(j)} \left(r e^{i\theta} \right) \right|$$

$$\leq d_6 r^{s-2} \exp\left\{ \left(1 + \varepsilon_1 \right) \delta \left(P_s, \theta \right) c' r^n \right\}$$

$$\exp\left\{ \frac{1}{3} \left(c_0 - c' \right) \delta \left(P_s, \theta \right) r^n \right\} \leq \frac{d_6}{d_5 r}, \tag{3.18}$$

and

where $(d_5 > 0, d_6 > 0)$ are some constants. This is a contradiction. Therefore, when max $\{c_1, ..., c_{s-1}\} < c_0$, every solution $f \neq 0$ of (1.7) has infinite order.

Now we prove that $\rho_2(f) = n$. Put $c = \max\{c_j : j \neq s\}$, then 0 < c < 1. Since deg $P_s > \deg(P_j - c_j P_s)$ $(j \neq s)$, by Lemma 2.5, there exist real numbers b > 0, λ , R_2 and $\theta_1 < \theta_2$ such that for all $r \ge R_2$ and $\theta_1 \le \theta \le \theta_2$, we have

$$ReP_{s}(re^{i\theta}) > br^{n}, Re(P_{j}(re^{i\theta}) - c_{j}P_{s}(re^{i\theta})) < \lambda \ (j \neq s).$$

$$Re(P_{j}(re^{i\theta}) - cP_{s}(re^{i\theta})) = Re(P_{j}(re^{i\theta}) - c_{j}P_{s}(re^{i\theta}))$$

$$+ (c_{j} - c)ReP_{s}(re^{i\theta}) < \lambda \ (j \neq s).$$

$$(3.20)$$

Let $\max \{\rho(A_j) \ (j = 0, ..., k - 1)\} = \beta < n$. Then by Lemma 2.6, there exists a set $E_3 \subset [1, +\infty)$ that has finite linear measure and finite logarithmic measure, such that for all z satisfying $|z| = r \notin [0, 1] \cup E_3$, for any given ε $(0 < \varepsilon < n - \beta)$, we have

$$\exp\left\{-r^{\beta+\varepsilon}\right\} \le |A_j(z)| \le \exp\left\{r^{\beta+\varepsilon}\right\} \ (j=0,...,k-1).$$
(3.21)

By Lemma 2.7, there is a set $E_4 \subset (1, +\infty)$ with finite logarithmic measure such that, for all z satisfying $|z| = r \notin [0, 1] \cup E_4$, we have

$$\left|\frac{f^{(j)}(z)}{f^{(s)}(z)}\right| \le Br \left[T \left(2r, f\right)\right]^{j-s+1} \quad (j=s+1,...,k)$$
(3.22)

and

$$\left|\frac{f^{(j)}(z)}{f(z)}\right| \le Br \left[T\left(2r, f\right)\right]^{j+1} \quad (j = 1, ..., s-1).$$
(3.23)

It follows from (1.7) that

$$\left|A_{s}(z) e^{(1-c)P_{s}(z)}\right| \leq \left|e^{-cP_{s}(z)}\right| \left|\frac{f^{(k)}(z)}{f^{(s)}(z)}\right| + \left|A_{k-1}(z) e^{P_{k-1}(z)-cP_{s}(z)}\right| \left|\frac{f^{(k-1)}(z)}{f^{(s)}(z)}\right|$$

$$+\dots+\left|A_{s+1}(z)e^{P_{s+1}(z)-cP_{s}(z)}\right|\left|\frac{f^{(s+1)}(z)}{f^{(s)}(z)}\right|+\left|A_{s-1}(z)e^{P_{s-1}(z)-cP_{s}(z)}\right|\left|\frac{f^{(s-1)}(z)}{f^{(s)}(z)}\right|$$
$$+\dots+\left|A_{1}(z)e^{P_{1}(z)-cP_{s}(z)}\right|\left|\frac{f'(z)}{f^{(s)}(z)}\right|+\left|A_{0}(z)e^{P_{0}(z)-cP_{s}(z)}\right|\left|\frac{f(z)}{f^{(s)}(z)}\right|$$
$$=\left|e^{-cP_{s}(z)}\right|\left|\frac{f^{(k)}(z)}{f^{(s)}(z)}\right|+\left|A_{k-1}(z)e^{P_{k-1}(z)-cP_{s}(z)}\right|\left|\frac{f^{(k-1)}(z)}{f^{(s)}(z)}\right|+\dots$$
$$+\left|A_{s+1}(z)e^{P_{s+1}(z)-cP_{s}(z)}\right|\left|\frac{f^{(s+1)}(z)}{f^{(s)}(z)}\right|$$
$$+\left|\frac{f(z)}{f^{(s)}(z)}\right|\left[\left|A_{s-1}(z)e^{P_{s-1}(z)-cP_{s}(z)}\right|\left|\frac{f^{(s-1)}(z)}{f(z)}\right|\right]$$
$$+\dots+\left|A_{1}(z)e^{P_{1}(z)-cP_{s}(z)}\right|\left|\frac{f'(z)}{f(z)}\right|+\left|A_{0}(z)e^{P_{0}(z)-cP_{s}(z)}\right|\right].$$
(3.24)

