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THE CONES ASSOCIATED TO SOME
TRANSVERSAL POLYMATROIDS

Alin Stefan

Abstract

In this paper we describe the facets cone associated to transversal
polymatroid presented by A = {{1,2},{2,3},...,{n—1,n},{n,1}}. Us-
ing the Danilov-Stanley theorem to characterize the canonicale module,
we deduce that the base ring associated to this polymatroid is Gorenstein
ring. Also, starting from this polymatroid we describe the transversal
polymatroids with Gorenstein base ring in dimension 3 and with the
help Normaliz in dimension 4.

1 Preliminaries on polyhedral geometry

An affine space generated by A C R™ is a translation of a linear subspace of
R™ If 0 # a € R", then H, will denote the hyperplane of R™ through the
origin with normal vector a, that is,

H,={x€eR"| <z,a>=0},

where <, > is the usual inner product in R™. The two closed half spaces
bounded by H, are:

Hf={zeR"| <z,a>>0}and H, ={z €R" | <z,a ><0}.

Recall that a polyhedral cone ) C R™ is the intersection of a finite number
of closed subspaces of the form H; . If A = {~v1,..., 7} is a finite set of points
in R™ the cone generated by A, denoted by R4 A, is defined as

RiA={> a|a€Ry, with1<i<n}.

i=1
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140 A. STEFAN

An important fact is that @ is a polyhedral cone in R™ if and only if there
exists a finite set A C R™ such that @ = R, A, see ([15],theorem 4.1.1.).

Definition 1.1. A proper face of a polyhedral cone is a subset F' C @ such
that there is a supporting hyperplane H, satisfying:

1) F=QnH, #0;

2) Q¢ Hy, and Q C H}.

Definition 1.2. A proper face F' of a polyhedral cone Q C R"™ is called a
facet of Q if dim(F) = dim(Q) — 1.

2 Polymatroids

Let K be an infinite field, n and m be positive integers, [n] = {1,2,...,n}. A
nonempty finite set B of N™ is the base set of a discrete polymatroid P if, for
all u = (uy,ua,...,up), v=(v1,v2,...,v,) € B, one has uy +us + ...+ u, =
v1 + v3 + ... 4+ v, and, for all ¢ such that u; > v;, there exists j such that
u; < v; and u + e; — e; € B, where ej, denotes the k' vector of the standard
basis of N™. The notion of discrete polymatroid is a generalization of the
classical notion of matroid, see [6] [9] [8] [16]. Associated with the base B of a
discret polymatroid P one has a K —algebra K[B] - called the base ring of P
- defined to be the K —subalgebra of the polynomial ring in n indeterminates
K[x1,22,...,%y,] generated by the monomials z* with v € B. From [9], the
algebra K[B] is known to be normal and hence Cohen-Macaulay.

If A; are some non-empty subsets of [n], for 1 <i <m, A= {41, As,..., Ap},
then the set of the vectors Zzn’zl e;, with i, € Ay, is the base of a polymatroid,
called transversal polymatroid presented by A. The base ring of a transversal
polymatroid presented by .4 denoted by K[A] is the ring :

K[A] .= Kz;, x4y ... x5, 11 € A;,1 <5 <m)].

3 Some Linear Algebra

Let n € N be an integer number, n > 3 and let be given the following set with
2n — 3 points with positive integer coordinates :

{Ro1(2,1,1,...,1,1,0), Ro2(2,1,1,...,1,0,1),..., Ry n—2(2,1,0,...,1,1,1),
Ron-1(2,0,1,...,1,1,1),Q0,1(1,2,1,1,...,1,1,0),Q02(1,1,2,1,...,1,1,0),

...... , Qom-s(1,1,1,1,...,2,1,0), Qon_2(1,1,1,1,...,1,2,0)} C N".
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We shall denote by A1 € M,,_1 »(R) the matrix with rows the coordinates
of points { Ro1,Ro,2,...,Ron—1} and for 2 < i< n—1, A; € M,—1,(R)
the matrix with rows the coordinates of the points

{ Ro1,. -, Ron—i,Q0,1,Q0,2,--.,Qo0,i—1},

that is:
2 1 1 1 1 1 0
2 1 1 1 1 1
2 1 1 1 1 1
Al = .
2 1 1 0 1 1 1
2 1 1 1 1 1
2 1 1 1 1 1

and, for2 < ¢ < n—1,

2 1 1 111 11
2 1 1 111 1 0 1
2 1 1 111 01 1
A - 11 11 0...1 11
A | 1 111 11 — (n—i+ 1" row -
11 2 11 1 110
111 ...211...110
111 ...121...11°0

Let T; be the linear transformation from R™ into R"~* defined by T;(z) = A;x
foralll1 < i< n—1.

