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Division Property of the Momentum Map

Fazeela K∗ and K.S.Subramanian Moosath

Abstract

In this paper we discuss various situations when the momentum map
has the division property.

1. Introduction

Momentum maps are at the centre of many geometrical facts that are
useful in variety of fields of both pure and applied Mathematics. Also these
maps are very useful in Physics and Engineering applications. Here we look
at the division property of the momentum maps. In this paper we improve
certain results of Y.Karshon and E.Lerman. We generalize a result on division
property of momentum map by replacing the compactness of Lie group with
proper and effective action. Also improved versions in the cases of torus action
and compact connected Lie group action are given here.

2. Division property

Let J : M −→ G∗ be a momentum map associated to a Hamiltonian
action of a compact connected Lie group G on a symplectic manifold (M,ω).
Y.Karshon and E.Lerman in [4] proved that if J is equivariant with respect to
the given action ofG on M and the coadjoint action on G∗, then the centralizer
of the algebra of G-invariant functions in the Poisson algebra on M is the set of
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smooth functions that are locally constant on the level sets of the momentum
map. As a corollary of the Marle-Guillemin-Sternberg normal form for proper
actions, one can prove that any two points in a connected component of a level
set of J can be joined by a piece-wise smooth curve that lies in the level set.
Using this idea we can reformulate this result by replacing compactness of Lie
group using proper and effective action.

Theorem 2.1. Let (M,ω) be a symplectic manifold and G be a Lie group
acting properly and canonically on it. Suppose that this action is Hamiltonian
with an associated moment map J : M −→ G∗. Assume that J be equivariant
with respect to the given action of G on M and the coadjoint action on G∗.
Then the centralizer of the algebra of G-invariant functions in the Poisson
algebra on M is the set of smooth functions that are locally constant on the
level sets of the momentum map.

Definition 2.2. Let J : M −→ G∗ be a momentum map associated to
a Hamiltonian action of a connected Lie group G on a symplectic manifold
(M,ω). Pull backs by J of smooth functions on G∗ are called collective func-
tions. They form Poisson subalgebra of the algebra of smooth functions on
M. A collective function is clearly constant on the level sets of the momentum
map.

Corollary 2.3. Let J : M −→ G∗ be a momentum map associated to a
proper Hamiltonian action of a connected Lie group G on a symplectic man-
ifold (M,ω). The algebra of collective functions and the algebra of invariant
functions are mutual centralizers in the Poisson algebra C∞(M) if and only
if every smooth function on M that is locally constant on the level sets of the
momentum map is collective.

Definition 2.4. A smooth map J : M −→ N between two smooth
manifolds has the division property if any smooth function on M that is locally
constant on the level sets of J is the pull back via J of a smooth function on
N.

The Corollary 2.3 can be restated as follows:

Corollary 2.5. Let J : M −→ G∗ be a momentum map associated to a
proper Hamiltonian action of a connected Lie group G on a symplectic man-
ifold (M,ω). The algebra of collective functions and the algebra of invariant
functions are mutual centralizers in the Poisson algebra C∞(M) if and only
if the momentum mapJ has division property.

Definition 2.6. Let J : M −→ N be a smooth map between two smooth
manifolds. A smooth function f on M is a formal pullback with respect to J
if for every point y in the image J(M) there exists a function, ϕ on N such
that f − J∗ϕ is flat at all the points of J−1(y).
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Since the pull back of functions induces a well defined pull back of Taylor’s
series, being a formal pull back with respect to a smooth function J : M −→ N
if and only if for every y ∈ N there exists a power series ϕ on N, centered
at y, such that for all x in the level set J−1(y), the power series of f at x is
the pull back of the power series ϕ. Every formal pull back with respect to J
is constant on the level sets of J. For,if f − J∗ϕ is flat, f(x) = ϕ(y) for all
x ∈ J−1(y).

Definition 2.7. Let ψ : A −→ B is semi-proper if for every compact set
L ⊂ B there is a compact set K ⊂ A such that ψ(K) = L ∩ ψ(A).

