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MILNOR ALGEBRAS VERSUS MODULAR

GERMS FOR UNIMODAL HYPERSURFACE
SINGULARITIES

Bernd Martin and Hendrik Süß

Abstract

We find and describe unexpected isomorphisms between two differ-
ent objects associated to hypersurface singularities. One object is the
Milnor algebra of a function, while the other object associated to a sin-
gularity is the local ring of the flatness stratum of the singular locus in
a miniversal deformation, an invariant of the contact class of a defining
function. Such isomorphisms exist for unimodal hypersurface singular-
ities. However, for the moment it is badly understood, which principle
causes these isomorphisms and how far this observation generalizes.

0 Introduction

Let X0 ⊆ Cn be a germ of an isolated hypersurface singularity defined by an
analytic function f(x) = 0, f ∈ C{x}. An imported topological invariant of
the germ is the Milnor number, which can be computed as the C-dimension
of the so-called Milnor algebra Q(f) = C{x}/(∂f/∂x), [Mil68]. The Milnor
algebra carries a canonical structure of a C[T ]-algebra defined by the multi-
plication with f . A special version of the Mather-Yau theorem states that
the R-class (right-equivalence class) of the function f(x) with isolated critical
point is fully determined by the isomorphism class of Q(f) as C[T ]-algebra
[Mar85]. However, there is richer structure on the Milnor algebra connected
with the relative Milnor algebra associated to a universal unfolding F (x, s)
of the function f(x) and the associated Frobenius manifold. A moduli space
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functions with respect to R-equivalence can be constructed from it [Her02].
This will be not discussed here.

By computational experiments, we have found another occurence of the Milnor
algebra – this time connected with the K-class (the contact equivalence class)
of f(x), i.e. with the isomorphism-class of the germ X0. Our observation
concerns unimodal functions that are not quasihomogeneous. Here we consider
a miniversal deformation F : X → S of the singularity X0. It has a smooth
base space of dimension τ , with τ being the Tjurina number, i.e. the C-
dimension of the Tjurina algebra T (f) := Q(f)/fQ(f). We consider the
relative singular locus Sing(X/S) of X over S and its flatness stratum F :=
FS(Sing(X/S)) ⊂ S, which depends only on X0, up to isomorphism. The
flatness stratum is computable for sufficiently simple functions using a special
algorithm [Mar02]. Surprisingly, the local ring of the flatness stratum of a
unimodal singularity is isomorphic in all computed cases, either to the Milnor
algebra of the defining function (in case dim(F) = 0), or to the Milnor algebra
of a ’nearby’ function with non-isolated critical point, otherwise.

The notion of a modular stratum was developed by Palamodov, [Pal78], in
order to find a moduli space for singularities. It coincides with the flatness
stratum F = FS(Sing(X/S)) [Mar03], which has been described for unimodal
functions in [Mar06]. Only for some singularities from the T-series the modu-
lar stratum has expected dimension 1 with smooth curves and embedded fat
points as primary components. The combinatorial pattern of its occurrence
was found and the phenomenon of a splitting singular locus along a τ -constant
stratum was discovered. Here we extend our observation that the modular
stratum is the spectrum of the Milnor algebra of an associated non-isolated
limiting singularity.

The modular stratum is a fat point of multiplicity µ isomorphic to SpecQ(f)
in all other (computed) cases of T -series singularities. The same holds for
all 14 exceptional and non-quasihomogeneous unimodal singularities. In the
case of a quasihomogenous exceptional singularity, the modular stratum is a
smooth germ, hence corresponding to a trivial Milnor algebra.

For completeness, we will first recall the basic results on modular strata and
prove that they are algebraic. Second, we collect and complete results on the
modular strata of unimodal functions, which are already found in [Mar06].
Subsequently, some of the non-trivial unexpected isomorphisms are presented.
A further example of higher modality is discussed in section 4. Hypotheses
toward a possible generalization of these experimental results are formulated.
All computations were executed in the computer algebra system Singular
[GPS02].
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1 Characterizations of a modular germ