Let 4,5 € N, 1 <4,j < n. We denote by e; ; the matrix in M,,_;(R) with
the entries: 1, for the (i, j)-entry, and 0 for the other entries. We denote by
T;,;(a) the matrix

Ti,j (a) =In-1+ aeqj € M, _1(R).
By P; ; we denote the matrix in M,_1(R) defined by

Pij=In-1—¢ii—ejj+eij+e;i
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Lemma 3.1. a) The set of points { Ro1,- .., Ron—i,Q01,Q0.2,---,Q0.i-1},
for2< i< n—1and{ Ro1,Ro2,...,Ron-1} are linearly independent.

b) For 1 < i < n—1, the equations of the hyperplanes generated by the points
{O,Ro1,Ro2...,Ron—i,Q0,1,Q0,2,...,Qo,i—1} are :

where [i] is the set [i] :={1,...,i}.

Proof. a) The set of points are linearly independent if the matrices with rows
the coordinates of the points have the rank n — 1.

Using elementary row transformations on the matrix A;, we have:

B; = Uy A4, where Uy € M,,_1(R)is given by:

n—1
U, = H Pipit1 H Th-i+1,1(=1),
2<i<| 3] =2

and |c| is the greatest integer < c. So By is :

2 1 11 ... ... 1 1 0
0 -1 0 1
0 0 -1 0 0 0 1

By =

coo
coo
coo
co o -
ol o
—

==
i

— o

For 2 < i < n — 1, using elementary row transformations on the matrix
A;, we have: B; = U;A;, where U; € M, _1(R),

Ui = [ﬁ(l:[)Pn_le‘k—Ln_j'i‘k][l:[( 1:[ Tj,n—i-‘rk—l(_—l ))]
j=i k=1 k=2 jen—itk kE+1
(1 © d—%))(ﬁ Tja(-1),
j=n—1i+1 j=1

and so B; is :
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1 (i 4+ 1)t column

2 1 1 1 11 1...1 1 0
0 % 11 1 1 1 1 9
i1 A B | t1
00 3 3 3 3 3.3 3 0
: S
|0 0 0 1 1 11 i1 0 .
' 00 00 o = .1 10| < i"row
00 0 0 0o 0 -1..0 0 1
00 0 0 0 0 0 ...—1 0 1
00 0 0 0 0 0...0 -1 1

Since the rank of B; is n — 1, the rank of A; isn—1,forall1 < i< n—1.
b) The hyperplane generated by the points

{ Ro1,---sRon-i,Qo0,1,Q0,25---,Q0,i—1}

has the normal vector the generator of the subspace Ker(T;).
For 1 < ¢ < mn—1, using a), we obtain that

Ker(T;) = {z e R*"|T;(z) =0} = {x € R"|4,z =0} = {z € R"|B;z = 0},

that is
Tpn =Tp-1=...=Tiy1 = (i + Do
and
Ti=xi1=...=11=—(n—1i—1)a,
where o € R.

Thus, for 1 < i < n — 1, the equations of the hyperplanes generated by
the points { Ro1,..., Ron—i, Qo,1,Q0,2,--.,Qo,i—1} are :

i n
H[i]::—(n—i—l)ij+(i+1)Za:jzo.
j=1

j=i+1
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For 1 <k <n —1, we define two types of sets of points:
1)
{ RkJ, Rk’Q, RN Rk’nfl}
is the set of points whose coordinates are the rows of the matrix Ay Pigy1;
2)
{ Qk1,Qr2,-- -, Qrn—2}

is the set of points whose coordinates are the rows of the matrix QM", where

M is the matrix
n—1

Me MyR),M =[] Puin-it1
i=1

and Q € M,_2,(R) is the matrix with rows the coordinates of points

{ Q17Q27 .. '7Qn72}~

For every 1 < i < n—1, we shall denote by ;) the normal of the hyperplane
| ithcolumn

vg=(-(n—-i-1), ... ,—(n—i-1), (i+1), ... ,(i+1))eR™

For i = 1, we denote by Hy;41) the hyperplane having the normal :

