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A Metric Induced by the Geometric

Interpretation of Rolle’s Theorem

Wladimir G. Boskoff, Bogdan D. Suceavă

Abstract

In this note we discuss a geometric viewpoint on Rolle’s Theorem
and we show that a particular setting of the form of Rolle’s Theorem
yields a metric that is the hyperbolic metric on the disk. Our result is
related to recent developments in the study of Barbilian’s metrization
procedure.

1 Introduction

Barbilian’s metrization procedure was first introduced in 1934 [2], in a work
cited many times in the last decade. This metrization procedure allows us
to construct a distance which naturally leads to the construction of a metric.
That metric is closely related to the geometric configuration studied in the
classical Rolle’s Theorem.

Rolle’s Theorem and the Mean Value Theorems have been, over the years,
in the center of attention of many researchers. Some of the results have brought
up interesting geometric interpretations. For example, an interesting view on
the geometric content of the Mean Value Theorem is in Barrett and Jacobson’s
work [7]. Other works have explored the Mean Value Theorem in the complex
plane (see, e.g., [12, 13]). A multidimensional version of Rolle’s theorem has
been proven by Furi and Martelli in [14]. The topic has beed studied by other
authors (see, for example, [1, 8, 19, 20, 21, 22]).
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We found that there is a natural connection between Barbilian’s metriza-
tion procedure and Rolle’s Theorem. In the remaining part of the introduction
we present several facts related to Barbilian’s metrization procedure. Barbil-
ian’s metrization procedure was originally introduced in 1934 [2] with the aim
of generalizing a construction inspired from the study of Klein-Beltrami model
of hyperbolic geometry. Later contributions include P. J. Kelly’s work [15] and
major developments are due to D. Barbilian himself [3, 4, 5, 6]. Recently, in
[11] it has been shown that Barbilian’s metrization procedure in the plane gen-
erates Riemannian or Lagrange generalized metrics irreducible to Finslerian
or Langrangian metrics.

The following construction describes Barbilian’s metrization procedure in
its most general setting. It originates in [3] and it develops the idea from [2].
For new developments on this problem, see [9, 11], and for the history of the
theory see [10]. For important developments of the theory see, for example,
[17, 18].

Consider two arbitrary sets K and J. The function f : K×J → R
∗
+ is called

an influence of the set K over J if for any A, B ∈ J the ratio gAB(P ) = f(P,A)
f(P,B)

has a maximum MAB ∈ R when P ∈ K. Note that gAB : K → R
∗
+. In [3] it

is pointed out that if we assume the existence of max gAB(P ), when P ∈ K,
then there also exists mAB = minP∈K gAB(P ) = 1

MBA
. It is known since [3]

that d : J × J → R+ given by

d(A, B) = ln
maxP∈K gAB(P )
minP∈K gAB(P )

(1)

is a semidistance, i.e.: (a) if A = B then d(A, B) = 0; (b) d is symmetric;
(c) d satisfies triangle inequality. In [3] it is specified in what conditions this
semidistance is a distance.

On the other hand, we would like to remind here a particular form of the
result from [5], part 2, paragraph 7. This result represents also a version of
the argument used by P. A. Hästö in [16], in the proof of his Lemma 3.5.

Lemma 1 Let K and J be two subsets of the Euclidean plane R
2, and K = ∂J.

Consider the influence f(M, A) = ||MA||, where by ||MA|| we denote the
Euclidean distance. Consider

gAB(M) =
f(M, A)
f(M, B)

=
||MA||
||MB||

and consider the distance induced on J by the Barbilian’s metrization proce-
dure, dB(A, B). Suppose furthermore that for M ∈ K the extrema max gAB(M)
and min gAB(M) for any A and B in J are attained each in an unique point
in K. Then:
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(a) For any A ∈ J and any line d passing through A there exist exactly two
circles tangent to K and to d in A.

(b) The metric induced by the Barbilian distance has the form

ds2 =
1
4

(
1
R

+
1
r

)2

(dx2
1 + dx2

2), (2)

where R and r are the radii of the circles described in (a).

We do not use this Lemma in the contruction presented in our paper.
However, this Lemma suggests the geometric idea that arise the natural con-
struction we consider below in (3).

In fact, Barbilian’s metrization procedure has been discovered by studying
an extremum problem in the Beltrami-Klein model of hyperbolic geometry [2].
It is natural to connect its study to the study of mean value theorems.

2 A Metric Induced by Mean Value Theorem Yields the
Hyperbolic Metric on the Disk

In this section we show how we can naturally construct a metric by pursuing
an idea similar to a result obtained in [5].

Consider the simple closed planar curve K of class C1 with the property
that its interior is convex. Let A ∈ Int K, and ∆ a given line passing through
A. This line intersects K in exactly two points A1 and A2. On curve K, there
are two arcs joining A1 and A2. On each of these arcs we can apply the Mean
Value Theorem. It follows that there exist precisely two points T1 and T2 such
that the two tangents to the curve t1 (in T1) and t2 (in T2), are parallel to the
line A1A2.

Figure 1.
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Apply an inversion ρA,k of pole A and arbitrary power k. The curve K is
mapped into the curve K ′, which is also simple and closed. The tangents t1
and t2 are mapped by ρA,k into the circles t′1 and t′2, which pass through A,
are tangent in A, and their common tangent is the line ∆, which is invariated
by ρA,k. (See Figure 2.) Denote by R1 and R2 the radii of the two circles
t′i, i = 1, 2.

Figure 2.

Obviously, when the line ∆ rotates about A, the radii of the two circles
modify.