The definition of modularity was introduced by Palamodov, cf. for instance
[Pal78], and was simultaneously discussed by Laudal for the case of formal
power series under the name ’prorepresentable substratum’. While this notion
can be considered for any isolated singularity with respect to several defor-
mation functors or to deformations other objects, cf. [HM05], for simplicity
we restrict ourselves mostly to the following case: a germ of an isolated com-
plex hypersurface singularity X0 = {f(x) = 0} ⊆ Cn, or an isolated complete
intersection singularity (ICIS).
A deformation of X0 is a flat morphism of germs F : X −→ S with its spe-
cial fibre isomorphic to X0. It is called versal, if any other deformation of
X0 can be induced via a morphism of the base spaces up to isomorphism. It
is called miniversal, if the dimension of the base space is minimal. Miniver-
sal deformations exists for isolated singularities and are unique up to a non-
canonical isomorphism. In case of a hypersurface, a miniversal deformation
has a smooth base space, i.e. the deformations are unobstructed. It can be
represented as an ’embedded’ deformation F : X ⊂ Cn × S → S, S = Cτ ,
F (x, s) = f(x) +

∑τ
i=1 sαmα, where {m1, . . . ,mτ} ⊂ C{x} induces a C-basis

of the Tjurina algebra T (f).
Obviously, a miniversal deformation has not the properties of a moduli space,
because there are always isomorphic fibres or even locally trivial subfamilies.
Hence the inducing morphism of another deformation is not unique. One can,
however, look for subfamilies of a miniversal deformation with this universal
property.

Definition 1.1. Let F : X → S be a miniversal deformation of a complex
germ X0. A subgerm M ⊆ S of the base space germ is called modular if
the following universal property holds: If ϕ : T → M and ψ : T → S are
morphisms such that the induced deformations ϕ∗(F|M ) and ψ∗(F ) over T are
isomorphic, then ϕ = ψ.

The union of two modular sub germs inside a miniversal family is again mod-
ular. Hence, a unique maximal modular subgerm exists. Its is called modular
stratum of the singularity. Note, that any two modular strata of a singularity
are isomorphic by definition.

Example 1.2. If X0 is an isolated complete intersection singularity with
a good C∗-action, i.e. defined by quasihomogeneous polynomials, then its
modular stratum coincides with the τ -constant stratum and is smooth, cf.
[Ale85].

Palamodov’s definition of modularity is difficult to handle. It made it chal-
lenging to find non-trivial explicit examples. Even the knowledge of the basic



114 B. Martin and H. Süß

characterizations of modularity in terms of cotangent cohomology, which were
already discussed by Palamodov and Laudal, did lead to identify more exam-
ples.

Proposition 1.3. Given a miniversal deformation F : X → S of an isolated
singularity X0, the following conditions are equivalent for a subgerm of the
base space M ⊆ S:

i) M is modular.

ii) M is infinitesimally modular, i.e. injectivity of the relative Kodaira-
Spencer map T 0(S,OM ) −→ T 1(X/S,OS)|M holds.

iii) M has the lifting property of vector fields of the special fiber, i.e.

T 0(X/S,OS)|M −→ T 0(X0,C)|M

is surjective.

Note that T 0 corresponds to the module of associated vector fields, while
T 1 describes all infinitesimal deformations. It is given here by the (relative)
Tjurina algebra T 1(X/S) = T (F ) = C{x, s}/(F, ∂xF ).
As a corollary the tangent space of the modular stratum inside the tangent
space of S can be identified in terms of the cotangent cohomology. The in-
finitesimal deformations are identified with the tangent vectors to the base
space by construction of a miniversal deformation, i.e. T 1(X0) ∼= T0(S).

Lemma 1.4. Take the Lie bracket in degree (0, 1) of the tangent cohomology

[−,−] : T 0(X0) × T 1(X0) → T 1(X0).

Then an element t ∈ T 1(X0) is tangent to M ⊆ S, iff the Lie bracket map
[−, t] vanishes.

Example 1.5. For a quasihomogeneous singularity, the only non-trivial deriva-
tion in T 0(X0) is the Euler derivation δE =

∑
wixi∂/∂xi induced from the

weights wi of the coordinates. δE(f) = f holds. Take a tangent vector t ∈
T0(S) corresponding to a quasihomogenous g(x), then [δE , t] = class((degw(g)−
1)g(x)) ∈ T (f) is zero iff degw(g) = 1. Hence, the tangent space to the mod-
ular stratum corresponds to the zero graded subspace with respect to the
associated grading of T0(S) ∼= T 1(X0).

All objects are belonging to the category of analytic germs. But an isolated
singularity is always algebraic, i.e. its defining equations can be chosen as
polynomials. It is not ad hoc clear whether the modular stratum is algebraic,
too, and to our knowledge it has not been investigated yet. Here, we add the
proof for an isolated complete intersection singularity.
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Lemma 1.6. Let X0 be a germ of an isolated complete intersection singularity.
Then its modular stratum M(X0) ⊂ Cτ is an algebraic subgerm.

