

An. Şt. Univ. Ovidius Constanța

A NOTE TO THE UNIPOTENCY OF THE IDENTITY COMPONENT OF THE GROUP OF ALGEBRA AUTOMORPHISMS*

Miroslav Kureš

Abstract

The properties of the group of automorphisms of local algebra are investigated in the following way: an algebra is called dwindlable, if there is an infinite sequence of automorphisms converging to the canonical epimorphism onto the underlying field; we confront this property with the possessing of a non-trivial torus of the identity component of the group of algebra automorphisms.

Introduction

We study local commutative finite dimensional algebras A over an infinite field K with characteristic 0, we also assume that they are split, i.e. $A/J_A = K$, where J_A is the Jacobson radical of A. Dominantly, the identification

$$K[x_1,\ldots,x_n]/\mathfrak{i}$$

is used, $K[x_1, \ldots, x_n]$ being the algebra of polynomials in n indeterminates over K and i an ideal. (We write shortly *algebra* hereafter.) Special cases of such algebras are *Weil algebras* ($K = \mathbb{R}$) playing an important role in modern differential geometry. Geometric problems, namely classifications of natural lifts to bundles of contact elements, (cf. [3], [4]) also initiate the problem of a description of algebras A having the *fixed point subalgebra*

 $SA = \{a \in A; \phi(a) = a \text{ for all } \phi \in \operatorname{Aut} A\}$

Key Words: Local algebra, Weil algebra, automorphisms, fixed point subalgebra 2000 Mathematical Subject Classification: Primary 13H99, 16W20, Secondary 58A32 Received: January, 2007

^{*}Published results were acquired using the subsidization of the Ministry of Education, Youth and Sports of the Czech Republic, research plan MSM 0021630518 "Simulation modelling of mechatronic systems".

¹⁰⁵

trivial, i.e. isomorphic to K. Some known results about this problem and the correspondence of SA with natural lifts of geometric objects to bundles of contact elements are described in [3], [4] and [5].

We reckon two papers about automorphism groups of commutative algebras as key for our research: the first written by R. David Pollack [6] and the second written by Francisco Guil-Asensio and Manuel Saorín [1]. Both are indicative of the identity component G_A as a crucial tool for a systematic approach to properties of A.

For an algebra A in question, we call the *order* of A the minimum ord(A) of the integers r satisfying $J(A)^{r+1} = 0$. Further, the integer

$$w(A) = \dim(J(A)/J^2(A))$$

is called the *width* of A. Let Aut A be the group of automorphisms of A, id_A the identical automorphism and $G_A \ni \operatorname{id}_A$ the connected *identity component* of Aut A. A group which is simultaneously an algebraic set, i.e. a locus of zeros of a collection of polynomials, is called an *algebraic group*; Aut A is naturally an algebraic group. We have a canonical morphism of algebraic groups

$$\epsilon_A \colon \operatorname{Aut} A \to \operatorname{GL}(J(A)/J^2(A))$$

and its kernel U_A is then a closed subgroup consisting of merely unipotent elements (i.e. such automorphisms ϕ for which $\mathrm{id}_A - \phi$ is a nilpotent endomorphism of A); of course, $\mathrm{GL}(J(A)/J^2(A))$ reads as $\mathrm{GL}(\mathbf{w}(A), K)$. The group U_A is connected and hence contained in G_A .

Let D(n, K) be the subgroup of diagonal matrices of the linear group GL(n, K). When T is an algebraic group isomorphic to D(m, K) for some m, then T is said to be a *torus*. The dimension of the maximal tori of an algebraic group is called the *rank*; if G_A does not contain any torus (G_A is of rank 0), then $G_A = U_A$. We recall some further results.

- **Proposition 1** ([1]). A. The morphism ϵ_A is surjective if and only if $A = K[x_1, \ldots, x_n]/\langle x_1, \ldots, x_n \rangle^{r+1}$ for some $r \in \mathbb{N}$.
 - B. The image of the morphism ϵ_A contains D(n, K) if and only if A is monomial.
 - C. If an algebra A with w(A) = 2 have $G_A = U_A$, then $ord(A) \ge 4$.