Vik+1y = Vi Pl = Vg PLee,

foralll <k <n-1.
For2<i<n-—1land1<k<mn-—1, wedenote by Hisr1)ok(2),..oi)}
the hyperplane which has the normal :
Yok (1),0% (), (i)} = Vil M,

where o € S,, is the product of transpositions :
n—1

o= ]G i+1).
i=1

Lemma 3.2. a) For 1 <k <n-—1and2 < i< n—1, the set of points
{ Ri1s- s Ren—is Qiy1, Qry2y - -, Qrii—1} and { Ry, Rpo2,...,Ren_1} are
linearly independent.

b) For 1 <k <n-1and 2 < i< n—1, the equation of the hyperplane
generated by the points { O,Rk1,Rk2..., Ren—i, Qr1,Qr,2,- -, Qki—1} 15 :

Higr(1),0%(2),..0t ()} =< Yok (1),0%(2)....0k ()} T >= 0,
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where O is zero point, 0(0,0,...,0) and o € S, is the product of transposi-

tions:
n—1

o= ]G i+1).
i=1

For 1 <k <n-—1, the equation of the hyperplane generated by the points
{ 0, Riq1,Rez2. .., Rk’nfl} 5

H{kJrl} =< V{g41}, T >= 0.

Proof. a) Since, for any 1 < k < n — 1, the matrix Pj y+1 , M* are invertible
and the sets of points

{Ro1,.- s Ron—i,Qo,1,Qo2,---,Qoi—1},{ Ro1,Roz2,..., Ron—1}

are linearly independent then the set of points

{ Rk,lv R Rk,nfi; Qk,l; Qk,Q; sy Qk,ifl}v { Rk,l; Rk,27 R Rk,nfl}
are linearly independent.
b) Since, for any 1 <k <n—1and 2 < ¢ < n— 1, the matrix MP¥ are
invertible, then the hyperplane generated by the points

{O, R, s Rin—i, Qr1y - -+ Qriio1}
has the normal vector obtained by multiplying the normal vector v on the
right with M*. For any 1 < k < n — 1, the matrix P; x41 is invertible, then
the hyperplane generated by the points { O, Rg1,Rk2- .., Rkn—1} has the

normal vector obtained by multiplying on the right the normal vector v
with P17k+1. O

Lemma 3.3. Any point P € N®, n > 3 which lies in the hyperplane H :
x1+ T2+ ...+, —n =0 such that its coordinates are in the set {0,1,2} and
has at least one coordinate equal to 2 lies in the hyperplane Hyy = 0, for an
integer k € {1,2,...,n}.

Proof. Let k € {1,2,...,n} be the first position of ”2” that appears in the
coordinates of a point P € N™. Since the equation of the hyperplane Hyy, is:

k—1 n
Hyy :Z2xi—(n—2)xk+ Z 2z; =0,
i=1 i=k+1

it results that
—2(n—2)+2 Y na;=-2(n-2)+2(n-2)=0,
i=1,i%k

where P = (a1, a9, ...,a,) € H with a; € {0,1,2} and which has at least one
coordinate equal to 2. O
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4 The main result

First let us fix some notations that will be used throughout the remaining of
this paper. Let K be a field and K[z1, 2, ...,2,] be a polynomial ring with
coefficients in K. Let n > 2 be a positive integer and A be the collection of
sets:

A={{1,2},{2,3},....,{n = 1,n},{n,1}}.
We denote by K[A] the K—algebra generated by x;, ©;,...z;, , with

i1 €{1,2},ip € {2,3},...,in1 € {n—1,n},i, € {1,n}.

This K —algebra represents the base ring associated to transversal polymatroid
presented by A.
Given A € N" finite, we define C4 as being the subsemigroup of N"

generated by A :
CA = Z Na,
acA

thus the cone generated by C4 is:
R+CA = R+A = {Z ;i | a; € RJF,’)% € A}
With this notation, we state our main result:

Theorem 4.1. Let A = {log(x;,xiy...%;,) | 11 € {1,2},42 € {2,3},...,ip_1 €
{n—1,n},i, € {1,n}} C N™ the exponent set of the generators of K—algebra
K[A] and N = {I/{k_;’_l},V{ak(1)7ak(2)7.“,ak(i)} | 0<k<n-— ]., 2<i1<n— 1},
then
R,Ca= () H,
a€EN

such that H} with a € N are just the facets of the cone R.Ca.

