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A GENERALIZATION OF A RESULT OF

FERMAT

Alexandru Gica

Abstract

The aim of this paper is to generalize a result of Fermat. For a prime
p, we find all the nonnegative integers a such that 0 ≤ a ≤ 4p − 1 and
4pk + a does not divide pn + 1 for all nonnegative integers k, n.

A tribute: I was not a student of Professor D. Popescu and I am not
working in the same field as him, but we were colleagues for several years. I
admire his exactingness, his critical sense, the fact that he is a hard working
person and that he succeeded in the task of preserving the community centered
around the ”‘Algebra Seminar”’ (carrying on further the activity of Professor
Nicolae Radu). It is also worthy to mention that he guided many younger
mathematicians in their research.

1 Introduction

Fermat proposed the following statement: there are no prime divisors
p = 12k + 11 of the number 3n + 1. Fermat did not provide a proof for
this statement. In 1929 S. S. Pillai proved a more general result: there are no
positive divisors 12k+11 of the number 3n + 1.

The main aim of this paper is to solve the following problem.
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Problem. Let p be a prime number. Which are the numbers a such that
0 ≤ a ≤ 4p − 1 and that 4pk + a does not divide pn + 1 for any nonnegative
integers k, n?

We dealt with some cases of this problem in [1] (Chapter 10, Problem no.
33) and in [2]. The tools for solving this problem are quadratic reciprocity
law and the theorem of Dirichlet concerning the primes in an arithmetical
progression.

2 The case p=2

This is the easiest case. We will show the following result.

Theorem 1. Let a ∈ {0, 1, 2...7}. Then 8k + a does not divide 2n + 1 for
all nonnegative integers k, n only for the values a = 0, 4, 6, 7.

Proof. The only case which is worthy to prove is a = 7. Let us suppose that
the statement is not true and that there exist n, k ∈ N such that 8k+7|2n +1.
Let us consider the standard decomposition of 8k + 7 = pα1

1 · · · pαr
r . We have

2n ≡ −1 (mod pi), ∀i = 1, r.

If n is even then −1 is quadratic residue modulo pi ∀i ∈ 1, r. We obtain that
pi ≡ 1 (mod 4) ∀i = 1, r and that 8k + 7 = pα1

1 · · · pαr
r ≡ 1 (mod 4), which is

obvious a contradiction.
If n is odd, then

−2 ≡ (2
n+1
2 )2.

It results that
(

−2
pi

)
= 1 and that pi ≡ 1, 3 (mod 8)∀i = 1, r. We obtain the

contradiction 8k + 7 ≡ 1, 3 (mod 8).

3 The case p ≡ 1 (mod 4)

We will show the following result.

Theorem 2. Let p be a prime number p ≡ 1 (mod 4) and a a nonnegative
integer such that 0 ≤ a ≤ 4p − 1. The numbers pn + 1 are not multiples of
4pk + a, ∀k, n nonnegative integers only for
i) p|a or
ii) 4|a or
iii) a ≡ 3 (mod 4) and

(
a
p

)
= 1



A generalization of a result of Fermat 99

Proof. If i) or ii) holds, then the statement of the theorem is obvious.
Let us suppose now that the case iii) holds and the statement of the theorem
is not true; that is, there exist the nonnegative integers n, k such that 4pk +
a|pn + 1. Let us consider the standard decomposition of 4pk + a = pα1

1 · · · pαr
r .

We have
pn ≡ −1 (mod pi), ∀i = 1, r.

If n is even then −1 is a quadratic residue modulo pi ∀i = 1, r. We obtain
that pi ≡ 1 (mod 4) ∀i = 1, r and that 4pk + a = pα1

1 · · · pαr
r ≡ 1 (mod 4),

which is an obvious contradiction since 4pk + a ≡ a ≡ 3 (mod 4). If n is odd,
then

−p ≡ (p
n+1
2 )2 (mod pi).