As K is contained in A-algebra, the canonical algebra homomorphism $\kappa_A \colon A \to K$ can be viewed as the endomorphism $\kappa_A \colon A \to A$. We say that A is *dwindlable*, if there is an infinite sequence $\{\phi_n\}_{n=1}^{\infty}$ of automorphisms $\phi_n \in \text{Aut } A$ such that $\phi_n \to \kappa_A$ for $n \to \infty$. For the sake of completion, we recall also some our existing results about the fixed point subalgebra

 $SA = \{a \in A; \phi(a) = a \text{ for all } \phi \in \operatorname{Aut} A\}$, namely with respect to its triviality (the isomorphism with K).

- **Proposition 2** ([4], [5]). A. If A is a dwindlable algebra, then SA is trivial. Nevertheless, there are also non-dwindlable algebras with trivial SA.
 - B. If $U_A = G_A$, then SA can be both nontrivial and trivial.

New results

Propositions 1 and 2 formated conjectures giving a rise of this paper. We have obtained the following.

Proposition 3. If A is dwindlable, then $G_A \supseteq U_A$.

Proof. We have an infinite sequence $\{\phi_n\}_{n=1}^{\infty}$ of automorphisms $\phi_n \in \operatorname{Aut} A$ such that $\phi_n \to \kappa_A$ for $n \to \infty$. It is not restricting to consider all elements of this sequence as different. In general, individual automorphisms ϕ_n lie in diverse connected components of the group Aut A, which are the cosets modulo the identity component G_A , cf. [1]. However, in a certain connected component H there is a subsequence $\{\phi_{n_k}\}_{k=1}^{\infty}$, $n_1 < n_2 < \ldots$, with the same limit. The component H is a coset modulo G_A in Aut A, hence there exists an automorphism $\iota \in \operatorname{Aut} A$ such that $H = \iota(G_A)$. Applying ι^{-1} , we have the sequence $\{\iota^{-1}(\phi_{n_k})\}_{k=1}^{\infty}$. All automorphisms ϕ of A are of the form

where P_i are polynomials without absolute terms. It must be

$$\lim_{k \to \infty} \phi_{n_k}^1 = \dots = \lim_{k \to \infty} \phi_{n_k}^n = 0;$$

nevertheless, the automorphism ι^{-1} is of the form (1), too: it follows the sequence $\{\iota^{-1}(\phi_{n_k})\}_{k=1}^{\infty}$ has the limit κ_A as well and, moreover, all its elements belong to G_A . However it is impossible that all these elements are in the kernel with respect to ϵ . (Surely, only automorphisms with $P_i(x_1, \ldots, x_n) = x_i + Q_i(x_1, \ldots, x_n)$, $i = 1, \ldots, n$, are in this kernel, Q_i being polynomials without absolute and linear terms; indeed, it is impossible to choose a sequence converging to κ_A formed only with automorphisms as above.) Thus, $G_A \rightleftharpoons U_A$.

Our second result is concentrated on algebras of the width 2. Their important role in algebraic research is known and we refer to [1] for a number of various results.

Proposition 4. If A is an algebra with w(A) = 2 and rank(Aut A) > 0, then A is dwindlable.

Proof. It is easy to verify that homogeneous (i.e. the ideal i in the expression $A = K[x_1, \ldots, x_n]/i$ is homogeneous) algebras are dwindlable, cf. [4]. So, we assume A is non homogeneous. The condition rank(Aut A) > 0 reads as the connected identity component G_A of Aut A contains a nontrivial torus. It means that

$$\begin{array}{ccccc} & 1 \stackrel{\phi^0}{\mapsto} & 1 \\ & x \stackrel{\phi^1}{\mapsto} & \alpha x \\ & y \stackrel{\phi^2}{\mapsto} & \beta y \end{array}$$

 ϕ

(where at most one of the coefficients α , β equals 1) is an automorphism (in a suitable basis). Let $\alpha \neq 1$. It is no restriction to assume $\alpha < 1$ (because we can take the inverse automorphism in the contrary case).

First, we look into the case $\beta \ge 1$. As A is non-homogeneous, there is a non-homogeneous binomial P with the following properties:

- (i) $P \in \mathfrak{i}$
- (ii) if $P = M_1 + M_2$ is a decomposition of P into monomials M_1 , M_2 , then $M_1 \notin \mathfrak{i}$ and $M_2 \notin \mathfrak{i}$