Let J : M −→ G∗ be a momentum map associated to a Hamiltonian action
of a compact Lie group G on a connected symplectic manifold (M,ω). If this
map J is proper, Y.Karshon and E.Lerman in [4] proved that every formal
pull back with respect to J is a collective function. We can generalize this
theorem by replacing the compactness condition on the Lie group by proper
and effective action.

Theorem 2.8. Let G be a connected abelian Lie group acting properly
and effectively on a connected symplectic manifold (M,ω). Let J : M −→ G∗

be a proper momentum map associated to this action. Then J has the division
property if and only if every smooth function on M that is locally constant on
the level sets of J is a formal pull back with respect to J.

Proof. Let x be a point in M, and let Gα be the stabilizer of its image ,
α = J(m) ∈ G∗ under the coadjoint action. Since the action is effective and
G is a connected abelian Lie group, the G-orbits are isotropic [1]. So α is
fixed under the coadjoint action of G, for every α ∈ G∗. Since α is fixed, the
translation J − α of the moment map by −α is still a momentum map. So,
without loss of generality , we can assume that α = 0.

For the proper action, by Theorem 7.5.5 of [6], we have a neighborhood of
an isotropic orbit G.x,

Y = G×Gx (Go
x ⊕ V ),

where Gx is the stabilizer of x , Gx is its Lie algebra , G0
x is the annihilator of Gx

in G∗, and V is the symplectic slice at x. The action of G on Y is Hamiltonian
with a moment map JY : Y −→ G∗ given by

JY ([g, η, υ]) = Ad∗(g)(η + i(JV (υ))),

where Ad∗ is the coadjoint action, and JV : V −→ G∗
x is the quadratic momen-

tum map for the slice representation ofGx and i is aGx-equivariant embedding
of G∗

x in G∗. Moreover there exists a neighborhood Ux the orbit G.x in M and
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an equivariant embedding i : Ux −→ Y , of Ux onto a neighborhood of the zero
section of the bundle Y −→ G/Gx, such that J = JY ◦ i.

As a consequence of the normal form the image under the momentum map
of a small neighborhood of an orbit G.x does not change as x varies along
a connected component of the level set J−1(J(x)). Also this image is the
intersection of the cone JY (Y ) with a neighborhood of the origin in G∗. Note
that the hypothesis that the momentum map is proper can be replaced by the
hypothesis that it is semi-proper as a map into some open subset of G∗ and
that its level sets are connected. So we can choose a neighborhood Wx of the
origin in G∗ and shrink the neighborhood Ux of G.x so that
J(Ux) = J(M) ∩Wx = JY (Y ) ∩Wx. (1)

The map JY is analytic with respect to the natural real analytic structures
of the model Y and of the vector space G∗. If we endow Ux with the real
analytic structure induced by its embedding , i, into Y, then
the restriction J |Ux : Ux −→Wx is a real analytic map. (2)

Consider the action of �+ on Y given by λ.[g, η, υ] = [g, λη,
√
λυ]. The map

JY : Y −→ G∗ is homogeneous of degree one with respect to the action of �+.
After possibly shrinking Ux and Wx further, we can assume that the open set
i(Ux) ⊆ Y is preserved under multiplication by any λ < 1;for such λ we define
λ : Ux −→ Ux by i(λ.m) = λ.i(m). Let K be a compact subset of the open
set Wx. Then there exist a positive number λ < 1 such that K is contained in
λWx. By homogeneityK∩J(Ux) ⊂ J(λ.Ux). Then L := closure(λ.Ux)∩J−1K
is a compact subset of Ux whose image is K ∩ J(Ux). Thus
the restriction J |Ux : Ux −→Wx is semi- proper. (3)

Since the map JV is algebraic, its image JV (V ) is a semi algebraic subset
of G∗

x. Furthermore, since Ad∗(G) ⊆ GL(G∗) is algebraic, the set JY (Y ) =
Ad∗(G)(Gx)0 × JV (V )) a semi algebraic subset of G∗. Restricting to the open
subset Wx, we see that
J(Ux) = JY (Y ) ∩Wx is a semi-analytic subset of Wx. (4)