Proof. Since A = {log(zi, xi,...s,,) | i1 € {1,2}, i2 € {2,3} ,..., in_1 €
{n — 1,n}, i, € {1,n}} C N™ is the exponent set of the generators of
K —algebra K[A], then the set { Ro.1,Ro2;---,Ron-2,Ron-1,1} C A, where
I(1,1,...,1) € N,

First step.
We must show that the dimension of the cone RyCy4 is dim(R4+Cy) = n.
We denote by A € M,,(R) the matrix with rows the coordinates of the points
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{ Ro1,Ro2, --.,Ron-2,Ron-1,1}. Using elementary row transformations to
the matrix A, we have: B = UA, where U € M, (R) is an invertible matrix:

U= (1:[ Tn7i+1,1(_1)))(Tn’1(—%))( H Pi,n7i+1)(1:[ Tn,n7i+1(%)),
=2 i=2

2<i<| %

where |c] is the greatest integer < c.

So B is:
2 1 1 1 1 1 0
0 -1 0 0 0 0 1
0 0 -1 0 0 0 1
B=119 0 0 o 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 -1 1
0 0 0 0 0o 0 2

Then the dimension of the cone R Cj is:

dim(R,.Cy) = rank(A) = rank(B) = n,

since det(B) = (—1)"n.

Second step.

We must show that H, N R;Cy with a € N are precisely the facets of
the cone R4 C4. This is equivalent to show that Ry Cs C H} and dimH, N
R,Cy=n—-1VaeN.

The fact that dimH, "R;.C4 =n—1V a € N it is clear, from Lemma 3.1
and Lemma 3.2.
For1 <k < \_%J andlgil<i2<...<i2k_1<i2k§n,1et

Ii1i2mi2k—1i2k =TI+ (eil - eiz) + (eis - 6i4) +.o. (ei2k—1 - ei2k)

and

’

Iiliz...i%_li% =1+ (eiz - eil) + (6i4 - 6i3) +.o+ (ei2k - eiQk—l)a

where I = I(1,1,...,1) € N™ and e; is the i** unit vector.
We set

: 1<k<|2]

A ={LLijiy. i yings 1 2

i1i2~~i2k—1i2k|
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and 1 <1 <ig < ... <lop_1 <i2k§n}.
We claim that A = A’.

Let

L3 3]

!’ ’7
Myiyin. . igp_1i2k — My My iy, ing_1i0k — mg,

s=1 s=1

where
_ 2 ) .
Ms = Thiy,_g41 - Thig, 1 —2Tin 1 Thig,_y41 -+ Thig,2Tins—1Tizs+1;
! 2
Mg = Thiy, gy1 - Thiy, —2Ligs 1 —1Tige 1 +1Tkiy 41 - Thiy, —2Liy,»

for all 1 < k,5s < [§], 40 =0 and k; € {j,j + 1}, for 1 < j < n. Evidently
IOg(milizmi%—li%)a IOg(miliz...iQk_ligk) €A

Since
log(miliQ---i2k—1i2k) = Livig. gy vion
and
log(m; =1
Og(mili2~~~i2k—1i2k) T Ti1d2... 02k 102k

forall 1 <k <[5] and 1 <y <ig <... <idgp—1 <igp <1, then A" C A.
But the cardinal of A is §(4) = 2" — 1 and since

3] n
G)-r
s=1 $
the cardinal of A'is:
L5]
! n
fA)=1+4+2 < >—2"—1
2s
s=1
Thus A = A'.
Now we start to prove that R4 Cy C Hj for all a € N.
Note that

<Y1y, I > = <Vor)or(2),.0v @)}, I > =n >0,

forany 0<p<n-1,1<i<n-1.
Let 0 < p <n—1. We claim that:

< V{p+1}’li1i2---i2k—1i2k >2>0and < V{p+1}7Ii1i2..Ai2k_1i2k > >0,
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forany 1 <k < |5]and 1 <idy <ig < ... <idgp—q <igx <N
We prove the first inequality. The proof of the second inequality will be similar.
We have three possibilities:
1) If < Iiliz...iQk_ligk;eerl >=0, then < Vip+1}s Iiliz.“i%_ligk >=2n > 0;
2) If < Iiliz...iQk_ligk;eerl >=1 then < V{p+1}aIi1i2...i2k_1i2k >=n > 0
3) I < Lijig.ig_yior> €p+1 >= 2 then <wppi1y, Livig.ine_yin, >=0.
Let 0<p<n-—1and2<i<n-—1 be fixed.
We claim that:

< V{or(1),07(2),...,07 (i)} s Lirin. ing—_vizg > =0

and
< Vior(1),07(2), 02D} Diyin.igriny, > = 0

forany 1 <k < [5] and 1 <idy <idp < ... <igp_1 < igx <M.
We prove the first inequality. The proof of the second inequalities is analogous.
We have:

< Vior(1),0P(2),...,07(i)}> Ii1i2~~~i2k—1i2k >= H{ap(l),UP(Q),...,UT’('L')}(Ii1i2~~~i2k—1i2k) =

[

= _(n —i— 1) Z < Iili2~~~7;2k—1i2k760'p(5) >+
s=1
n
+(i + 1) Z < Ii1i2~~~i2k—1i2kveap(s) >
s=i+1
Let

D = {8] < Liyiy.igp_yinns €or(s) >= 2,1 < 5 < i}

be the set of indices of I;,i,.. in._ 140, Where the coordinates are equal to 2.

