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THE CONES ASSOCIATED TO SOME

TRANSVERSAL POLYMATROIDS

Alin Ştefan

Abstract

In this paper we describe the facets cone associated to transversal
polymatroid presented by A = {{1, 2}, {2, 3}, . . . , {n−1, n}, {n, 1}}. Us-
ing the Danilov-Stanley theorem to characterize the canonicale module,
we deduce that the base ring associated to this polymatroid is Gorenstein
ring. Also, starting from this polymatroid we describe the transversal
polymatroids with Gorenstein base ring in dimension 3 and with the
help Normaliz in dimension 4.

1 Preliminaries on polyhedral geometry

An affine space generated by A ⊂ Rn is a translation of a linear subspace of
Rn. If 0 �= a ∈ Rn, then Ha will denote the hyperplane of Rn through the
origin with normal vector a, that is,

Ha = {x ∈ Rn | < x, a >= 0},
where <, > is the usual inner product in Rn. The two closed half spaces
bounded by Ha are:

H+
a = {x ∈ Rn | < x, a >≥ 0} and H−

a = {x ∈ Rn | < x, a >≤ 0}.
Recall that a polyhedral cone Q ⊂ Rn is the intersection of a finite number

of closed subspaces of the form H+
a . If A = {γ1, . . . , γr} is a finite set of points

in Rn the cone generated by A, denoted by R+A, is defined as

R+A = {
r∑

i=1

aiγi | ai ∈ R+, with 1 ≤ i ≤ n}.
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140 A. Ştefan

An important fact is that Q is a polyhedral cone in Rn if and only if there
exists a finite set A ⊂ Rn such that Q = R+A, see ([15],theorem 4.1.1.).

Definition 1.1. A proper face of a polyhedral cone is a subset F ⊂ Q such
that there is a supporting hyperplane Ha satisfying:

1) F = Q ∩Ha �= ∅;
2) Q � Ha and Q ⊂ H+

a .

Definition 1.2. A proper face F of a polyhedral cone Q ⊂ Rn is called a
facet of Q if dim(F ) = dim(Q)− 1.

2 Polymatroids

Let K be an infinite field, n and m be positive integers, [n] = {1, 2, . . . , n}. A
nonempty finite set B of Nn is the base set of a discrete polymatroid P if, for
all u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ B, one has u1 + u2 + . . . + un =
v1 + v2 + . . . + vn and, for all i such that ui > vi, there exists j such that
uj < vj and u + ej − ei ∈ B, where ek denotes the kth vector of the standard
basis of Nn. The notion of discrete polymatroid is a generalization of the
classical notion of matroid, see [6] [9] [8] [16]. Associated with the base B of a
discret polymatroid P one has a K−algebra K[B] - called the base ring of P
- defined to be the K−subalgebra of the polynomial ring in n indeterminates
K[x1, x2, . . . , xn] generated by the monomials xu with u ∈ B. From [9], the
algebra K[B] is known to be normal and hence Cohen-Macaulay.

If Ai are some non-empty subsets of [n], for 1 ≤ i ≤ m, A = {A1, A2, . . . , Am},
then the set of the vectors

∑m
k=1 eik

with ik ∈ Ak, is the base of a polymatroid,
called transversal polymatroid presented by A. The base ring of a transversal
polymatroid presented by A denoted by K[A] is the ring :

K[A] := K[xi1xi2 . . . xim : ij ∈ Aj , 1 ≤ j ≤ m].

3 Some Linear Algebra

Let n ∈ N be an integer number, n ≥ 3 and let be given the following set with
2n− 3 points with positive integer coordinates :

{ R0,1(2, 1, 1, . . . , 1, 1, 0), R0,2(2, 1, 1, . . . , 1, 0, 1), . . . , R0,n−2(2, 1, 0, . . . , 1, 1, 1),

R0,n−1(2, 0, 1, . . . , 1, 1, 1), Q0,1(1, 2, 1, 1, . . . , 1, 1, 0), Q0,2(1, 1, 2, 1, . . . , 1, 1, 0),

. . . . . . , Q0,n−3(1, 1, 1, 1, . . . , 2, 1, 0), Q0,n−2(1, 1, 1, 1, . . . , 1, 2, 0)} ⊂Nn.
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We shall denote by A1 ∈ Mn−1,n(R) the matrix with rows the coordinates
of points { R0,1, R0,2, . . . , R0,n−1} and for 2 ≤ i ≤ n − 1, Ai ∈ Mn−1,n(R)
the matrix with rows the coordinates of the points

{ R0,1, . . . , R0,n−i, Q0,1, Q0,2, . . . , Q0,i−1},

that is:

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 1 . . . . . . 1 1 0
2 1 1 1 . . . . . . 1 0 1
2 1 1 1 . . . . . . 0 1 1
. . . . . . . . .
2 1 1 0 . . . . . . 1 1 1
2 1 0 1 . . . . . . 1 1 1
2 0 1 1 . . . . . . 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and, for 2 ≤ i ≤ n− 1,

↓ (n− i)thcolumn

Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 . . . 1 1 1 . . . 1 1 0
2 1 1 . . . 1 1 1 . . . 1 0 1
2 1 1 . . . 1 1 1 . . . 0 1 1
. . . . . . . . . . . . . . .
2 1 1 . . . 1 1 0 . . . 1 1 1
1 2 1 . . . 1 1 1 . . . 1 1 0
1 1 2 . . . 1 1 1 . . . 1 1 0
. . . . . . . . . . . . . . .
1 1 1 . . . 2 1 1 . . . 1 1 0
1 1 1 . . . 1 2 1 . . . 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
← (n− i + 1)th row

.