By Lemma 2.8, there is a set $E_5 \subset (1, +\infty)$ that has finite logarithmic measure such that, for all z with $|z| = r \notin [0, 1] \cup E_5$ at which |f(z)| = M(r, f), we have

$$\left|\frac{f(z)}{f^{(s)}(z)}\right| \le 2r^s \quad (s \in \mathbf{N}).$$

$$(3.25)$$

Hence by (3.19) - (3.25), we get for all z with $|z| = r \notin [0, 1] \cup E_3 \cup E_4 \cup E_5$, $r \ge R_2, \ \theta_1 \le \theta \le \theta_2$ at which |f(z)| = M(r, f)

$$\exp\left\{-r^{\beta+\varepsilon}\right\} \exp\left\{\left(1-c\right)br^{n}\right\}$$
$$\leq \left[\exp\left\{-cbr^{n}\right\} + \left(k-s-1\right)\exp\left\{r^{\beta+\varepsilon}\right\}\exp\left\{\lambda\right\}\right]Br\left[T\left(2r,f\right)\right]^{k-s+1}$$
$$+2sr^{s}\exp\left\{\lambda\right\}\exp\left\{r^{\beta+\varepsilon}\right\}Br\left[T\left(2r,f\right)\right]^{s}$$

$$\leq M_1 r^{s+1} \exp\left\{r^{\beta+\varepsilon}\right\} \left[T\left(2r,f\right)\right]^k,$$

where $M_1 > 0$ is a constant. Thus $n > \beta + \varepsilon$ implies $\rho_2(f) \ge n$. By Lemma 2.9, we have $\rho_2(f) = n$.

4 Proof of Theorem 1.2

Assume f(z) is a transcendental solution of (1.7). Then it follows from Lemma 2.5 that there exists real number $\alpha > 0$, R_3 and $\theta_3 < \theta_4$, such that, for all $r \ge R_3$ and $\theta_3 \le \theta \le \theta_4$, we have

$$ReP_j(re^{i\theta}) < 0 \ (j \neq s) \text{ and } ReP_s(re^{i\theta}) > \alpha r^n.$$
 (4.1)

We have from (1.7)

$$\begin{aligned} \left| A_{s}(z) e^{P_{s}(z)} \right| &\leq \left| \frac{f^{(k)}(z)}{f^{(s)}(z)} \right| + \left| A_{k-1}(z) e^{P_{k-1}(z)} \right| \left| \frac{f^{(k-1)}(z)}{f^{(s)}(z)} \right| + \dots \\ &+ \left| A_{s+1}(z) e^{P_{s+1}(z)} \right| \left| \frac{f^{(s+1)}(z)}{f^{(s)}(z)} \right| + \left| A_{s-1}(z) e^{P_{s-1}(z)} \right| \left| \frac{f^{(s-1)}(z)}{f^{(s)}(z)} \right| \\ &+ \dots + \left| A_{1}(z) e^{P_{1}(z)} \right| \left| \frac{f'(z)}{f^{(s)}(z)} \right| + \left| A_{0}(z) e^{P_{0}(z)} \right| \left| \frac{f(z)}{f^{(s)}(z)} \right| \\ &= \left| \frac{f^{(k)}(z)}{f^{(s)}(z)} \right| + \left| A_{k-1}(z) e^{P_{k-1}(z)} \right| \left| \frac{f^{(k-1)}(z)}{f^{(s)}(z)} \right| + \dots \\ &+ \left| A_{s+1}(z) e^{P_{s+1}(z)} \right| \left| \frac{f^{(s+1)}(z)}{f^{(s)}(z)} \right| + \left| \frac{f(z)}{f^{(s)}(z)} \right| \left| \left| A_{s-1}(z) e^{P_{s-1}(z)} \right| \left| \frac{f^{(s-1)}(z)}{f(z)} \right| \\ &+ \dots + \left| A_{1}(z) e^{P_{1}(z)} \right| \left| \frac{f'(z)}{f(z)} \right| + \left| A_{0}(z) e^{P_{0}(z)} \right| \right]. \end{aligned}$$