The proof uses the characterization of modularity as flatness stratum of the
Tjurina-module. A more general result holds under weaker assumptions than
ICIS, too, cf. [Mar03].

Proposition 1.7.
Let X0 ⊆ Cn be an isolated complete intersection singularity defined by p
equations f ∈ C{x}p with miniversal deformation F : X → S. Then the mod-
ular space coincides with the flatness stratum of the relative Tjurina module
T 1(X/S) = Op

X/(∂F/∂x)O
p
X as OS-module.

Proof of the lemma: We may choose the defining equations f = (f1, . . . , fp) of
the germ X0 as polynomials by finite determination of isolated singularities.
The affine variety defined by these polynomials V (f) ⊂ Cn has in general
other singularities than the zero point. But, we can choose the embedding
(not necessary minimal) such that Sing(V (f)) is concentrated at zero. This
holds if and only if global and local Tjurina numbers are equal

dimC(C[x]p/(fC[x]p, ∂f/∂x)) = dimC(C{x}p/(fC{x}p, ∂f/∂x)) = τ.

Consider the C[s, x]-module B := C[s, x]p/(FC[s, x]p, ∂F/∂x). The module B
is finite as a C[s]-module. Its flatness stratum over S at zero FS,0(B) ⊂ S, S :=
Cτ = Spec(C[s]), is a well-defined by the fitting ideal of a representation of B
as a C[s]-module. The C{s, x}-module T 1(X/S,OS) is finite as C{s}-module.
Consider the modules B0 := B/sB and T 1(X0) = T 1(X/S,OS)|s=0, then the
localization at x = 0 of B0 and T 1(X0) have identical module-structures which
are both already given as C[x]/(x)k-modules: B0 (x) = T 1(X0), hence the germ
at zero F(B)(s,x) coincides with the flattening stratum of T 1(X/S,OS).
At this place we add some remarks concerning the flatness criterion:

• The support of T 1(X/S,OS) is exactly the relative singular locus of the
mapping germ F : Cn × S −→ Cp × S over S. In case of a hypersurface,
i.e. p = 1, T 1(X/S,OS) coincides with the OS-algebra of the relative
singular locus, that is the relative Tjurina-algebra T (F ) = OSing(X/S).

• The support of the flatness-stratum FOS(Sing(X/S)) is the τ -constant
stratum, because T 1(X/S,OS) is a finite OS-module.

• It follows from a non-trivial result, cf. [LR76], that the germ of the
µ-constant stratum is irreducible. But the analogous statement for the
τ -constant stratum does not hold, see below. This phenomenon we have
called splitting singular locus inside the τ -constant stratum.
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• The possible reducibility of FOS(Sing(X/S)) causes that a ’correct’ τ -
constant stratum of a deformation has to be considered in the category
of deformations of multi-germs, or one has to be aware that under τ -
deformations a singular germ may split into a multi-germ.

2 Computing the modular germs of unimodal singulari-
ties

Applying the algorithm for computing the flatness stratum, cf. [Mar02], we
can compute the modular stratum of not too complicated singularities. More
precisely, the output of the algorithm is the k-jet of the germ of the flatness
stratum for some positive integer k. If the modular stratum is a fat point we
are done with some big number k. We cannot prove or even expect in general
to end up with an algebraic representation. But, it does occur, as visible in
the examples given below.
The classification of singularities starts with the simple singularities, the ADE-
singularities. These are all quasihomogeneous, their modular strata are all
trivial, i.e. simple points. Following the classification of functions by Arnol’d
[AGZV85], the next more complicated singularities are the unimodal ones.
They are characterized by the fact that in a neighborhood of the function
only R-orbit families occur, which are depending at most on one parameter.
Recall their classification: We have the T -series singularities and 14 so called
exceptional unimodal singularities. We may restrict their representation to
three variables up to stable equivalence (i.e. adding squares of new variables).
Any type is representing an one-parameter µ-constant family of R-equivalence
classes. The exceptional ones are all semi-quasihomogeneous. Thus, the µ-
constant family can be written as

fλ = f0(x) + λhf (x), λ ∈ C,

where f0 is quasihomogeneous and hf (x) := det( ∂2f0
∂xi∂xj

) is the Hesse form of
f0. Such a family splits into exactly two K-classes, one quasihomogeneous
(λ = 0) and one semi-quasihomogeneous (λ �= 0, we call it of Hesse-type),
and τ(f1) = µ(f1) − 1 holds. The modular strata of the quasihomogeneous
singularities are trivial (simple point), while the modular strata of the semi-
quasihomogeneous ones are fat points of multiplicity µ.
The singularities of the T -series are defined by the equations

Tp,q,r : xp + yq + zr + λxyz,
1
p

+
1
q

+
1
r
≤ 1.