Let Ti be the linear transformation from Rn into Rn−1 defined by Ti(x) = Aix
for all 1 ≤ i ≤ n− 1.

Let i, j ∈ N, 1 ≤ i, j ≤ n. We denote by ei,j the matrix in Mn−1(R) with
the entries: 1, for the (i, j)-entry, and 0 for the other entries. We denote by
Ti,j(a) the matrix

Ti,j(a) = In−1 + aei,j ∈Mn−1(R).

By Pi,j we denote the matrix in Mn−1(R) defined by

Pi,j = In−1 − ei,i − ej,j + ei,j + ej,i.
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Lemma 3.1. a) The set of points { R0,1, . . . , R0,n−i, Q0,1, Q0,2, . . . , Q0,i−1},
for 2 ≤ i ≤ n− 1 and { R0,1, R0,2, . . . , R0,n−1} are linearly independent.
b) For 1 ≤ i ≤ n−1, the equations of the hyperplanes generated by the points
{ O, R0,1, R0,2 . . . , R0,n−i, Q0,1, Q0,2, . . . , Q0,i−1} are :

H[i] := −(n− i− 1)
i∑

j=1

xj + (i + 1)
n∑

j=i+1

xj = 0,

where [i] is the set [i] := {1, . . . , i}.
Proof. a) The set of points are linearly independent if the matrices with rows
the coordinates of the points have the rank n− 1.
Using elementary row transformations on the matrix A1, we have:
B1 = U1A1, where U1 ∈ Mn−1(R)is given by:

U1 =
∏

2≤i≤�n
2 �

Pi,n−i+1

n−1∏
i=2

Tn−i+1,1(−1),

and 
c� is the greatest integer ≤ c. So B1 is :

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 1 . . . . . . 1 1 0
0 −1 0 0 . . . . . . 0 0 1
0 0 −1 0 . . . . . . 0 0 1
. . . . . . . . .
0 0 0 0 . . . . . . 0 0 1
0 0 0 0 . . . . . . −1 0 1
0 0 0 0 . . . . . . 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For 2 ≤ i ≤ n − 1, using elementary row transformations on the matrix
Ai, we have: Bi = UiAi, where Ui ∈ Mn−1(R),

Ui = [
n−2∏
j=i

(
i−1∏
k=1

)Pn−j+k−1,n−j+k ][
i−1∏
k=2

(
n−1∏

j=n−i+k

Tj,n−i+k−1(− 1
k + 1

))]·

·(
n−1∏

j=n−i+1

Tj,1(−1
2
))(

n−i∏
j=1

Tj,1(−1)),

and so Bi is :
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↓ (i + 1)thcolumn

Bi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 1 . . . 1 1 1 . . . 1 1 0
0 3

2
1
2

1
2 . . . 1

2
1
2

1
2 . . . 1

2
1
2 0

0 0 4
3

1
3 . . . 1

3
1
3

1
3 . . . 1

3
1
3 0

. . . . . . . . . . . . . .
0 0 0 0 . . . i

i−1
1

i−1
1

i−1 . . . 1
i−1

1
i−1 0

0 0 0 0 . . . 0 i+1
i

1
i . . . 1

i
1
i 0

0 0 0 0 . . . 0 0 −1 . . . 0 0 1
. . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 0 0 . . .− 1 0 1
0 0 0 0 . . . 0 0 0 . . . 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
← ith row

.

Since the rank of Bi is n−1, the rank of Ai is n−1, for all 1 ≤ i ≤ n−1.

b) The hyperplane generated by the points

{ R0,1, . . . , R0,n−i, Q0,1, Q0,2, . . . , Q0,i−1}

has the normal vector the generator of the subspace Ker(Ti).
For 1 ≤ i ≤ n− 1, using a), we obtain that

Ker(Ti) = {x ∈ Rn|Ti(x) = 0} = {x ∈ Rn|Aix = 0} = {x ∈ Rn|Bix = 0},

that is
xn = xn−1 = . . . = xi+1 = (i + 1)α

and
xi = xi−1 = . . . = x1 = −(n− i− 1)α,

where α ∈ R.

Thus, for 1 ≤ i ≤ n − 1, the equations of the hyperplanes generated by
the points { R0,1, . . . , R0,n−i, Q0,1, Q0,2, . . . , Q0,i−1} are :

H[i] := −(n− i− 1)
i∑

j=1

xj + (i + 1)
n∑

j=i+1

xj = 0.
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For 1 ≤ k ≤ n− 1, we define two types of sets of points:
1)

{ Rk,1, Rk,2, . . . , Rk,n−1}
is the set of points whose coordinates are the rows of the matrix A1P1k+1;

2)
{ Qk,1, Qk,2, . . . , Qk,n−2}

is the set of points whose coordinates are the rows of the matrix QMk, where
M is the matrix

M ∈ Mn(R), M =
n−1∏
i=1

Pn−i,n−i+1

and Q ∈ Mn−2,n(R) is the matrix with rows the coordinates of points
{ Q1, Q2, . . . , Qn−2}.

For every 1 ≤ i ≤ n−1, we shall denote by ν[i] the normal of the hyperplane
H[i]:

↓ ithcolumn

ν[i] =
( −(n− i− 1), . . . ,−(n− i− 1), (i + 1), . . . , (i + 1)

) ∈ Rn.