$$(4.2)$$

Hence by (3.21) - (3.23), (3.25) and (4.1) - (4.2), we get for all z with $|z| = r \notin [0,1] \cup E_3 \cup E_4 \cup E_5$, $r \ge R_3$, $\theta_3 \le \theta \le \theta_4$ at which |f(z)| = M(r, f)

$$\exp\left\{-r^{\beta+\varepsilon}\right\} \exp\left\{\alpha r^{n}\right\} \leq \left(1 + (k-s-1)\exp\left\{r^{\beta+\varepsilon}\right\}\right) Br\left[T\left(2r,f\right)\right]^{k-s+1} + 2sr^{s}\exp\left\{r^{\beta+\varepsilon}\right\} Br\left[T\left(2r,f\right)\right]^{s} \leq Mr^{s+1}\exp\left\{r^{\beta+\varepsilon}\right\} [T\left(2r,f\right)]^{k},$$
(4.3)

where M > 0 is a constant. Thus $n > \beta + \varepsilon$ implies that $\rho(f) = \infty$ and $\rho_2(f) \ge n$. By Lemma 2.9, we have $\rho_2(f) = n$.

5 Proof of Theorem 1.3

Assume that f(z) is a transcendental entire solution of (1.8) with $\rho(f) = \rho < \infty$. Set

$$E = \{ \theta \in [0, 2\pi) : \cos\left(n\theta + \theta_{t_m}\right) = 0$$
$$d_{t_m} \cos\left(n\theta + \theta_{t_m}\right) = d_{t_l} \cos\left(n\theta + \theta_{t_l}\right) \ (m \ge 0, \ l \le s, \ m \ne l) \}.$$

Then, E is clearly a finite set. If $H_j \neq 0$ (j = 0, ..., k - 1) then by Lemma 2.2, there exists a set $E_1 \subset [0, 2\pi)$ with linear measure zero such that, for any $\theta \in [0, 2\pi) \setminus (E \cup E_1)$ there exists R > 0, and when |z| = r > R, we have: (i) if $\cos(n\theta + \theta_j) > 0$, then

$$\exp\left\{\left(1-\varepsilon\right)d_{j}r^{n}\cos\left(n\theta+\theta_{j}\right)\right\} \leq \left|H_{j}\left(re^{i\theta}\right)\right| \leq \exp\left\{\left(1+\varepsilon\right)d_{j}r^{n}\cos\left(n\theta+\theta_{j}\right)\right\};$$
(5.1)

(*ii*) if $\cos(n\theta + \theta_j) < 0$, then

or

$$\exp\left\{\left(1+\varepsilon\right)d_{j}r^{n}\cos\left(n\theta+\theta_{j}\right)\right\} \leq \left|H_{j}\left(re^{i\theta}\right)\right| \leq \exp\left\{\left(1-\varepsilon\right)d_{j}r^{n}\cos\left(n\theta+\theta_{j}\right)\right\}.$$
(5.2)

Now, by Lemma 2.1 and $\rho(f) < \infty$ there exists a set $E_2 \subset [0, 2\pi)$ with linear measure zero such that for all z satisfying $\arg z = \theta \notin E_2$ and |z| = r sufficiently large and for d > j $(j, d \in \{0, ..., k-1\})$

$$\left|\frac{f^{(d)}(z)}{f^{(j)}(z)}\right| \le |z|^{M'} \left(M' > 0\right).$$
(5.3)

For any $\theta \in [0, 2\pi) \setminus (E \cup E_1 \cup E_2)$, set $\delta'_m = d_{t_m} \cos(n\theta + \theta_{t_m})$. Then $\delta'_m \neq \delta'_l (m \neq l)$ and $\delta'_m \neq 0$ by $\theta \notin E$ and $a_{n,j} \neq 0$. Set $\delta' = \max\left\{\delta'_m : m = 1, ..., s\right\}$. Then there exists $\delta'_l = \delta' \ (l \in \{1, ..., s\})$ and $\delta' > \delta'_m \ (m \in \{1, ..., s\} \setminus \{l\})$. We consider the following two cases: **Case 1:** $\delta' > 0$. Set $\delta'' = \max\left\{0, d_j \cos(n\theta + \theta_j) : \{0 \leq j \leq k - 1\} \cap \{j \neq t_l\}\right\}$. Then $\delta'' < \delta'$. For any given $\varepsilon \left(0 < \varepsilon < \frac{\delta' - \delta''}{3\delta'}\right)$, by (5.1) there exists an

$$R_1 > 0$$
, such that as $r > R_1$

$$\left|H_{t_{l}}\left(re^{i\theta}\right)\right| \ge \exp\left\{\left(1-\varepsilon\right)\delta'r^{n}\right\}.$$
(5.4)