Among the many metrics whose coefficients depends on R1 and R2, let us
define in the interior of the curve K ′ the metric

ds2 =
1
4

(
1

R1
+

1
R2

)2

(dx2
1 + dx2

2), (3)

where R1 and R2 are the radii of the circles t′1 and t′2, respectively. This metric
is inspired by the configuration obtained by applying the inversion ρA,k to the
figure suggested by the Mean Value Theorem. Also, the arc element of the
metric (3) is inspired by a similar construction studied by Barbilian in [5]. The
natural question is to study what kind of metric we obtain by this construction
in the present setting.

We should point out here the geometric meaning of this construction. The
metric (3) depends on the circles t′1 and t′2, respectively. These circles are
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tracing the contour of the closed curve K ′, when the line ∆ rotates about A.
That’s why we can say that the contour induces on its interior the metric (3).
This construction is in the spirit of Barbilian’s construction from [5].

In the remaining part of the paper, we will discuss the case when the initial
curve K is a circle centered in the origin and of radius R. We will show that,
in the case of the disk centered in the origin and of arbitrary radius R, the
metric (3) is the hyperbolic metric.

Theorem 1 Consider the circle K centered in the origin and of radius R.
Then the metric given by (3) has the form

ds2 =
4R2

[R2 − (x2 + y2)]2
· (dx2 + dy2).

Furthermore, the metric obtained by this procedure has the Gaussian curvature
-1.

Proof. Let A of coordinates (x0, y0) in the interior of K. The two parallel
tangents t1 and t2 correspond to the antipodal points T1 ∈ K, and T2 ∈ K.
Apply an inversion ρA,k of pole A and ratio equal to the power of the point A
with respect to the circle K, i.e. k = |OA|2 − R2. (See Figures 3 and 4. By
inversion, Figure 3 transforms into Figure 4.)

Figure 3. Figure 4.

First, remark that the circle K is fixed by ρA,k. The images of T1 and T2

through ρA,k are {T ′
1} = K ∩ [T1A, and {T ′

2} = K ∩ [T2A. Remark also that
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pole A separates the points from their images when the negative ratio of the
inversion is used. The circles t′1 and t′2 are tangent with a common tangent
∆, and, as above, are tangent in T ′

1 and T ′
2 to the circle K = K ′. As an aside

remark, the arc of circle K given by T ′
1AT ′

2 is twice orthogonal to the circle
K, since it comes from the transformation by inversion of the diameter T1T2,
which is twice orthogonal to the circle K. Denote by O1(x1, y1) and O2(x2, y2)
the centers of the two circles and by m the slope of the line ∆. Line O1O2 has
the equation

y − y0 = − 1
m

(x − x0).

Therefore, the points O1 and O2 have the coordinates (xi, y0 − 1
m (xi − x0)),

for i = 1, 2. Furthermore,

R2
i = |OiA|2 =

m2 + 1
m2

(xi − x0)2, i = 1, 2.

Without loss of generality, we assume that x1 − x0 ≤ 0 and x2 − x0 ≥ 0, with
the equality case reached when ∆‖Ox. Remark that x1 − x0 < 0, if m > 0.
Thus

|O1A| =
√

m2 + 1
m

(x0 − x1),

and

|O2A| =
√

m2 + 1
m

(x2 − x0).

Therefore, the circle t′1 has center (x1, y0 − 1
m (x1 − x0)) and radius R1 =√

m2+1
m (x0 − x1), and circle t′2 is the circle of center (x2, y0 − 1

m (x2 − x0)) and
radius R2 =

√
m2+1
m (x2 − x0).

To obtain the coordinates of the point T ′
1, we recall that it lies at the

intersection between the circle x2 + y2 = R2 and the line

y =
1
x1

[y0 − 1
m

(x1 − x0)]x,

which passes through the collinear points O, O1 and T ′
1. Solving the system,

we get the coordinates of T ′
1 as follows⎛

⎝ Rx1√
x2

1 + (y0 − 1
m (x1 − x0))2

,
R(y0 − 1

m (x1 − x0))√
x2

1 + (y0 − 1
m (x1 − x0))2

⎞
⎠ .

By direct computation, we get

|O1T
′
1| = R −

√
x2

1 + (y0 − 1
m

(x1 − x0))2.
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Since the segments O1T
′
1 and O1A are radii of the circle of center O1 and

radius R1 we set up the equalities
√

m2 + 1
m

(x0 − x1) = R1 = R −
√

x2
1 + (y0 − 1

m
(x1 − x0))2.

It follows that

x0 − x1 =
R1m√
m2 + 1

.

Thus

(R − R1)2 = x2
1 +

(
y0 +

R1√
m2 + 1

)2

.

Since

x1 = x0 − R1m√
m2 + 1

,

we obtain

(m2 + 1)(R − R1)2 − (y0

√
m2 + 1 + R1)2 = (x0

√
m2 + 1 − R1m)2

which gives

R1 =
√

m2 + 1
2

· R2 − x2
0 − y2

0

R
√

m2 + 1 − x0m + y0

.

In a similar way we obtain,

R2 =
√

m2 + 1
2

· R2 − x2
0 − y2

0

R
√

m2 + 1 + x0m − y0

.

Hence, we proved the metric relation

1
4

(
1

R1
+

1
R2

)2

=
4R2

(R2 − x2
0 − y2

0)2
.

By straightforward computation, we can easily see that the Gaussian cur-
vature of this metric is κg = −1. Therefore this metric generates the hyperbolic
geometry on the disk D(O, R).
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