For i = 1, we denote by H{k+1} the hyperplane having the normal :

ν{k+1} := ν[i]P1,k+1 = ν[1]P1,k+1,

for all 1 ≤ k ≤ n− 1.
For 2 ≤ i ≤ n − 1 and 1 ≤ k ≤ n − 1, we denote by H{σk(1),σk(2),...,σk(i)}

the hyperplane which has the normal :

ν{σk(1),σk(2),...,σk(i)} := ν[i]M
k,

where σ ∈ Sn is the product of transpositions :

σ :=
n−1∏
i=1

(i, i + 1).

Lemma 3.2. a) For 1 ≤ k ≤ n − 1 and 2 ≤ i ≤ n − 1, the set of points
{ Rk,1, . . . , Rk,n−i, Qk,1, Qk,2, . . . , Qk,i−1} and { Rk,1, Rk,2, . . . , Rk,n−1} are
linearly independent.
b) For 1 ≤ k ≤ n − 1 and 2 ≤ i ≤ n − 1, the equation of the hyperplane
generated by the points { O, Rk,1, Rk,2 . . . , Rk,n−i, Qk,1, Qk,2, . . . , Qk,i−1} is :

H{σk(1),σk(2),...,σk(i)} :=< ν{σk(1),σk(2),...,σk(i)}, x >= 0,



The Cones Associated to Some Transvesal Polymatroids 145

where O is zero point, O(0, 0, . . . , 0) and σ ∈ Sn is the product of transposi-
tions:

σ :=
n−1∏
i=1

(i, i + 1).

For 1 ≤ k ≤ n− 1, the equation of the hyperplane generated by the points
{ O, Rk,1, Rk,2 . . . , Rk,n−1} is

H{k+1} :=< ν{k+1}, x >= 0.

Proof. a) Since, for any 1 ≤ k ≤ n− 1, the matrix P1,k+1 , Mk are invertible
and the sets of points

{ R0,1, . . . , R0,n−i, Q0,1, Q0,2, . . . , Q0,i−1}, { R0,1, R0,2, . . . , R0,n−1}
are linearly independent then the set of points

{ Rk,1, . . . , Rk,n−i, Qk,1, Qk,2, . . . , Qk,i−1}, { Rk,1, Rk,2, . . . , Rk,n−1}
are linearly independent.

b) Since, for any 1 ≤ k ≤ n − 1 and 2 ≤ i ≤ n − 1, the matrix Mk are
invertible, then the hyperplane generated by the points

{ O, Rk,1, . . . , Rk,n−i, Qk,1, . . . , Qk,i−1}
has the normal vector obtained by multiplying the normal vector ν[k] on the
right with Mk. For any 1 ≤ k ≤ n − 1, the matrix P1,k+1 is invertible, then
the hyperplane generated by the points { O, Rk,1, Rk,2 . . . , Rk,n−1} has the
normal vector obtained by multiplying on the right the normal vector ν[1]

with P1,k+1.

Lemma 3.3. Any point P ∈ Nn, n ≥ 3 which lies in the hyperplane H :
x1 + x2 + . . . + xn−n = 0 such that its coordinates are in the set {0, 1, 2} and
has at least one coordinate equal to 2 lies in the hyperplane H{k} = 0, for an
integer k ∈ {1, 2, ..., n}.
Proof. Let k ∈ {1, 2, ..., n} be the first position of ”2” that appears in the
coordinates of a point P ∈ Nn. Since the equation of the hyperplane H{k} is:

H{k} =
k−1∑
i=1

2xi − (n− 2)xk +
n∑

i=k+1

2xi = 0,

it results that

−2(n− 2) + 2
∑

i=1,i�=k

nai = −2(n− 2) + 2(n− 2) = 0,

where P = (a1, a2, . . . , an) ∈ H with ai ∈ {0, 1, 2} and which has at least one
coordinate equal to 2.
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4 The main result

First let us fix some notations that will be used throughout the remaining of
this paper. Let K be a field and K[x1, x2, . . . , xn] be a polynomial ring with
coefficients in K. Let n ≥ 2 be a positive integer and A be the collection of
sets:

A = {{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}}.
We denote by K[A] the K−algebra generated by xi1xi2 ...xin , with

i1 ∈ {1, 2}, i2 ∈ {2, 3}, . . . , in−1 ∈ {n− 1, n}, in ∈ {1, n}.

This K−algebra represents the base ring associated to transversal polymatroid
presented by A.

Given A ∈ Nn finite, we define CA as being the subsemigroup of Nn

generated by A :

CA =
∑
α∈A

Nα,

thus the cone generated by CA is:

R+CA = R+A = {
∑

aiγi | ai ∈ R+, γi ∈ A}.

With this notation, we state our main result:

Theorem 4.1. Let A = {log(xi1xi2 ...xin) | i1 ∈ {1, 2}, i2 ∈ {2, 3}, . . . , in−1 ∈
{n− 1, n}, in ∈ {1, n}} ⊂Nn the exponent set of the generators of K−algebra
K[A] and N = {ν{k+1}, ν{σk(1),σk(2),...,σk(i)} | 0 ≤ k ≤ n − 1, 2 ≤ i ≤ n − 1},
then

R+CA =
⋂

a∈N

H+
a ,

such that H+
a with a ∈ N are just the facets of the cone R+CA.

Proof. Since A = {log(xi1xi2 ...xin) | i1 ∈ {1, 2}, i2 ∈ {2, 3} , . . . , in−1 ∈
{n − 1, n}, in ∈ {1, n}} ⊂ Nn is the exponent set of the generators of
K−algebra K[A], then the set { R0,1, R0,2, . . . , R0,n−2, R0,n−1, I} ⊂ A, where
I(1, 1, . . . , 1) ∈ Nn.