And for $j \neq t_l$, if $\cos(n\theta + \theta_j) > 0$, then by (5.1) there exists an $R_2 > 0$, such that for $r > R_2$, we have

$$\left|H_{j}\left(re^{i\theta}\right)\right| \leq \exp\left\{\left(1+\varepsilon\right)d_{j}r^{n}\cos\left(n\theta+\theta_{j}\right)\right\}$$

$$\leq \exp\left\{\left(1+\varepsilon\right)\delta^{''}r^n\right\} \leq \exp\left\{\left(1-2\varepsilon\right)\delta^{'}r^n\right\}.$$
(5.5)

If $\cos(n\theta + \theta_j) < 0$, then by (5.2) there exists a $R_3 > 0$, as $r > R_3$, we have

$$\left|H_{j}\left(re^{i\theta}\right)\right| \leq \exp\left\{\left(1-\varepsilon\right)d_{j}r^{n}\cos\left(n\theta+\theta_{j}\right)r^{n}\right\} < 1.$$
(5.6)

Now we prove that $|f^{(t_l)}(re^{i\theta})|$ is bounded on the ray $\arg z = \theta \in [0, 2\pi) \setminus (E \cup E_1 \cup E_2)$. If $|f^{(t_l)}(re^{i\theta})|$ is unbounded on $\arg z = \theta$ then by Lemma 2.3 there exists an infinite sequence of points $z_q = r_q e^{i\theta}$ $(q = 1, 2, ...), r_q \to +\infty$ such that $f^{(t_l)}(z_q) \to \infty$, and

$$\left|\frac{f^{(j)}(z_q)}{f^{(t_l)}(z_q)}\right| \le \frac{1}{(t_l-j)!} \left|z_q\right|^{t_l-j} (1+o(1)) \quad (j=0,...,t_l-1).$$
(5.7)

Then by (5.3), we have

$$\left|\frac{f^{(d)}(z_q)}{f^{(t_l)}(z_q)}\right| \le |z_q|^{M'} \quad (d = t_l + 1, ..., k).$$
(5.8)

By (1.8) and (5.4) - (5.8), we obtain that

$$\begin{split} \exp\left\{ \left(1-\varepsilon\right)\delta' r_{q}^{n}\right\} &\leq |H_{t_{l}}\left(z_{q}\right)| \\ &\leq \left|\frac{f^{(k)}\left(z_{q}\right)}{f^{(t_{l})}\left(z_{q}\right)}\right| + \left|H_{k-1}\left(z_{q}\right)\frac{f^{(k-1)}\left(z_{q}\right)}{f^{(t_{l})}\left(z_{q}\right)}\right| + \ldots + \left|H_{t_{l}+1}\left(z_{q}\right)\frac{f^{(t_{l}+1)}\left(z_{q}\right)}{f^{(t_{l})}\left(z_{q}\right)}\right| \\ &+ \left|H_{t_{l}-1}\left(z_{q}\right)\frac{f^{(t_{l}-1)}\left(z_{q}\right)}{f^{(t_{l})}\left(z_{q}\right)}\right| + \ldots + \left|H_{0}\left(z_{q}\right)\frac{f\left(z_{q}\right)}{f^{(t_{l})}\left(z_{q}\right)}\right| \\ &\leq k\exp\left\{\left(1-2\varepsilon\right)\delta'r_{q}^{n}\right\}|z_{q}|^{M^{''}} \quad \left(M^{''}>0\right). \end{split}$$

This is a contradiction. Hence on $\arg z = \theta$, we have $|f^{(t_l)}(re^{i\theta})| \leq M$. By using the same argument as in the proof of Theorem 1.1, we obtain

$$\left| f\left(re^{i\theta} \right) \right| \le \left| f\left(0 \right) \right| + \left| f'\left(0 \right) \right| \frac{r}{1!} + \left| f''\left(0 \right) \right| \frac{r^2}{2!} + \dots + M \frac{r^{t_l}}{t_l!}.$$
 (5.9)

Case 2: $\delta' < 0$. Then $d_j \cos(n\theta + \theta_j) \le \delta' < 0$, for all $H_j \not\equiv 0$. By (5.2), there exists an $R_4 > 0$, as $r > R_4$, we have

$$\left|H_{j}\left(re^{i\theta}\right)\right| \leq \exp\left\{\left(1-\varepsilon\right)d_{j}r^{n}\cos\left(n\theta+\theta_{j}\right)\right\} \leq \exp\left\{\left(1-\varepsilon\right)\delta'r^{n}\right\}.$$
 (5.10)