If the cardinal of T' is zero, then there exists at most an index ig_1 €
{oP(1),07(2),...,0P(i)} with 1 < ¢ < [§]. Otherwise we have two possi-
bilities:

1)There exist at least two indices igt—1,42,,—1 € {0P(1),0P(2),...,0P(i)},
with 1 <t < t; < |[%] and, since oP(s) = (p + s) mod n, then there
exists 1 < tp < |§] such that iy, € {oP(1),07(2),...,0"(i)} and thus
< Iiliz.“i2k_1i2k,eorp(i2t2) >=2, which it is false.

2) There exist at least two indices ig¢—1,492t; € {0P(1),0P(2),...,0P(i)}, with
1 <t, t; < |5]. Then as in the first case, we have < Livig.cing_vion > €ov(ing,) >=
2, which it is false.

If for any 1 < k < [§], dor—1 & {0P(1),0P(2),...,0P(i)}, then

< VioP(1),0P(2),...,07(i)}> I’L‘li2~~~’i2k71i2k >= —(’I’L —1— 1)i + (Z + 1)(n — Z) =n>0.
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When there exists just one index i2;—1 € {0P(1),07(2),...,0P(i)} with 1 <
t < [%], then
< Vor(1),07(2),..0? (D)} Linin.ing_rion >=
=—(m—i—1)(i-1)+(+1)(n—i+1)=2n>0.
If the cardinal of T, is §(I') = ¢ > 1, then we have two possibilities:
1) If

{1 < <tg < ... <ilor_3 <lop_o <io_1 < n} C {0-;0(1),0.[)(2), - ,O'p(’i)},
then we have:

< Vfor(1),07(2), 02 (i)} Livia.iznrize >= —(n—i—1)(i+1)+(i+1)(n—i—1) = 0.

2) If
{1<iy <ig <o <igg <igp <m} C{oP(1),07(2),...,0P(i)},
then we have:
< Vfor(1),07(2),s02 (i)} Livinvizn—rize >= —(n—i—=1)(i)+(i+1)(n—i) =n > 0.

Thus we have:
R+CA C ﬂ H(j_
a€EN
Finally let us prove the converse inclusion.
This is equivalent with the fact that the extremal rays of the cone

(N H:

a€EN

are in Ry Cy.
Let 1 <k < [3], 1< <ig<...<idg1 < iz <n. We consider the
following hyperplanes:
a) H{[iQS—l]\[j]} if j € {igs—2,... 9251 — 1} and 1 <s <k,
b) H{[j]\[i257171]} if j e {igs_l +1,...,025 — 1} and 1 < s <k,
¢) Hjig, ooy if J € {izk, .. n =1},
d) Hy;, y for 1 <s <k —1; where [i] := {1,...,4}, ip = 0 and [0] = 0.
We claim that the point I; i, ,,. i, Dbelongs to these hyperplanes.
a) Let j € {igs—2,... l25—1 — 1} and 1 < s < k, then

< H{igo i\ s Livia.inp—rine >= < Hijp1, o ving 1} Livio.iop_vian >=
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=< —=(n—(igs-1-J) = 1)
> Ty + (i2s—1 —j + 1) > Tty Lijig.in_yin >=

te{j+1,....i25—1} te[n)\{j+1,...,i2s—1}
= —(n—idgs1+J—1)(izs—1 —j+ 1)+
+(igs—1 =+ 1)(n — (izs—1 —j) +1) =0,

since

Lj+1 Vi,
Livigoignyigre = ( coo 1 oo 001 2 0 ).
b) Let j € {izg—1 +1,... 425 — 1} and 1 < s < k. Then
< H{{\fige o1 —11}> Dirin o yipe >=
=< Hiig, gy linia iy, >=< —(n = (§ —d2s-1 +1) = 1)