First step.
We must show that the dimension of the cone R+CA is dim(R+CA) = n.

We denote by Ã ∈Mn(R) the matrix with rows the coordinates of the points
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{ R0,1, R0,2, . . . , R0,n−2, R0,n−1, I}. Using elementary row transformations to
the matrix Ã, we have: B̃ = Ũ Ã, where Ũ ∈ Mn(R) is an invertible matrix:

Ũ = (
n−1∏
i=2

Tn−i+1,1(−1)))(Tn,1(−1
2
))(

∏
2≤i≤� n

2 �
Pi,n−i+1)(

n−1∏
i=2

Tn,n−i+1(
1
2
)),

where 
c� is the greatest integer ≤ c.

So B̃ is:

B̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 1 . . . . . . 1 1 0
0 −1 0 0 . . . . . . 0 0 1
0 0 −1 0 . . . . . . 0 0 1
. . . . . . . . .
0 0 0 0 . . . . . . 0 0 1
0 0 0 0 . . . . . . −1 0 1
0 0 0 0 . . . . . . 0 −1 1
0 0 0 0 . . . . . . 0 0 n

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the dimension of the cone R+CA is:

dim(R+CA) = rank(Ã) = rank(B̃) = n,

since det(B̃) = (−1)nn.

Second step.
We must show that Ha ∩ R+CA with a ∈ N are precisely the facets of

the cone R+CA. This is equivalent to show that R+CA ⊂ H+
a and dimHa ∩

R+CA = n− 1 ∀ a ∈ N.
The fact that dimHa ∩R+CA = n − 1 ∀ a ∈ N it is clear, from Lemma 3.1
and Lemma 3.2.

For 1 ≤ k ≤ 
n
2 � and 1 ≤ i1 < i2 < . . . < i2k−1 < i2k ≤ n, let

Ii1i2...i2k−1i2k
= I + (ei1 − ei2) + (ei3 − ei4) + . . . + (ei2k−1 − ei2k

)

and

I
′
i1i2...i2k−1i2k

= I + (ei2 − ei1) + (ei4 − ei3) + . . . + (ei2k
− ei2k−1),

where I = I(1, 1, . . . , 1) ∈ Nn and ei is the ith unit vector.
We set

A
′
= {I, Ii1i2...i2k−1i2k

, I
′
i1i2...i2k−1i2k

|1 ≤ k ≤ 
n
2
�
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and 1 ≤ i1 < i2 < . . . < i2k−1 < i2k ≤ n}.
We claim that A = A

′
.

Let

mi1i2...i2k−1i2k
=

�n
2 �∏

s=1

ms, m
′
i1i2...i2k−1i2k

=
�n

2 �∏
s=1

m
′
s,

where

ms = xki2s−2+1 . . . xki2s−1−2x
2
i2s−1

xki2s−1+1 . . . xki2s−2xi2s−1xi2s+1,

m
′
s = xki2s−2+1 . . . xki2s−1−2xi2s−1−1xi2s−1+1xki2s−1+1 . . . xki2s−2x

2
i2s

,

for all 1 ≤ k, s ≤ 
n
2 �, i0 = 0 and kj ∈ {j, j + 1}, for 1 ≤ j ≤ n. Evidently

log(mi1i2...i2k−1i2k
), log(m

′
i1i2...i2k−1i2k

) ∈ A.
Since

log(mi1i2...i2k−1i2k
) = Ii1i2...i2k−1i2k

and
log(m

′
i1i2...i2k−1i2k

) = I
′
i1i2...i2k−1i2k

,

for all 1 ≤ k ≤ 
n
2 � and 1 ≤ i1 < i2 < . . . < i2k−1 < i2k ≤ n, then A

′ ⊂ A.
But the cardinal of A is �(A) = 2n − 1 and since

�n
2 �∑

s=1

(
n

2s

)
= 2n−1 − 1,

the cardinal of A
′
is:

�(A
′
) = 1 + 2

�n
2 �∑

s=1

(
n

2s

)
= 2n − 1.

Thus A = A
′
.

Now we start to prove that R+CA ⊂ H+
a for all a ∈ N.

Note that

< ν{p+1}, I > = < ν{σp(1),σp(2),...,σp(i)}, I > = n > 0,

for any 0 ≤ p ≤ n− 1, 1 ≤ i ≤ n− 1.
Let 0 ≤ p ≤ n− 1. We claim that:

< ν{p+1}, Ii1i2...i2k−1i2k
> ≥ 0 and < ν{p+1}, I

′
i1i2...i2k−1i2k

> ≥ 0,
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for any 1 ≤ k ≤ 
n
2 � and 1 ≤ i1 < i2 < . . . < i2k−1 < i2k ≤ n.

We prove the first inequality. The proof of the second inequality will be similar.
We have three possibilities:
1) If < Ii1i2...i2k−1i2k

, ep+1 >= 0, then < ν{p+1}, Ii1i2...i2k−1i2k
>= 2n > 0;

2) If < Ii1i2...i2k−1i2k
, ep+1 >= 1 then < ν{p+1}, Ii1i2...i2k−1i2k

>= n > 0;
3) If < Ii1i2...i2k−1i2k

, ep+1 >= 2 then < ν{p+1}, Ii1i2...i2k−1i2k
>= 0.

Let 0 ≤ p ≤ n− 1 and 2 ≤ i ≤ n− 1 be fixed.
We claim that:

< ν{σp(1),σp(2),...,σp(i)}, Ii1i2...i2k−1i2k
> ≥ 0

and
< ν{σp(1),σp(2),...,σp(i)}, I

′
i1i2...i2k−1i2k

> ≥ 0,

for any 1 ≤ k ≤ 
n
2 � and 1 ≤ i1 < i2 < . . . < i2k−1 < i2k ≤ n.