Now we prove that $|f^{(k)}(re^{i\theta})|$ is bounded on the ray $\arg z = \theta \in [0, 2\pi) \setminus (E \cup E_1 \cup E_2)$. If $|f^{(k)}(re^{i\theta})|$ is unbounded on $\arg z = \theta$, then by Lemma 2.3 there exists an infinite sequence of points $z_q = r_q e^{i\theta}$ $(q = 1, 2, ...), r_q \to +\infty$ such that $f^{(k)}(z_q) \to \infty$, and

$$\left|\frac{f^{(j)}(z_q)}{f^{(k)}(z_q)}\right| \le \frac{1}{(k-j)!} \left|z_q\right|^{k-j} (1+o(1)) \quad (j=0,...,k-1).$$
(5.11)

By (1.8) and (5.10), (5.11) we have

$$1 \le \left| H_{k-1}(z_q) \frac{f^{(k-1)}(z_q)}{f^{(k)}(z_q)} \right| + \dots + \left| H_0(z_q) \frac{f(z_q)}{f^{(k)}(z_q)} \right|$$

$$\le \exp\left\{ (1-\varepsilon) \,\delta' r_q^n \right\} (1+o(1)) \, |z_q|^k \to 0 \quad (q \to +\infty) \, .$$

This is a contradiction. Hence on $\arg z = \theta$, we have $|f^{(k)}(re^{i\theta})| \leq M_1$. Therefore,

$$\left| f\left(re^{i\theta} \right) \right| \le \left| f\left(0 \right) \right| + \left| f'\left(0 \right) \right| \frac{r}{1!} + \left| f''\left(0 \right) \right| \frac{r^2}{2!} + \dots + M_1 \frac{r^k}{k!}.$$
 (5.12)

Combining the above two cases, by (5.9) and (5.12), we see that

$$\left|f\left(re^{i\theta}\right)\right| \le M_2 r^k \quad (M_2 > 0)\,,$$

holds on $\arg z = \theta \in [0, 2\pi) \setminus (E \cup E_1 \cup E_2)$. Since $E \cup E_1 \cup E_2$ is a set with linear measure zero and by Lemma 2.4, we see that f(z) is a polynomial. This contradicts our assumption. Therefore $\rho(f) = \infty$. If $t_1 = 0$, then the additional hypotheses of Lemma 2.10 are also satisfied. Hence, every solution $f \neq 0$ of (1.8) satisfies $\rho_2(f) = n$.

References

- B. Belaïdi, Some precise estimates of the hyper order of solutions of some complex linear differential equations, J. Inequal. Pure and Appl. Math., 8(4)(2007), 1-14.
- [2] Z. X. Chen, On the hyper-order of solutions of some second order linear differential equations, Acta Mathematica Sinica Engl. Ser., 18, N°1 (2002), 79-88.
- [3] Z. X. Chen, K. H. Shon, On the growth of solutions of a class of higher order differential equations, Acta Mathematica Scientia, 24B(1)(2004), 52-60.
- [4] Z. X. Chen, K. H. Shon, The growth of solutions of higher order differential equations, Southeast Asian Bull. Math., 27(2004), 995-1004.

- [5] G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc., (2) 37 (1988), 88-104.
- [6] G. G. Gundersen, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc., 305(1988), 415-429.
- [7] G. G. Gundersen, E. M. Steinbart, Finite order solutions of non-homogeneous linear differential equations, Ann. Acad. Sci. Fenn., A I Math., 17(1992), 327–341.
- [8] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
- [9] K. H. Kwon, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. J., 19 (1996), 378-387.
- [10] I. Laine and R. Yang, Finite order solutions of complex linear differential equations, Electron. J. Diff. Eqns, N°65, Vol. 2004 (2004), 1-8.
- [11] A. I. Markushevich, *Theory of functions of a complex variable*, Vol. II, translated by R. A. Silverman, Prentice-Hall, Englewood Cliffs, New Jersey, 1965.
- [12] R. Nevanlinna, Eindeutige Analytische Funktionen, Zweite Auflage. Reprint. Die Grundlehren der mathematischen Wissenschaften, Band 46. Springer-Verlag, Berlin-New York, 1974.
- [13] H. X. Yi and C. C. Yang, The Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995 (in Chinese).

Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem, B. P 227 Mostaganem, Algeria belaidi@univ-mosta.dz belaidibenharrat@yahoo.fr