For
1
p

+
1
q

+
1
r
< 1, λ �= 0, the singularity Tp,q,r is called hyperbolic and its
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K-class is independent of λ. Its Newton boundary has three maximal faces
and the singularity is neither quasihomogeneous nor semi-quasihomogeneous.
We have τ(Tp,q,r) = µ(Tp,q,r) − 1 = p+ q + r − 2.

In exactly three cases we have
1
p

+
1
q

+
1
r

= 1. These singularities are quasi-

homogeneous. They are called the parabolic singularities P8, X9 and J10

in Arnold’s notation or elliptic hypersurface singularities Ẽ6, Ẽ7 and Ẽ8, in
Saito’s paper [Sai74]:

Ẽ6 = P8 = T3,3,3 : x3 + y3 + z3 + λxyz, λ3 �= −33, τ = µ = 8;

Ẽ7 = X9 = T4,4,2 : x4 + y4 + z2 + λxyz, λ4 �= 26, τ = µ = 9;

Ẽ8 = J10 = T6,3,2 : x6 + y3 + z2 + λxyz, λ6 �= 2433, τ = µ = 10.

Note, that the families T4,4,2(λ) and T6,3,2(λ) are not contained in a miniversal
family. They form a double covering of the τ -constant line in a miniversal
deformation, which can be demonstrated by substituting z �→ z − (1/2)λxy:

x4 + y4 + z2 + λxyz �→ x4 + y4 + z2 − 1
4
λ2x2y2,

x6 + y3 + z2 + λxyz �→ x6 + y3 + z2 − 1
4
λ2x2y2,

i.e. these types are stable equivalent to functions of two variables. In all three
cases the K-equivalence relations on the λ-lines are induced by an action of a
finite group.
Some modular strata for the T -series are discussed as far as computed in
[Mar06]. We recall these results and will study their properties in more detail.
Obviously, the modular strata of the three parabolic (quasihomogeneous) func-
tion are smooth curves. The modular strata of the hyperbolic singularities are
more complicated. Some of them are 1-dimensional, others are just fat points.
The 1-dimensional modular strata are all reducible. The regularity of the
appearance of 1-dimensional components was already treated in [Mar06].
A hyperbolic singularity of type Tp,q,r is adjacent to another T-series singu-
larity if and only if all its three parameters (p, q, r) are greater or equal to the
parameters of the second. Hence any hyperbolic singularity is adjacent to at
least one parabolic singularity. Inspecting the list we find exactly six types of
hyperbolic singularities, which have the same Tjurina numbers as an adjacent
parabolic singularity: If two of the numbers (p, q, r) are the same as of the
parabolic one, the third had to differ by one. Such types are candidates for
possessing a 1-dimensional modular stratum.
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Proposition 2.1. The following six ’exceptional’ hyperbolic singularities are
adjacent to a parabolic singularity of same Tjurina number and have a τ-
constant line in their miniversal deformation:

T4,3,3 =⇒ P8,
T4,4,3, T5,4,2 =⇒ X9,
T6,3,3, T6,4,2, T7,3,2 =⇒ J10.

Indeed a τ -constant line is given by ft = f0+tg, where g stands for the missing
monomial of the associated parabolic singularity.

Example 2.2. ft := x4+y3+z3+xyz+tx3 is a τ -constant deformation of T4,3,3

with generic fiber type P8. The modular deformation ft fits into the λ-line of
P8(λ) at infinity: ft ∼K P8(t−1/3) for t �= 0, i.e. we get a threefold covering of
the λ-line, λ �= 0, by the t-line, t �= 0. We may think of a compactification of
the modular λ-line of P8 at infinity with a point corresponding to the T4,3,3-
singularity.

Example 2.3. The same holds for T4,4,3 and T5,4,2 with respect to X9. But,
this causes two different compactifications of the same modular family over the
punctured disc X9(1/λ), λ > N , at the special point zero to a modular family
over the disc. We obtain a first example of the failure of separation property
for a ’hypothetical’ moduli space of function with respect to the K-equivalence
that could be constructed by gluing representatives of modular germs. In all
three cases, the support of the modular stratum is the indicated τ -constant
line, but it has a non-reduced structure generated by an embedded fat point
at zero. Equations are given below.