Thus there exist a neighborhood Ux of the orbit G.x in M and a neighbor-
hood Wx of the point J(x) in G∗ with the following properties.
1. J(Ux) = J(M) ∩Wx.
2. The restriction J |Ux : Ux −→Wx is semi-proper.
3. There exist real analytic structures on Ux and on Wx, compatible with their
smooth structures, such that the restriction J |Ux : Ux −→Wx is a real analytic
map and the image J(Ux) is a semi analytic subset of Wx.

Moreover the neighborhoods Ux and Wx can be chosen to be arbitrarily
small, that is, can be chosen to be contained in any given neighborhoods U ′

of G.x and W ′ of J(x).
Let N be an open subset of G∗ containing the moment image J(M) with

the property that the momentum mapJ : M −→ N is semi-proper. Also the
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image of any semi-proper map is closed. Therefore
J(M) is closed subset of N. (5)

Then we can prove that the set of pull backs by the map J coincides with
the set of formal pull backs with respect to J.

Clearly every pull back is a formal pull back. Conversely, let f ∈ C∞(M)
be a formal pull back with respect to J. Let x be a point in M, and let Ux and
Wx be as obtained above. Since f is a formal pull back with respect to J, its
restriction f |Ux is a formal pull back with respect to the map J |Ux : Ux −→
Wx.

Bierstone and Milman in [2] proved that, if M and N are real analytic
manifolds. Let J : M −→ N be a real analytic map that is semi-proper and
whose image J(M) is semi-analytic. Then a function f is a formal pull back
with respect to J if and only if it is the pull back via J of a smooth function on
N. So we can apply this theorem to the map J |Ux because of conditions (2)
and (4). Hence there exists a smooth function ϕx on Wx such that f = ϕx ◦J
on Ux. This equality holds on all J−1(J(Ux)) because f, being formal pull
back with respect to J, is constant on the level sets of J.

Condition (1) implies that J−1(J(Ux)) = J−1(Wx) so, f = ϕx ◦ J on all
of J−1(Wx). The open sets Wx together with the complement of the image
J(M) form an open cover of N. Using a partition of unity subordinate to this
cover we piece together the functions ϕx to form a function ϕ on N such that
f = ϕ ◦ J.

Then taking N = G∗, we have the theorem. •

Remark 2.9. Let JT : M −→ T ∗ be a momentum map associated to a
Hamiltonian action of a torus T on a connected symplectic manifold (M,ω).
If this map JT is proper, E.Lerman in [L] proved that it has the division
property. We recall the result in [3] that for a Hamiltonian torus action if
the associated momentum map JT is closed, then the level sets of JT are
connected. So we can prove that torus action has division property if JT is
closed and semi-proper.

Theorem 2.10. Let M be a paracompact connected symplectic manifold
on which a torus T acts in a Hamiltonian fashion. If the associated momentum
map JT is closed and semi-proper as a map into some open subset of T ∗, then
J has the division property.

Remark 2.11. The elements of G∗ whose stabilizers under the coadjoint
action of G are tori is denoted by G∗

reg.

Let JG : M −→ G∗ be a proper momentum map associated to a Hamil-
tonian action of a compact Lie group G on a symplectic manifold (M,ω).
Suppose the image J(M) is contained the G∗

reg. Then Lerman in [5] proved
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that J has the division property. We give a generalization of this theorem
using Theorem 3.19 of [3], which states that M be a paracompact connected
symplectic Hamiltonian G-manifold with G a compact connected Lie group
with the associated momentum map JG is closed then the level sets of JG are
connected.

Theorem 2.12. Let M be a paracompact connected symplectic Hamil-
tonian G-manifold with G a compact connected Lie group. If the associated
momentum map J is closed and semi-proper as a map into some open subset
of G∗, then J has the division property, if the image J(M) is contained the
G∗

reg.
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