Z Tt + (.7 — 51+ 1+ 1) Z Tt , Iili2~~~i2k—1i2k >=
te{izs—1,..,5} te[n]\{izs—1,..-,5}

=—(n—(J—tdos—1+1)=1)(J —dos—1 + 1+ 1)+
+(—tdegs—1+1+1)(n—(j—t2s—1+1+1)) =0,

since

Ligy Lt
Livigoignyigre = ( cov 2 001 0 o0 1, ).
c¢) Let j € {igg,... n—1}. Then
< H{[7‘2k—1]U([n]\[J])}’ Iili2---i2k—1i2k >=< H{l,...,iQk_l,jJrl,...,n}) Iilig...izk,lizk >=
=<—-(n—(igk—1+n—7)—1)

> Ty + (izk—1+n—j+1) > Tty Livig..ige_vioe >=
t€fizp—1]U([n]\[5]) te{iop—_1+1,....5}
= —(j—ton—1—1)(lok—1+n—j+1)+(iop—1+n—j+1)(j—(i2p—1+1)+1-1) = 0,

since

Libky Lk Lj+1t
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Livigiign_vise = ( ..oy 2, 1, ..., 1, 0, L, .., 1, ..., 1.

d) Tt is clear from Lemma 3.3.
Since the number of hyperplanes is

k k
D lizg1—1—ine o+ 1)+ Y (izg—1=(izs—1+1)+1)+(n—1—ig+1)+k—1=

s=1 s=1

k
:Z(igs—igs_g)—k—l-n—iQk‘f'k—l:n—l,
s=1

then
k d2s—1—1 ios—1
NN Hooon) N () Hig iz —1p))N
s=1 j=izs—2 Jj=i2s—1+1
n—1 k-1
() Hmego@mniny) 0 [ Hiiny) = Olisia iy i
J=i2k s=1

is an extremal ray of the cone ﬂaEN H(j, But
Olijiy..cigi—vin, € RyCa.

Thus
() HS =R Ca.
aeN

O

For using bellow, we recall that K —algebra K[A] is a normal domain ac-
cording to [9)].

Definition 4.2. Let R be a polynomial ring over a field K and F' be a finite
set of monomials in R. A decomposition

of the K— vector space K[F] is an admissible grading if k[F] is a positively
graded K— algebra with respect to this decomposition and each component
K[F); has a finite K— basis consisting of monomials.
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Theorem 4.3 (Danilov, Stanley). Let R = K|x1,...,2,] be a polynomial ring
over a field K and F be a finite set of monomials in R. If K[F| is normal, then
the canonical module wi () of K[F], with respect to an arbitrary admissible
grading, can be expressed as an ideal of K[F] generated by monomials

wipy = ({2 a e NANTi(RyA)}),
where A =log(F) and ri(RyA) denotes the relative interior of Ry A.
Corollary 4.4. The canonical module wi4) of K[A] is
Wra = (T122 .. 20 ) K[ A].
Thus the K— algebra K[A] is a Gorenstein ring.
Proof. Since

<Vipt1}, L > = < Vior1),0r(2),....00(0)}, L > =1 >0,

’

1

i1%2... 12k — 102k

forany 0 < p < n—1,1 < i < n—1 and since for any I;

192...92K 192k

there exist two hyperplanes H,, H  with a, a’ € N such that

< Iilig...izk,lizk,Ha >= I

1192.. 42k~ 192k

H, >=0,

then I € ri(RCa) is the only point in relative interior of the cone Ry Ca.
Thus the canonical module is generated by one generator,

Wra = (T122 .. 0 ) K[ A].
Therefore the K — algebra K[A] is a Gorenstein ring. O

Conjecture 4.5. Let nym € Nym < n,A; € [n],1 < i < m, and A=
{41, As,..., Ap}. We denote

A = {log(xs, Tiy...wi, ) | 11 € {1,2},42 € {2,3},...,in—1 € {n—1,n},i, € {1,n}},
N = {viri1ys Yok 1),0k @)ook (@)} | 0SB <n—1,2<i<n—1},
and
A= {log(zi, iy...ws,) | i1 € A1,i0 € Ag,. .. in_1 € Ap_1,in € Ay}

Then the base ring associated to transversal polymatroid presented by j, K[.Z],
is a Gorenstein ring if and only if there exists N C N such that

R,C;= ()] HS
aeﬁ

and H} with a € N are Just the facets of the cone R Cy.
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5 The description of some transversal polymatroids with
Gorenstein base ring in dimensions 3 and 4.

Dimension 3.