The situation is more complicated for the three types associated with J10.
While the above observation holds similar for T7,3,2, we find new phenomena
for the types T6,4,2 and T6,3,3. The modular stratum of the first has another
line component and the second even has three line components.

Example 2.4. T6,4,2 is adjacent to J10 as well as to X9. While one line
component has simple type J10, the other line is a modular family defined
by the equation x6 + y4 + z2 + xyz + 2tx5 + t2x4. Here, the fiber at t �= 0
has a singularity of type X9. Hence it is not τ -constant as deformation of
germs (with zero-section). Why is it modular? The affine hypersurface V (ft)
has another singularity at point (−t, 0, 0) of type A1. The Tjurina numbers of
both singularities add to 10 and the A1-point approaches zero as t goes to zero,
i.e. ft is τ -constant as deformation of multi-germs. We call such a modular
deformation a τ -constant splitting line. The singular point of the special fiber
splits into two singularities under the deformation. The two line components
form the reduced modular stratum, which is completed again by a fat point
at zero.
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Example 2.5. T6,3,3 is adjacent to J10 as well as to P8. First we find two
τ -constant lines of identical simple type similar to example 2.2 and caused by
the additional symmetry of two equal parameters:

x6 + y3 + z3 + xyz + ty2 and, resp. x6 + y3 + z3 + xyz + tz2.

The third line is a splitting line with generic singularity P8 at zero and A2 at
(−t, 0, 0)

x6 + y3 + z3 + xyz + 3tx5 + 3t2x4 + t3x3.

The question arises, which of the T -series singularities have one splitting line
and which have more than one line component in their modular stratum.
What shape has the modular stratum of the other T -series singularities? The
following was shown in [Mar06].

Proposition 2.6. Any of the six ’exceptional’ hyperbolic singularities given
above is heading an exceptional sub-series of Tp,q,r, whose modular strata con-
tain a splitting line.

Comments:

• The six exceptional sub-series are

Tk,3,3, k > l = 4, Tk,4,2, k > l = 5, T4,4,k, k > l = 3,

Tk,3,2, k > l = 7, T6,k,2, k > l = 4, T6,3,k, k > l = 3.

• The families over the splitting lines with index k are given by (up to the
obvious permutation of variables)

ft := xp + yq + xyz + zl(x+ t)k−l.

• The fiber singularities over t �= 0 are a singularity of the associated
parabolic type and one singularity of type Ak−d−1.

• We find three cases with two splitting lines of same type due to the
symmetry of parameters, all associated to J10:

T6,6,2, T6,6,3, T6,3,3,

of splitting types J10 +A2, J0 +A3 and P8 +A2 respectively, and T4,4,4

has three lines of identical type X9 +A1.



120 B. Martin and H. Süß

• We have two types that have splitting lines to different parabolic types:

T6,4,2 has two lines of types X9 +A1 and, resp. J10,

T6,3,3 has one lines of type P8 +A2 and two lines of type J10.

These are cases of multi-component modular strata of the exceptional
sub-series.

• The modular strata of these singularities have besides the lines another
embedded primary component (a fat point). The only exception is
the highly symmetric singularity T4,4,4, whose modular stratum is the
transversal crossing of three lines.

All other computed examples of modular strata of T -series singularities, not
belonging to the above six exceptional sub-series, are fat points. We cannot
prove this in general, but the clear combinatorial pattern of the occurrence of
positive dimensional modular strata is a strong indication that the exceptional
sub-series together with the parabolic singularities are the only unimodal sin-
gularities with a 1-dimensional modular stratum.
As in the case of the 14 exceptional semi-quasihomogeneous singularities, the
fat points have multiplicity µ = µ(f), the Milnor number of the singularity.
It was already demonstrated that even the Hilbert function of the fat point
coincides with the Hilbert function of the Milnor algebra of the singularity, cf.
[Mar06].

3 New explicit results on modular strata

A careful inspection of the cases of many computation produced further re-
sults about the modular strata of unimodal functions. While the picture is
complete for all 14 exceptional functions, the new propositions for the T -series
singularities has been checked for all functions of Milnor number smaller than
45.
It is be seen from the examples that a general proof fails, because of the
complexity of the occurring equations. We discuss only some examples in full
detail.

Proposition 3.1. All 14 exceptional semi-quasihomogeneous unimodal singu-
larities fulfill: The local ring of their modular stratum is isomorphic to their
Milnor algebra.