We prove the first inequality. The proof of the second inequalities is analogous.
We have:

< ν{σp(1),σp(2),...,σp(i)}, Ii1i2...i2k−1i2k
>= H{σp(1),σp(2),...,σp(i)}(Ii1i2...i2k−1i2k

) =

= −(n− i− 1)
i∑

s=1

< Ii1i2...i2k−1i2k
, eσp(s) > +

+(i + 1)
n∑

s=i+1

< Ii1i2...i2k−1i2k
, eσp(s) > .

Let
Γ = {s| < Ii1i2...i2k−1i2k

, eσp(s) >= 2, 1 ≤ s ≤ i}
be the set of indices of Ii1i2...i2k−1i2k

, where the coordinates are equal to 2.
If the cardinal of Γ is zero, then there exists at most an index i2t−1 ∈
{σp(1), σp(2), . . . , σp(i)} with 1 ≤ t ≤ 
n

2 �. Otherwise we have two possi-
bilities:
1)There exist at least two indices i2t−1, i2t1−1 ∈ {σp(1), σp(2), . . . , σp(i)},
with 1 ≤ t < t1 ≤ 
n

2 � and, since σp(s) = (p + s) mod n, then there
exists 1 ≤ t2 ≤ 
n

2 � such that i2t2 ∈ {σp(1), σp(2), . . . , σp(i)} and thus
< Ii1i2...i2k−1i2k

, eσp(i2t2 ) >= 2, which it is false.
2) There exist at least two indices i2t−1, i2t1 ∈ {σp(1), σp(2), . . . , σp(i)}, with
1 ≤ t, t1 ≤ 
n

2 �. Then as in the first case, we have < Ii1i2...i2k−1i2k
, eσp(i2t1 ) >=

2, which it is false.
If for any 1 ≤ k ≤ 
n

2 �, i2k−1 �∈ {σp(1), σp(2), . . . , σp(i)}, then

< ν{σp(1),σp(2),...,σp(i)}, Ii1i2...i2k−1i2k
>= −(n− i− 1)i+(i+1)(n− i) = n > 0.
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When there exists just one index i2t−1 ∈ {σp(1), σp(2), . . . , σp(i)} with 1 ≤
t ≤ 
n

2 �, then
< ν{σp(1),σp(2),...,σp(i)}, Ii1i2...i2k−1i2k

>=

= −(n− i− 1)(i− 1) + (i + 1)(n− i + 1) = 2n > 0.

If the cardinal of Γ, is �(Γ) = t ≥ 1, then we have two possibilities:
1) If

{1 ≤ i1 < i2 < . . . < i2t−3 < i2t−2 < i2t−1 ≤ n} ⊂ {σp(1), σp(2), . . . , σp(i)},
then we have:

< ν{σp(1),σp(2),...,σp(i)}, Ii1i2...i2k−1i2k
>= −(n−i−1)(i+1)+(i+1)(n−i−1) = 0.

2) If

{1 ≤ i1 < i2 < . . . < i2t−1 < i2t ≤ n} ⊂ {σp(1), σp(2), . . . , σp(i)},
then we have:

< ν{σp(1),σp(2),...,σp(i)}, Ii1i2...i2k−1i2k
>= −(n−i−1)(i)+(i+1)(n−i) = n > 0.

Thus we have:
R+CA ⊂

⋂
a∈N

H+
a

Finally let us prove the converse inclusion.
This is equivalent with the fact that the extremal rays of the cone⋂

a∈N

H+
a

are in R+CA.
Let 1 ≤ k ≤ 
n

2 �, 1 ≤ i1 < i2 < . . . < i2k−1 < i2k ≤ n. We consider the
following hyperplanes:
a) H{[i2s−1]\[j]} if j ∈ {i2s−2, . . . i2s−1 − 1} and 1 ≤ s ≤ k,
b) H{[j]\[i2s−1−1]} if j ∈ {i2s−1 + 1, . . . , i2s − 1} and 1 ≤ s ≤ k,
c) H{[i2k−1]∪([n]\[j])} if j ∈ {i2k, . . . n− 1},
d) H{i2s} for 1 ≤ s ≤ k − 1; where [i] := {1, . . . , i}, i0 = 0 and [0] = ∅.
We claim that the point Ii1i2...i2k−1i2k

belongs to these hyperplanes.
a) Let j ∈ {i2s−2, . . . i2s−1 − 1} and 1 ≤ s ≤ k, then

< H{[i2s−1]\[j]}, Ii1i2...i2k−1i2k
>= < H{j+1,...,i2s−1}, Ii1i2...i2k−1i2k

>=
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=< −(n− (i2s−1 − j)− 1)∑
t∈{j+1,...,i2s−1}

xt + (i2s−1 − j + 1)
∑

t∈[n]\{j+1,...,i2s−1}
xt , Ii1i2...i2k−1i2k

>=

= −(n− i2s−1 + j − 1)(i2s−1 − j + 1)+

+(i2s−1 − j + 1)(n− (i2s−1 − j) + 1) = 0,

since

↓ j + 1th ↓ ith2s−1

Ii1i2...i2k−1i2k
= ( . . . , 1 , . . . , 1 , 2 , . . . ).