It results that
(

−p
pi

)
= 1 and that

(
pi

p

)
=

(
p
pi

)
=

(
−1
pi

)
∀i = 1, r. We obtain

the following equalities

1 =
(

a

p

)
=

(
4pk + a

p

)
=

r∏
i=1

(
pi

p

)αi

=
r∏

i=1

(−1
pi

)αi

=
( −1

4pk + a

)
= −1.

We obtained a contradiction. In the previous formulas we used also the Jacobi
symbol, the fact that a ≡ 3 (mod 4) and

(
a
p

)
= 1. In the sequel we will show

that the remaining cases are not solutions for our problem.
1. The case a odd, not multiple of p and quadratic nonresidue

modulo p. Since (4p, a) = 1, we know from the theorem of Dirichlet that
there is a prime q such that q = 4pk + a, where k is a nonnegative integer.
From Euler’s Criterion, we know that

p
q−1
2 ≡

(
p

q

)
=

(
q

p

)
=

(
a

p

)
= −1 (mod q).

Therefore we have that q = 4pk + a divides p
q−1
2 + 1 and a is not a solution

for our problem.
2. The case a ≡ 1 (mod 4), not multiple of p and quadratic residue

modulo p. Let b be an integer which is not a multiple of p and quadratic
nonresidue modulo p. Using the theorem of Dirichlet and the Chinese re-
mainder theorem, we find two different primes p1 and p2 such that p1 ≡ b
(mod p), p1 ≡ 3 (mod 4), bp2 ≡ a (mod p), p2 ≡ 3 (mod 4). We have p1p2 ≡ a
(mod 4p), p1p2 = 4pk + a, where k is a nonnegative integer. We choose
n = p1−1

2 · p2−1
2 which is an odd positive integer. Using again Euler’s Crite-

rion, we obtain

p
p1−1

2 ≡
(

p

p1

)
=

(
p1

p

)
=

(
b

p

)
= −1 (mod p1)



100 A. Gica

and

p
p2−1

2 ≡
(

p

p2

)
=

(
p2

p

)
=

(
b

p

) (
bp2

p

)
= −

(
a

p

)
= −1 (mod p2).

We have pn = (p
p1−1

2 )
p2−1

2 ≡ (−1)
p2−1

2 = −1 (mod p1). We used the above
congruences and the fact that p2 ≡ 3 (mod 4). In the same way we prove that
pn ≡ −1 (mod p2). We have 4pk + a = p1 · p2|pn + 1 and this proves that this
a is not a solution for our problem.

3. The case a ≡ 2 (mod 4), not multiple of p, a = 2b and b is
quadratic nonresidue modulo p.

Since (2p, b) = 1, we know from the theorem of Dirichlet that there is a
prime q such that q = 2pk + b, where k is a nonnegative integer. From Euler’s
Criterion, we know that

p
q−1
2 ≡

(
p

q

)
=

(
q

p

)
=

(
b

p

)
= −1 (mod q).

From here we have 2q = 4pk + a divides p
q−1
2 + 1 and a is not a solution for

our problem.
4. The case a ≡ 2 (mod 4), not a multiple of p, a = 2b and b is

quadratic residue modulo p. Let c be an integer which is not a multiple
of p and a quadratic nonresidue modulo p. Using the theorem of Dirichlet
and the Chinese remainder theorem, we find two different primes x, y such
that x ≡ c (mod p), x ≡ 3 (mod 4), cy ≡ b (mod p), y ≡ 3 (mod 4). We have
2xy ≡ a (mod 4p), 2xy = 4pk+a, where k is a nonnegative integer. We choose
n = x−1

2 · y−1
2 which is an odd positive integer. Reasoning like in the case 2.

we obtain that 4pk + a = 2xy|pn + 1 and this proves that a is not a solution
for our problem.