Below we will discuss in detail the non-trivial isomorphisms for three singu-
larities.
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Proposition 3.2. All modular strata of hyperbolic singularities belonging to
an exceptional sub-series are isomorphic as long as they have one line com-
ponent only. The local rings of their modular strata are isomorphic to the
Milnor algebra of the non-isolated ’limiting singularity’ given by the equation
f∞ := xp + yq + xyz, i.e. omitting the ’varying monomial’.

This is a consequence of 3.4, provided the proposition can be proved for all
values of the parameters.

Proposition 3.3. The local algebra of a modular stratum is isomorphic to the
Milnor algebra of a non-isolated singularity for the five T -series singularities
of the exceptional subseries with 2 or 3 line-components:

Q(xyz) for T4,4,4, and T6,3,3

Q(x2 + xyz) for T6,4,2 and T6,6,2,

Q(x3 + xyz) for T6,3,3.

Again this follows from the equations below, see example 3.5.

Proposition 3.4. The equations of the modular stratum of a hyperbolic T -
series singularity of corank 3 are given by the formulas in Example 3.5.

We checked this result for all singularities of Milnor number smaller than 45 by
computation. Common formulas have been derived in terms of the parameters
(p, q, r). The cases 2 < p ≤ q ≤ r include three of the six exceptional sub-
series. The vanishing of one special coefficient results in some special cases the
occurrence of a splitting line. Similar formulas exist for T -series singularities
of corank 2, i.e. of type with an z2-term. Here, we omit these equations.

Example 3.5 (T-series). Let X0 be the germ of a hypersurface defined by
f = xp + yq + zr + xyz with p ≥ 3, q ≥ 3, r ≥ 3. Then

F = f + t1x
p−1 . . . tp−1x+ tp + u1y

q−1 . . . uq−1y + v1z
r−1 . . . vr−1z

defines a miniversal deformation X → S of X0, with OS = C{t, u, v}.
We obtained the following polynomials generating the ideal IM ⊂ OS of the
modular stratum M ⊂ S in all computed cases (p+ q + r ≤ 46).

IM = (f2, . . . , fp, g2, . . . , gq−1, h2, . . . , hr−1,

u1v1 − Pp(p, q, r)P (p, q, r)2tp−1
1 ,

t1v1 − Pq(q, r, p)P (p, q, r)2uq−1
1 ,

t1u1 − Pr(r, p, q)P (p, q, r)2vr−1
1 ),
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where

fi := ti − Pi(p, q, r)ti1, gi := ui − Pi(q, r, p)ui
1, hi := vi − Pi(r, p, q)vi

1,

and with coefficients

Pi(p, q, r) :=
∏i

k=1 P (p− k + 1, q, r)
i!P (p, q, r)i

and

P (p, q, r) := pqr(1 − 1
p
− 1
q
− 1
r
).

A coefficients Pp(p, q, r) is zero if and only if 1
k + 1

q + 1
r = 1 for some 1 ≤

k ≤ p. This being the case exactly when Tp,q,r belongs to an exceptional
sub-series T3,3,k, T4,4,k, T6,3,k. For T4,4,4, T6,6,3 and T6,3,3 more than one of
the coefficients Pp(p, q, r), Pq(q, r, q), Pr(r, p, q) is zero and we obtain OM to be
isomorphic to Q(xyz) for T4,4,4, and to Q(x3 +xyz) for T6,3,3 and T6,6,3. Only
one coefficient Pr(r, q, p) vanishes for all other singularities of an exceptional
sub-series. In this case all local algebras OM are isomorphic toQ(x3+y3+xyz),
or to Q(x4 +y4 +xyz), or to Q(x6 +y3 +xyz) respectively. If the singularity is
not from an exceptional sub-series, none of the coefficients vanishes, and the
local algebra of the modular stratum is isomorphic to the Milnor algebra Q(f)
of the function itself. The isomorphisms are induced by a diagonal change of
variables

t1 �→ αt1, u1 �→ βu1, v1 �→ γv1.

In the next example we shall take a closer look at three singularities from
the 14 exceptional semi-quasihomogeneous cases. The isomorphisms between
the local rings of their modular strata and the Milnor algebras of the defining
functions are listed, which turn out to be rather complicated. They are all
computed with a special algorithm.