We consider the collection of sets A = {{1,2},{2,3},{3,1}}. The base
ring associated to transversal polymatroid presented by A is

2 2 2 2 2 2
R = K[A] = K[zix2, x571, 523, T3X2, T3, T3T1, T1T2T3).

From [9], R is a normal ring.
We can see R = K|[Q)], where
Q = N{(2,1,0),(1,2,0),(0,2,1),(0,1,2),(1,0,2), (2,0,1), (1,1, 1)}.
Our aim is to describe the facets of C'= R, Q.
It is easy to see that C has 6 facets, with the support planes given by the
equations:
H{l} :—x1 + 229 + 223 = 0,

H{Q} 1211 — a2 + 223 =0,
H{3} 1221 + 229 — 3 =0,

H{LQ} L X3 = O7
H{273} X = 0,
H{3,1} LT = 0.

Infact, C = H\,NH,y NH G NH 5 NH o NH L, Since (1,1, 1) s the
only point in 7i(R4Q), then, by Danilov-Stanley theorem, R is a Gorenstein
ring and wr = R(—(1,1,1)).

In order to obtain all the Gorenstein polymatroids of dimension 3, we
remove sequentially some facets of C. For instance, if we remove the facet
supported by Hysy, we obtain a new cone C” = Hzrl} ﬂHzg} QHEFLQ} OHEFQ,?,} N
H{+371}. It is easy to note that ¢’ = R, Q’, where Q' = @Q + N{(0,3,0)}.
Q@' is a saturated semigroup, and moreover, K[Q'] = K[A'], where A =
{{1,2},{1,2,3},{2,3}}. The Danilov-Stanley theorem assures us that R’ =
K[Q'] = K[A] is still Gorenstein with wp = R'(—(1,1,1)). (Remark. If we
remove the facet supported by Hysy or Hypy, instead of the facet supported
by H{z) we obtain a new set A" which is only a permutation of 1,2,3.)

Suppose that we remove from C’ the facet supported by Hsy. We ob-
tain a new cone C" = Hzrl} N Hfrlﬁ} N Hfrz,:s} N HEE’;,l}' It is easy to see that
C" = RyQ", where Q" = Q' + N{(0,0,3)}. Q" is a saturated semigroup,
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and moreover, K[Q"] = K[A"], where A” = {{1,2,3},{1,2,3},{2,3}}. The
Danilov-Stanley theorem implies that R” = K[Q"] = K[A"] is Gorenstein
and wgpr = R"(—(1,1,1)). Finally, we remove from C” the facet supported

by H{;y3. We obtain the cone C"' = Hfrlﬁ} N Hfrz,:s} N Hal} which is a

cone over Q"' = Q" 4+ N{(3,0,0)}. Q" is the saturated semigroup associated
to the ring R = K[A"], where A" = {{1,2,3},{1,2,3},{1,2,3}}. Also,
wrn = R"(—(1,1,1)).

Thus the base ring associated to the transversal polymatroids presented by
A, A", A" A" are Gorenstein rings and for Ay = {{1,2},{2,3}} the base ring
presented by A; is the Segre product k[t11, t12]*k[t21, t2o], thus is a Gorenstein
ring. All of them have dimension 3.

The computations made so far make us believe that all polymatroids with
Gorenstein base ring in dimension 3 are the ones classified above.

Dimension 4.

We consider the collection of sets A = {{1,2},{2,3},{3,4},{4,1}}. The
base ring associated to the transversal polymatroid presented by A is

R = K[.A] = K[l‘hxhﬂ?i:}l‘“l 11 € {1,2},i2 S {2,3},i3 S {3,4},i4 S {4, 1}]

From [9], R is a normal ring.
We can see R = K[Q], where

Q = N{log(xhxizxisxuﬂ ih € {]-a 2}7i2 € {2a3}7i3 € {374}ai4 € {4a 1}}

Our aim is to describe the facets of C = R Q. Using Normaliz we obtain
12 facets of the cone C' =R, Q:

Hppy t =z +®2 + 23 + 14 = 0,
H{Q} txp — 22+ a3+ 24 =0,
H{3} t T+ 22— 23+ 14 =0,
Hyyy w22 + 23 — 14 =0,

H{1,2} :—x1 — 22+ 3x3 + 314 =0,
H{2,3} :3x1 —x2 —x3 + 324 =0,
Hig 4y : 321 + 3wy — 23 — 24 = 0,
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H{174} :—x1 + 322+ 3x3 — x4 =0,

Hyy o3y :24 =0,
H{2,3,4} rxp =0,
Hy 34y 22 =0,
Hy 4y 3 =0.