To show the existence of a P as above, we argue as follows: a non-homogeneous polynomial belonging to i, whose monomials are not belonging to i, satisfying (i) and (ii) exists in every set of generators of i; of course, it is a binomial in a suitable basis. As $\mathbf{i} = \mathbf{j} + J(A)^{\operatorname{ord}(A)+1}$, (J(A) being the Jacobson radical generated by x and y and \mathbf{j} an ideal generated by polynomials of the order at most $\operatorname{ord}(A)$), the degree of such a binomial is less or equal $\operatorname{ord}(A)$. The monomials M_i are of the form $M_i = k_i x^{a_i} y^{b_i}$, i = 1, 2. If we evaluate $\phi(P)$, we obtain

$$\phi(M_1) = k_1 \alpha^{a_1} \beta^{b_1} x^{a_1} y^{b_1}, \quad \phi(M_2) = k_2 \alpha^{a_2} \beta^{b_2} x^{a_2} y^{b_2}.$$

As ϕ is an automorphism,

$$\alpha^{a_1}\beta^{b_1} = \alpha^{a_2}\beta^{b_2}$$

holds. If $\beta = 1$, then

$$a_1 = a_2 \text{ and } b_1 \neq b_2. \tag{2}$$

If $\beta > 1$, then

$$a_1 < a_2, b_1 < b_2 \text{ or } a_1 > a_2, b_1 > b_2.$$
 (3)

We see that we can reorder (regardless of both incoming cases (2) and (3)) the monomials as follows:

 $P = \hat{M}_1 + \hat{M}_2,$

where $\hat{a}_1 \leq \hat{a}_2$, $\hat{b}_1 < \hat{b}_2$ (we write $\hat{M}_i = \hat{k}_i x^{\hat{a}_i} y^{\hat{b}_i}$, i = 1, 2). It means deg $\hat{M}_2 = \hat{a}_2 + \hat{b}_2 = \deg \hat{M}_1 + N = \hat{a}_1 + \hat{b}_1 + N$, $N \in \mathbb{N}$. Now, if we multiply P with

$$\frac{\hat{k}_2}{\hat{k}_1} x^{\hat{a}_2 - \hat{a}_1} y^{\hat{b}_2 - \hat{b}_1},$$

we obtain

$$P' = \hat{M}'_1 + \hat{M}'_2 = \hat{k}_2 x^{a_2} y^{b_2} + \frac{\hat{k}_2^2}{\hat{k}_1} x^{2\hat{a}_2 - \hat{a}_1} y^{2\hat{b}_2 - \hat{b}_1}$$

Now, $\deg P' = \deg \hat{M}'_2 = 2\hat{a}_2 - \hat{a}_1 + 2\hat{b}_2 - \hat{b}_1 = 2 \deg \hat{M}_2 - \deg \hat{M}_1 = \deg \hat{M}_1 + 2N$. It reads that the polynomial P' has higher degree than P. If $\hat{M}'_2 \in \mathfrak{i}$, then also $\hat{M}'_1 = \hat{M}_2 \in \mathfrak{i}$, a contradiction. If not, we use the binomial P' in place of P and repeat the procedure. The process stops with the mentioned contradiction because of the form of \mathfrak{i} . Hence $\beta < 1$.

Finally, we construct the infinite sequence of automorphisms from powers of ϕ . Evidently, $\{\phi^n\}_{n=1}^{\infty}$ (with $\alpha < 1, \beta < 1$) is coming to κ_A .

We have the following corollary.

Proposition 5. If A is an algebra with w(A) = 2 and rank(Aut A) > 0, then SA is trivial.

Proof. This follows directly from Proposition 2A and Proposition 4. \Box

Acknowledgement. The author would like to thank the referee for his useful comments that improved the paper.

References

- Guil-Asensio, F., Saorín, M., The group of automorphisms of a commutative algebra, Math. Z., 219(1995), 31–48.
- Humphreys, J.E. Linear algebraic groups, Graduate Texts in Mathematics, New York - Heidelberg - Berlin, Springer-Verlag, 1981.

- [3] Kureš, M., Mikulski, W.M., Natural operators lifting vector fields to bundles of Weil contact elements, Czech. Math. J., 54(129)(2004), 855–867.
- [4] Kureš, M., Mikulski, W.M., Natural operators lifting 1-forms to bundles of Weil contact elements, Bull. Irish Math. Soc., 49(2002), 23–41.
- [5] Kureš, M., Sehnal, D., The order of algebras with nontrivial fixed point subalgebras, Preprint.
- [6] Pollack, R.D., Algebras and their automorphism groups, Comm. Alg., 17(8) (1989), 1843–1866.

Institute of Mathematics Brno University of Technology, Technická 2, 61669 Brno, Czech Republic E-mail: kures@fme.vutbr.cz