Example 3.6 (W12, S11 and Z11). We start with f = x4 + y5 + x2y3 and
choose (b11, . . . , b1) := (1, x, x2, y, xy, x2y, y2, xy2, xy3, y4) as representatives
of a C-basis of the Tjurina algebra T (f). Now, F = f + s1b1 + . . .+ s11b11 ∈
C{x, y} ⊗ OS defines a miniversal deformation X → S of X0.
The ideal IM ⊂ OS of the maximal modular subgerm M ⊂ S, computed with
Singular is gives by the following completely interreduced generators:
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s41 − 30445
7392

s21s
2
2 +

4240139
1897280

s31s
2
2,

s32 − 2696
48125

s31s2,

s11 +
11699
144375

s31s
2
2,

s10 − 3904
48125

s31s2,

s9 +
52
625

s31 −
951
7000

s1s
2
2 +

592717
8421875

s21s
2
2 −

119567878949
5187875000000

s31s
2
2,

s8 +
1304
5775

s21s
2
2 −

1411481
18528125

s31s
2
2,

s7 − 618
1925

s21s2 +
1024869
37056250

s31s2,

s6 +
6
25
s21 +

3
80
s22 −

21
3125

s31 +
531

20000
s1s

2
2 −

31001023
5390000000

s21s
2
2,

+
25063327841

207515000000000
s31s

2
2,

s5 − 2
25
s31 +

9
16
s1s

2
2 −

114057
539000

s21s
2
2 +

6306416817
83006000000

s31s
2
2,

s4 − 6
7
s1s2 +

1227
67375

s21s2 −
16557777

2593937500
s31s2,

s3 − 2
5
s21 +

9
16
s22 −

9
625

s31 −
621
4000

s1s
2
2 +

49325643
1078000000

s21s
2
2,

− 644553838881
41503000000000

s31s
2
2.

OM is a zero-dimensional local algebra of embedding dimension 2. A minimal
embedding is defined by the two polynomials printed in bold. The mapping

ϕ : OM → C{x, y}/(∂f
∂x ,

∂f
∂y )

s1 �→ 2668050
2051993

y − 11759762521878525
25638801731506361

y2

s2 �→ 2134440
2051993

√
−1386

6089
· x

defines an isomorphism between this local algebra and the Milnor algebra of
f .
Note that this mapping induces an isomorphism OM/(s11) → T (f), too.
Hence, the maximal modular subgerm in the truncated miniversal deformation
(omitting the deformation of the monomial 1) is isomorphic to the singular
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locus of Xf . This holds for all our examples – the isomorphism to the Milnor
algebra of f , or of f∞ respectively induces an isomorphism OM/(sτ ) ∼= T (f),
or OM/(sτ ) ∼= T (f∞) repectively.
We give the isomorphism for Z11 and S11:
name: S11

equation: f = y2z + xz2 + x4 + x3z
deformation: F = f + s1x

2z + s2x
2y + s3x

3 + s4xz + s5z + s6xy+
+s7y + s8x

2 + s9x+ s10
isomorphism: s1 �→ − 365272112

26232672 x+ 365273112·19·163
212233673 z

s2 �→ −
√
− 3135575115

215235675 y

s3 �→ 395373113

210233673 z + 311547311313
210234674 x2−

− 39537311341·307·587·32677569187
228237677 y2

− 39547311371·1759·516147191239
227237677 xz−

− 39547311331·2280560407042079
230237677 z2

name: Z11

equation: f = x3y + xy4 + y5

deformation: F = f + s1y
4 + s2xy

3 + s3y
3 + +s4xy2 + s5y

2 + s6xy+
+s7ys8x2 + s9x+ s10

isomorphism: s1 �→ − 2283374114

23994 x− 229327411423·53·4405133
5323996 y2

s2 �→ − 2203273113173·5879
5223994 x+ 2203373113

23993 y

+ 2187311359·569·49081·52566671·113887106221771273
325723997271 xy

+ 2187311341·13677187·109919494930768288379
3·5523996271 y2

4 Further examples and questions

We have calculated modular strata for singularities of higher modality, too.
The results raise hope that our observation generalizes. We give one example
of a singularity of modality greater two.

Example 4.1. We consider the hypersurface singularity given by the semi-
quasihomogeneous singularity of Hesse type f = x10 +y3 +x4y2. A miniversal
deformation is defined by

f = s1 + s2x+ s3x
2 + s4x

3 + s5x
4 + s6x

5 + s7x
6 + s8x

7 + s9x
8 + s10y

+s11xy + s12x
2y + s13x

3y + s14x
4y + s15x

5y + s16x
6y + s17x

7y

The maximal modular subgerm M in the base this deformation is given by
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the ideal

JM = (s1 + O(s2),
...

s8 + O(s2),
s29 − 9

256s
4
17s9 − 29342801

335104000s
6
17s9 − 9963

343146496s
8
17 − 831341932017399

3283872972800000s
10
17,

s10 + O(s2),
...

s16 + O(s2),
s917 − 67372

106029s
7
17s9).