b) Let j ∈ {i2s−1 + 1, . . . i2s − 1} and 1 ≤ s ≤ k. Then

< H{[j]\[i2s−1−1]}, Ii1i2...i2k−1i2k
>=

=< H{i2s−1,...,j}, Ii1i2...i2k−1i2k
>=< −(n− (j − i2s−1 + 1)− 1)∑

t∈{i2s−1,...,j}
xt + (j − i2s−1 + 1 + 1)

∑
t∈[n]\{i2s−1,...,j}

xt , Ii1i2...i2k−1i2k
>=

= −(n− (j − i2s−1 + 1)− 1)(j − i2s−1 + 1 + 1)+

+(j − i2s−1 + 1 + 1)(n− (j − i2s−1 + 1 + 1)) = 0,

since

↓ ith2s−1 ↓ jth

Ii1i2...i2k−1i2k
= ( . . . , 2 , 1 , . . . , 1 , . . . ).

c) Let j ∈ {i2k, . . . n− 1}. Then

< H{[i2k−1]∪([n]\[j])}, Ii1i2...i2k−1i2k
>=< H{1,...,i2k−1,j+1,...,n}, Ii1i2...i2k−1i2k

>=

=< −(n− (i2k−1 + n− j)− 1)∑
t∈[i2k−1]∪([n]\[j])

xt + (i2k−1 + n− j + 1)
∑

t∈{i2k−1+1,...,j}
xt, Ii1i2...i2k−1i2k

>=

= −(j−i2k−1−1)(i2k−1+n−j+1)+(i2k−1+n−j+1)(j−(i2k−1+1)+1−1) = 0,

since

↓ ith2k−1 ↓ ith2k ↓ j + 1th
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Ii1i2...i2k−1i2k
= ( . . . , 2, 1, . . . , 1, 0, 1, . . . , 1, . . . , 1).

d) It is clear from Lemma 3.3.
Since the number of hyperplanes is

k∑
s=1

(i2s−1−1−i2s−2+1)+
k∑

s=1

(i2s−1−(i2s−1+1)+1)+(n−1−i2k+1)+k−1 =

=
k∑

s=1

(i2s − i2s−2)− k + n− i2k + k − 1 = n− 1,

then
k⋂

s=1

(
i2s−1−1⋂
j=i2s−2

(H{[i2s−1]\[j]) ∩
i2s−1⋂

j=i2s−1+1

(H{[j]\[i2s−1−1]}))∩

n−1⋂
j=i2k

(H{[i2k−1]∪([n]\[j])}) ∩
k−1⋂
s=1

(H{i2s}) = OIi1i2...i2k−1i2k

is an extremal ray of the cone
⋂

a∈N H+
a . But

OIi1i2...i2k−1i2k
∈ R+CA.

Thus ⋂
a∈N

H+
a = R+CA.

For using bellow, we recall that K−algebra K[A] is a normal domain ac-
cording to [9].

Definition 4.2. Let R be a polynomial ring over a field K and F be a finite
set of monomials in R. A decomposition

K[F ] =
∞⊕

i=0

K[F ]i

of the K− vector space K[F ] is an admissible grading if k[F ] is a positively
graded K− algebra with respect to this decomposition and each component
K[F ]i has a finite K− basis consisting of monomials.
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Theorem 4.3 (Danilov, Stanley). Let R = K[x1, . . . , xn] be a polynomial ring
over a field K and F be a finite set of monomials in R. If K[F ] is normal, then
the canonical module ωK[F ] of K[F ], with respect to an arbitrary admissible
grading, can be expressed as an ideal of K[F ] generated by monomials

ωK[F ] = ({xa| a ∈ NA ∩ ri(R+A)}),
where A = log(F ) and ri(R+A) denotes the relative interior of R+A.

Corollary 4.4. The canonical module ωK[A] of K[A] is

ωK[A] = (x1x2 . . . xn)K[A].

Thus the K− algebra K[A] is a Gorenstein ring.

Proof. Since

< ν{p+1}, I > = < ν{σp(1),σp(2),...,σp(i)}, I > = n > 0,

for any 0 ≤ p ≤ n−1, 1 ≤ i ≤ n−1 and since for any Ii1i2...i2k−1i2k
, I

′
i1i2...i2k−1i2k

there exist two hyperplanes Ha, Ha′ with a, a
′ ∈ N such that

< Ii1i2...i2k−1i2k
, Ha >=< I

′
i1i2...i2k−1i2k

, Ha′ >= 0,

then I ∈ ri(R+CA) is the only point in relative interior of the cone R+CA.
Thus the canonical module is generated by one generator,

ωK[A] = (x1x2 . . . xn)K[A].

Therefore the K− algebra K[A] is a Gorenstein ring.

Conjecture 4.5. Let n, m ∈ N, m ≤ n, Ai � [n], 1 ≤ i ≤ m, and Ã =
{A1, A2, . . . , Am}. We denote

A = {log(xi1xi2 ...xin) | i1 ∈ {1, 2}, i2 ∈ {2, 3}, . . . , in−1 ∈ {n−1, n}, in ∈ {1, n}},
N = {ν{k+1}, ν{σk(1),σk(2),...,σk(i)} | 0 ≤ k ≤ n− 1, 2 ≤ i ≤ n− 1},

and

Ã = {log(xi1xi2 ...xin) | i1 ∈ A1, i2 ∈ A2, . . . , in−1 ∈ An−1, in ∈ An}.
Then the base ring associated to transversal polymatroid presented by Ã, K[Ã],
is a Gorenstein ring if and only if there exists Ñ ⊂ N such that

R+C
�A =

⋂
a∈ �N

H+
a

and H+
a with a ∈ Ñ are just the facets of the cone R+C

�A.
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5 The description of some transversal polymatroids with
Gorenstein base ring in dimensions 3 and 4.