Remark: In the case p ≡ 1 (mod 4), we have 4 + (p − 1) + p−1
2 = 3p+5

2
numbers a with the property stated in the theorem.

4 The case p ≡ 3 (mod 4)

Theorem 3. Let p be a prime number p ≡ 3 (mod 4) and a be a nonneg-
ative integer such that 0 ≤ a ≤ 4p − 1. The numbers pn + 1 are not multiples
of 4pk + a, ∀k, n nonnegative integers only for
i) p|a or
ii) a = 4t and

(
t
p

)
= −1 or

iii) a ≡ 3 (mod 4) and
(

a
p

)
= −1
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Proof. If i) holds, then the statement of the theorem is obvious. Let us
suppose now that the case ii) holds and the statement of the theorem is not
true; that is, there exist 0 ≤ a ≤ 4p − 1, a = 4t,

(
t
p

)
= −1, n, k nonnegative

integers such that 4pk + a|pn + 1. Let us consider the standard decomposition
of 4pk + a = 2t · pα1

1 · · · pαr
r ; t ≥ 2. We have pn ≡ −1 (mod 4) and therefore n

is odd. We have
pn ≡ −1 (mod pi), ∀i = 1, r.

Then
−p ≡ (p

n+1
2 )2 (mod pi).

It results that
(

−p
pi

)
= 1 and that

(
pi

p

)
=

(
−p
pi

)
= 1 ∀i = 1, r. We obtain the

following equalities

−1 =
(

t

p

)
=

(
4t

p

)
=

(
a

p

)
=

(
4pk + a

p

)
=

(
2
p

)t r∏
i=1

(
pi

p

)αi

=
(

2
p

)t

= 1.

The last equality holds obviously if p ≡ 7 (mod 8). If p ≡ 3 (mod 8), then
pn + 1 ≡ 4 (mod 8) and therefore t = 2. This explains why the last equality
holds in this case. We obtained a contradiction. Let us suppose now that the
case iii) holds and the statement of the theorem is not true; that is, there exist
the integer a such that a ≡ 3 (mod 4),

(
a
p

)
= −1 and the nonnegative integers

n, k such that 4pk + a|pn + 1. Let us consider the standard decomposition of
4pk + a = pα1

1 · · · pαr
r . We have

pn ≡ −1 (mod pi), ∀i = 1, r.

If n is even, then −1 is quadratic residue modulo pi ∀i = 1, r. We obtain that
pi ≡ 1 (mod 4) ∀i = 1, r and that 4pk + a = pα1

1 · · · pαr
r ≡ 1 (mod 4), which

is obvious a contradiction, since 4pk + a ≡ a ≡ 3 (mod 4). If n is odd, then

−p ≡ (p
n+1
2 )2 (mod pi).

It results that
(

−p
pi

)
= 1 and that

(
pi

p

)
=

(
−p
pi

)
= 1 ∀i = 1, r. We obtain the

following equalities

−1 =
(

a

p

)
=

(
4pk + a

p

)
=

r∏
i=1

(
pi

p

)αi

= 1.

We otained a contradiction. In the sequel we will show that the remaining
cases are not solutions for our problem.
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1. The case a = 4t, t is not a multiple of p and t is a quadratic
residue modulo p. Since (p, t) = 1, we know from the theorem of Dirichlet
and the Chinese remainder theorem that there is a prime q ≡ 3 (mod 4) such
that q = pk + t, where k is a nonnegative integer. From Euler’s Criterion, we
know that

p
q−1
2 ≡

(
p

q

)
= −

(
q

p

)
= −

(
t

p

)
= −1 (mod q).

From here we have 4q = 4pk + a divides p
q−1
2 + 1 and a is no solution for our

problem.
2. The case a ≡ 3 (mod 4), a is not a multiple of p and a quadratic

residue modulo p. Since (p, a) = 1, we know from the theorem of Dirichlet
and the Chinese remainder theorem that there is a prime q such that q ≡ 3
(mod 4) and q ≡ a (mod p). We have q ≡ a (mod 4p) and q = 4pk+a, where
k is a nonnegative integer. From Euler’s Criterion, we know that

p
q−1
2 ≡

(
p

q

)
= −

(
q

p

)
= −

(
a

p

)
= −1 (mod q).