The local ring OM = O17/JM is again isomorphic to Q(f) via

ϕ : OM → C{x, y}/(∂f
∂x ,

∂f
∂y ),

s17 �→ a1x,

s9 �→ a2by + a3x
4 + a4x

2y + a5x
6 + a6x

4y + a7x
8,

with coefficients

a1 = 8 4

√
17943573032

1269497754275 ,

a2 = 2261952
84215

√
17943573032

1269497754275 ,

a3 = 753984
84215

√
17943573032

1269497754275 + 1291937258304
1269497754275 ,

a4 = 9220238621242928785663198981632
1007265342568292675484765625 ,

a5 = 25742505984143872
158687219284375

√
17943573032

1269497754275 + 3073412873747642928554399660544
1007265342568292675484765625) ,

a6 = 547510092328050056695293440974819328
377724503463109753306787109375

√
17943573032

1269497754275 ,

a7 = 547510092328050056695293440974819328
1133173510389329259920361328125

√
17943573032

1269497754275 .

In all examples, we have considered a function f defining an isolated hyper-
surface singularity X0, and relate its modular stratum to the Milnor algebra
of f . If we take another K-equivalent function f ′, the isomorphism-class of the
modular stratum does not change by definition. While µ(f) is an invariant
of K-class, this is in general not true for the isomorphism-class of the Milnor
algebra [BY90].
Nevertheless, for singularities with τ = µ− 1, we have the following lemma.
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Lemma 4.2. Let be f an analytic function with isolated critical point with
τ(f) = µ(f) − 1, then its Milnor algebra is K-invariant.

Proof. We have a decomposition of Q(f) as a vector space Q(f) ∼= T (f)⊕C·f .
Look at the exact sequence

0 → Ann(f) → Q(f)
·f−−−−→ Q(f) → T (f) → 0.

Then Ann(f) has C-dimension µ − 1 and equals the maximal ideal mQ(f) =
mT (f) ⊕ C · f of Q(f).
The multiplication induces

(g + c · f) · (g′ + c′ · f) = gg′ + ((c′g(0) + cg′(0)) · f) (1)

with c, c′ ∈ C and g, g′ ∈ T (f). Assume f ′ ∼K f , then µ(f ′) = µ(f) and
τ(f ′) = τ(f) hold. Moreover, we have an isomorphism ϕ : T (f) ∼= T (f ′).
Thus Q(f) and Q(f ′) are isomorphic as vector spaces via

T (f)⊕ C · f −→ T (f ′) ⊕ C · f ′,
g + c · f �→ ϕ(g) + c · f ′.

Because of (1) this linear isomorhism is indeed an algebra homomorphism.

Due to the last lemma we can speak of the Milnor algebra of a hypersurface
singularity in the case τ = µ−1. Hence we can state the following conjecture,
motivated by our examples.

Hypothesis 4.3. Consider a hypersurface singularity f with τ = µ−1. Then
the local ring of the modular stratum OM(f) is of Milnor type, i.e. there exists
a germ of an analytic function f ′ such that Q(f ′) ∼= OM . If f has an Artinian
modular stratum, then the local ring of the modular stratum is isomorphic to
the Milnor algebra of f itself.

We found the modular strata to be of Milnor type in all computed exam-
ples. So one could ask more generally: For which singularities is the modular
stratum of Milnor type?

References

[Ale85] A.G. Alexandrov, Cohomology of a quasihomogeneous complete intersection, Izv.
Akad. Nauk SSSR Ser. Mat., 49(3)(1985), 467-510.

[AGZV85] V.I. Arnol’d, S.M. Gusein-Zade, A.N. Varchenko, Singularities of differentiable
maps Vol. I, Birkhäuser, 1985.
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Singularites”, Birkhäuser Verlag, Basel, 2006, 219-228.

[Mil68] Milnor, J., Singular points of complex hypersurfaces, Princeton University Press,
1968.

[Pal78] V.P. Palamodov, Moduli and versal deformations of complex spaces, in: Varietes
analytiques compactes, LNM 683 Springer-Verlag, Berlin-New York, 1978, 74-115.

[Sai74] K. Saito, Einfach-elliptische Singularitäten, Invent. Math., 23(1974), 289-325.
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