Dimension 3.

We consider the collection of sets A = {{1, 2}, {2, 3}, {3, 1}}. The base
ring associated to transversal polymatroid presented by A is

R = K[A] = K[x2
1x2, x

2
2x1, x

2
2x3, x

2
3x2, x

2
1x3, x

2
3x1, x1x2x3].

From [9], R is a normal ring.
We can see R = K[Q], where
Q = N{(2, 1, 0), (1, 2, 0), (0, 2, 1), (0, 1, 2), (1, 0, 2), (2, 0, 1), (1, 1, 1)}.
Our aim is to describe the facets of C = R+Q.
It is easy to see that C has 6 facets, with the support planes given by the

equations:
H{1} : −x1 + 2x2 + 2x3 = 0,

H{2} : 2x1 − x2 + 2x3 = 0,

H{3} : 2x1 + 2x2 − x3 = 0,

H{1,2} : x3 = 0,

H{2,3} : x1 = 0,

H{3,1} : x2 = 0.

In fact, C = H+
{1}∩H+

{2}∩H+
{3} ∩H+

{1,2}∩H+
{2,3} ∩H+

{3,1}. Since (1, 1, 1) is the
only point in ri(R+Q), then, by Danilov-Stanley theorem, R is a Gorenstein
ring and ωR = R(−(1, 1, 1)).

In order to obtain all the Gorenstein polymatroids of dimension 3, we
remove sequentially some facets of C. For instance, if we remove the facet
supported by H{2}, we obtain a new cone C′ = H+

{1}∩H+
{3}∩H+

{1,2}∩H+
{2,3}∩

H+
{3,1}. It is easy to note that C′ = R+Q′, where Q′ = Q + N{(0, 3, 0)}.

Q′ is a saturated semigroup, and moreover, K[Q′] = K[A′], where A′ =
{{1, 2}, {1, 2, 3}, {2, 3}}. The Danilov-Stanley theorem assures us that R′ =
K[Q′] = K[A′] is still Gorenstein with ωR′ = R′(−(1, 1, 1)). (Remark. If we
remove the facet supported by H{3} or H{1}, instead of the facet supported
by H{2} we obtain a new set A′ which is only a permutation of 1, 2, 3.)

Suppose that we remove from C′ the facet supported by H{3}. We ob-
tain a new cone C′′ = H+

{1} ∩H+
{1,2} ∩H+

{2,3} ∩H+
{3,1}. It is easy to see that

C′′ = R+Q′′, where Q′′ = Q′ + N{(0, 0, 3)}. Q′′ is a saturated semigroup,
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and moreover, K[Q′′] = K[A′′], where A′′ = {{1, 2, 3}, {1, 2, 3}, {2, 3}}. The
Danilov-Stanley theorem implies that R′′ = K[Q′′] = K[A′′] is Gorenstein
and ωR′′ = R′′(−(1, 1, 1)). Finally, we remove from C′′ the facet supported
by H{1}. We obtain the cone C′′′ = H+

{1,2} ∩ H+
{2,3} ∩ H+

{3,1} which is a
cone over Q′′′ = Q′′ + N{(3, 0, 0)}. Q′′′ is the saturated semigroup associated
to the ring R′′′ = K[A′′′], where A′′′ = {{1, 2, 3}, {1, 2, 3}, {1, 2, 3}}. Also,
ωR′′′ = R′′′(−(1, 1, 1)).

Thus the base ring associated to the transversal polymatroids presented by
A, A′, A′′, A′′′ are Gorenstein rings and for A1 = {{1, 2}, {2, 3}} the base ring
presented by A1 is the Segre product k[t11, t12]∗k[t21, t22], thus is a Gorenstein
ring. All of them have dimension 3.

The computations made so far make us believe that all polymatroids with
Gorenstein base ring in dimension 3 are the ones classified above.

Dimension 4.

We consider the collection of sets A = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}. The
base ring associated to the transversal polymatroid presented by A is

R = K[A] = K[xi1xi2xi3xi4 | i1 ∈ {1, 2}, i2 ∈ {2, 3}, i3 ∈ {3, 4}, i4 ∈ {4, 1}].

From [9], R is a normal ring.
We can see R = K[Q], where

Q = N{log(xi1xi2xi3xi4)| i1 ∈ {1, 2}, i2 ∈ {2, 3}, i3 ∈ {3, 4}, i4 ∈ {4, 1}}.

Our aim is to describe the facets of C = R+Q. Using Normaliz we obtain
12 facets of the cone C = R+Q:

H{1} : −x1 + x2 + x3 + x4 = 0,

H{2} : x1 − x2 + x3 + x4 = 0,

H{3} : x1 + x2 − x3 + x4 = 0,

H{4} : x1 + x2 + x3 − x4 = 0,

H{1,2} : −x1 − x2 + 3x3 + 3x4 = 0,

H{2,3} : 3x1 − x2 − x3 + 3x4 = 0,

H{3,4} : 3x1 + 3x2 − x3 − x4 = 0,
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H{1,4} : −x1 + 3x2 + 3x3 − x4 = 0,

H{1,2,3} : x4 = 0,

H{2,3,4} : x1 = 0,

H{1,3,4} : x2 = 0,

H{1,2,4} : x3 = 0.