From here we have q = 4pk + a divides p
q−1
2 + 1 and a is no solution for our

problem.
3. The case a ≡ 1 (mod 4), not multiple of p and quadratic non-

residue modulo p. Since (p, a) = 1, we know that there is a prime q such that
q ≡ 1 (mod 4) and q ≡ a (mod p). We have q ≡ a (mod 4p) and q = 4pk + a,
where k is a nonnegative integer. From Euler’s Criterion we know that

p
q−1
2 ≡

(
p

q

)
=

(
q

p

)
=

(
a

p

)
= −1 (mod q).

From here we have q = 4pk + a divides p
q−1
2 + 1 and a is not a solution for

our problem.
4. The case a ≡ 1 (mod 4), is not a multiple of p and a quadratic

residue modulo p. Let b be an integer which is not a multiple of p and
quadratic nonresidue modulo p. We find two different primes p1 and p2 such
that p1 ≡ 1 (mod p), p1 ≡ 3 (mod 4), p2 ≡ a (mod p), p2 ≡ 3 (mod 4). We
have p1p2 ≡ a (mod 4p), p1p2 = 4pk+a, where k is a nonnegative integer. We
choose n = p1−1

2 · p2−1
2 which is an odd positive integer. Using again Euler’s

Criterion, we obtain

p
p1−1

2 ≡
(

p

p1

)
= −

(
p1

p

)
= −

(
1
p

)
= −1 (mod p1)
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and

p
p2−1

2 ≡
(

p

p2

)
= −

(
p2

p

)
= −

(
a

p

)
= −1 (mod p2).

We have pn = (p
p1−1

2 )
p2−1

2 ≡ (−1)
p2−1

2 = −1 (mod p1). We used the above
congruences and the fact that p2 ≡ 3 (mod 4). In the same way, we prove
that pn ≡ −1 (mod p2). We have 4pk + a = p1 · p2|pn + 1 and this proves that
a is not a solution for our problem.

5. The case a ≡ 2 (mod 4), is not a multiple of p, a = 2b and b
is a quadratic residue modulo p. Since (p, b) = 1, we know from the
theorem of Dirichlet and the Chinese remainder theorem that there is a prime
q such that q ≡ 3 (mod 4) and q ≡ b (mod p). We have 2q ≡ a (mod 4p) and
2q = 4pk + a, where k is a nonnegative integer. From Euler’s Criterion we
know that

p
q−1
2 ≡

(
p

q

)
= −

(
q

p

)
= −

(
b

p

)
= −1 (mod q).

From here, we have 2q = 4pk + a divides p
q−1
2 + 1 and a is not a solution for

our problem.
6. The case a ≡ 2 (mod 4), not multiple of p, a = 2b and b is

quadratic nonresidue modulo p. Since (p, b) = 1, we know that there is
a prime q such that q ≡ 1 (mod 4) and q ≡ b (mod p). We have 2q ≡ a
(mod 4p) and 2q = 4pk + a, where k is a nonnegative integer. From Euler’s
Criterion we know that

p
q−1
2 ≡

(
p

q

)
=

(
q

p

)
=

(
b

p

)
= −1 (mod q).

From here we have 2q = 4pk + a divides p
q−1
2 + 1 and a is no solution for our

problem.
Remark 1. In the case p ≡ 3 (mod 4), we have 4 + p−1

2 + p−1
2 = p + 3

numbers a with the property stated in the theorem.
Remark 2. If we put in Theorem 3 p = 3 and a = 11, we obtain the

generalization of Fermat’s result proved by S. S. Pillai
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