It is easy to see that C = H+} OH+} OH+} OH{Z} mem} mHE,:s} N

(1 {2 3
+ + + + + + : :
H{3,4}0H{1,4}ﬂH{17273}ﬁH{2,374}ﬂH NH Since (1,1,1,1) is the

1,3,4 1,2,4}°
only point in 7i(R4+Q), then, by DaniléV—St}anley{ theérem, R is a Gorenstein
ring and wg = R(—(1,1,1,1)).

Now we want to proceed as in the case of dimension 3 to get a large class
of transversal polymatroids with Gorenstein base ring. Using Normaliz, we
can give a complete description, modulo a permutation, of the transversal

polymatroids with Gorenstein base ring when we start with

A= {{1,2},{2,3},{3,4},{4,1}}.

For A1 = {{1,2,3},{2,3},{3,4},{4,1}}, the associated cone is:
Cr=HiyNHG NHL NHE N HE N HE N HE g N HE 0N

+ +
Hpy 0y NV 5 0y

For A2 = {{1,2,3,4},{2,3},{3,4}, {4, 1}}, the associated cone is:
Co=Hi\NH NH 5 NHY g NHG W OHE 5oy NHG gy NHE 530
H{JFMA}.

For As = {{1,2,3,4},{2,3,4},{3,4},{4, 1}}, the associated cone is:
Cy=H\NHG NHY yNHG o VHE gy NHG o g NH g NH .

For Ay = {{1,2,3,4},{1,2,3,4},{3,4},{4,1}}, the associated cone is:
C4 = H?Q} N Ha»Q} N HJEZ,?)} N Ha,l?’} N H{27374} N H{17374} N H{17274}.

For As = {{1,2,3,4},{1,2,3,4},{1, 3,4}, {4, 1}}, the associated cone is:
7t + + + + +
Cs = Hppy O Hyp gy VHE 55y OV Hip 50y VHE 50y NV H 54y

For Ag¢ = {{1,2,3,4},{1,2,3,4},{1,2,3,4},{4,1}}, the associated cone is:
_ g+ + + + +
Co=Hiyay VH 5y DV H G 50y VHE 50y VHE 5 -
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For A7 = {{1,2,3,4},{1,2,3,4},{1,2,3,4},{1,2,3,4}}, the associated cone
+ +

oLt
is: C7 = H{17273} N H{27374} N H{17374} N H{17274}.

For .Ag = {{1 2,3}, {1 2,3}, {3 4}, {4 1}}, the associated cone is:

Cs = }mH{4}mH{m}mH{zg}mH{ma}mH{234}mH{134}mH{124}
For Ag = {{1 2,3},4{1,2,3},{1,3,4},{4,1}}, the associated cone is:
Coy = {z}ﬂH{} frz,:s}mH{ms}mH{234}ﬂH{134}mH{124}

For A0 = {{1,2,3},{1,2,3},{1,2,3,4}, {4, 1}}, the associated cone is:
_ gt + + + + +
Cro=Hyy N Hp 5y OV H G 05y VH G50y OV H G50y O Hi 20y

For A11 = {{1,2,3},{1,2,3},{1,3,4},{1, 3,4}}, the associated cone is:
Ci = H{g} N H{Z} N H{+17273} N H{+27374} N H{+17374} N H{+17274}.
For Ai12 = {{1 2,3}, {1 2,3},4{1,3,4},1{1, 3, 4}} the associated cone is:

Cia = {4}0H{123}0H }QH }QH

{2,3,4 {1,3,4 {1,2,4}"

The next four examples of transversal polymatroids with Gorenstein base
ring are different from those already described.
For A13 = {{1,2,3},{2,3,4}}, the Hilbert series of base ring K[A13] is

1+ 4t + 12

(1—=0)*
For A14 = {{1,2,3,4},{2,3,4}}, the Hilbert series of base ring K[A14] is:

HK[A13] (t) =

14 5t+t2

(1-0)
For A1s = {{1,2,3,4},{1,2,3,4}}, the Hilbert series of base ring K[A;s]

HK[A14] (t) =

is:
1+ 6t+t2

(1—1)
For A16 = {{1,2},{2,3},{3,4}}, the Hilbert series of base ring K[A;¢] is

HK[A15] (t) =

1+ 4t +¢2
(1—-t)*

It seems that also, in the dimension 4, our examples cover all transversal
polymatroids with Gorenstein base ring.

HK[Aw] (t) =
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