It is easy to see that C = H+
{1} ∩H+

{2} ∩H+
{3} ∩H+

{4} ∩H+
{1,2} ∩H+

{2,3} ∩
H+

{3,4}∩H+
{1,4} ∩H+

{1,2,3}∩H+
{2,3,4}∩H+

{1,3,4} ∩H+
{1,2,4}. Since (1, 1, 1, 1) is the

only point in ri(R+Q), then, by Danilov-Stanley theorem, R is a Gorenstein
ring and ωR = R(−(1, 1, 1, 1)).

Now we want to proceed as in the case of dimension 3 to get a large class
of transversal polymatroids with Gorenstein base ring. Using Normaliz , we
can give a complete description, modulo a permutation, of the transversal
polymatroids with Gorenstein base ring when we start with

A = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}.

For A1 = {{1, 2, 3}, {2, 3}, {3, 4}, {4, 1}}, the associated cone is:
C1 = H+

{1} ∩ H+
{2} ∩ H+

{4} ∩ H+
{1,2} ∩ H+

{2,3} ∩ H+
{1,4} ∩ H+

{1,2,3} ∩ H+
{2,3,4} ∩

H+
{1,3,4} ∩H+

{1,2,4}.

For A2 = {{1, 2, 3, 4}, {2, 3}, {3, 4}, {4, 1}}, the associated cone is:
C2 = H+

{1} ∩H+
{2} ∩H+

{1,2} ∩H+
{2,3} ∩H+

{1,4} ∩H+
{1,2,3} ∩H+

{2,3,4} ∩H+
{1,3,4} ∩

H+
{1,2,4}.

For A3 = {{1, 2, 3, 4}, {2, 3, 4}, {3, 4}, {4, 1}}, the associated cone is:
C3 = H+

{1} ∩H+
{2} ∩H+

{1,2} ∩H+
{2,3} ∩H+

{1,2,3} ∩H+
{2,3,4} ∩H+

{1,3,4} ∩H+
{1,2,4}.

For A4 = {{1, 2, 3, 4}, {1, 2, 3, 4}, {3, 4}, {4, 1}}, the associated cone is:
C4 = H+

{2} ∩H+
{1,2} ∩H+

{2,3} ∩H+
{1,2,3} ∩H{2,3,4} ∩H{1,3,4} ∩H{1,2,4}.

For A5 = {{1, 2, 3, 4}, {1, 2, 3, 4}, {1, 3, 4}, {4, 1}}, the associated cone is:
C5 = H+

{2} ∩H+
{2,3} ∩H+

{1,2,3} ∩H+
{2,3,4} ∩H+

{1,3,4} ∩H+
{1,2,4}.

For A6 = {{1, 2, 3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4}, {4, 1}}, the associated cone is:
C6 = H+

{2,3} ∩H+
{1,2,3} ∩H+

{2,3,4} ∩H+
{1,3,4} ∩H+

{1,2,4}.
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ForA7 = {{1, 2, 3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4}}, the associated cone
is: C7 = H+

{1,2,3} ∩H+
{2,3,4} ∩H+

{1,3,4} ∩H+
{1,2,4}.

For A8 = {{1, 2, 3}, {1, 2, 3}, {3, 4}, {4, 1}}, the associated cone is:
C8 = H+

{2} ∩H+
{4} ∩H+

{1,2} ∩H+
{2,3} ∩H+

{1,2,3} ∩H+
{2,3,4} ∩H+

{1,3,4} ∩H+
{1,2,4}.

For A9 = {{1, 2, 3}, {1, 2, 3}, {1, 3, 4}, {4, 1}}, the associated cone is:
C9 = H+

{2} ∩H+
{4} ∩H+

{2,3} ∩H+
{1,2,3} ∩H+

{2,3,4} ∩H+
{1,3,4} ∩H+

{1,2,4}.

For A10 = {{1, 2, 3}, {1, 2, 3}, {1, 2, 3, 4}, {4, 1}}, the associated cone is:
C10 = H+

{4} ∩H+
{2,3} ∩H+

{1,2,3} ∩H+
{2,3,4} ∩H+

{1,3,4} ∩H+
{1,2,4}.

For A11 = {{1, 2, 3}, {1, 2, 3}, {1, 3, 4}, {1, 3, 4}}, the associated cone is:
C11 = H+

{2} ∩H+
{4} ∩H+

{1,2,3} ∩H+
{2,3,4} ∩H+

{1,3,4} ∩H+
{1,2,4}.

For A12 = {{1, 2, 3}, {1, 2, 3}, {1, 3, 4}, {1, 3, 4}}, the associated cone is:
C12 = H+

{4} ∩H+
{1,2,3} ∩H+

{2,3,4} ∩H+
{1,3,4} ∩H+

{1,2,4}.

The next four examples of transversal polymatroids with Gorenstein base
ring are different from those already described.

For A13 = {{1, 2, 3}, {2, 3, 4}}, the Hilbert series of base ring K[A13] is:

HK[A13](t) =
1 + 4t + t2

(1 − t)4
.

For A14 = {{1, 2, 3, 4}, {2, 3, 4}}, the Hilbert series of base ring K[A14] is:

HK[A14](t) =
1 + 5t + t2

(1 − t)4
.

For A15 = {{1, 2, 3, 4}, {1, 2, 3, 4}}, the Hilbert series of base ring K[A15]
is:

HK[A15](t) =
1 + 6t + t2

(1 − t)4
.

For A16 = {{1, 2}, {2, 3}, {3, 4}}, the Hilbert series of base ring K[A16] is:

HK[A16](t) =
1 + 4t + t2

(1 − t)4
.

It seems that also, in the dimension 4, our examples cover all transversal
polymatroids with Gorenstein base ring.
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Bd. Bucureşti, 39, Ploieşti,
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