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PAIRS OF PELL EQUATIONS HAVING AT

MOST ONE COMMON SOLUTION IN
POSITIVE INTEGERS

Mihai Cipu

Abstract

We prove that, for positive integers m and b, the number of simulta-
neous solutions in positive integers to x2− (4m2−1)y2 = 1, y2−bz2 = 1
is at most one.

1 Introduction

As it is well known, a system of generalized Pell equations

ax2 − bz2 = δ1, cy2 − dz2 = δ2, (1)

where a, b, c, d are positive integers and δ1, δ2 are integers such that gcd(ab, δ1) =
gcd(cd, δ2) = 1, has at most finitely many solutions in positive integers pro-
vided that dδ1 �= bδ2 (see [26] or [25]).

If this is the case, one may effectively study the solutions of the system (1)
by considering it as an elliptic equation ac(xy)2 = (bz2 + δ1)(dz2 + δ2). This
approach is useful in order to decide the existence of non-trivial solutions (see,
for instance, [21]). To solve specific instances of (1), N. Tzanakis recommends
an algorithm based on an elliptic equation associated to a pair of Pell equa-
tions. His algorithm uses lower bounds for linear forms in elliptic logarithms.
A very well written exposition of these ideas with convincing examples and
ample bibliography may be found in [27].

The components of any solution to (1) appear in second order recurrent
sequences. Comparison of common terms in two such sequences leads to lin-
ear forms in the logarithms of three algebraic numbers. A. Baker’s theory [3]
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allows one to effectively bound the solutions. The most general result of this
type, due to E.M. Matveev [18], gives lower bounds for linear combinations
of n ≥ 2 logarithms. For three logarithms, better numerical coefficients have
been devised by C.D. Bennett, J. Blass, A.M.W. Glass, D.B. Meronk and
R.P. Steiner [6] and very recently by M. Mignotte [20]. Such bounds are use-
ful in the quest of all solutions for specific values of the coefficients, but far
from being sufficient, since the search space is still huge, defying the capa-
bilities of present-day computational number theory. Any successful attempt
to completely solve instances of (1) makes use of techniques from computa-
tional Diophantine approximations. Variations of the ground-breaking idea
introduced by H. Davenport [4] are due to W.S. Anglin (see Section 4.6 of [2]
for the description of an algorithm for solving some special forms of (1)), A.
Dujella and A. Pethő [14], to name but a few contributors.

The hypergeometric method has also been instrumental in the study of
simultaneous Pell equations. D.W. Masser and J.H. Rickert [17], followed by
M.A. Bennett [7], applied techniques reposing on simultaneous Padé approxi-
mations of binomial functions. Skillful but, in principle, elementary arguments
are sometimes successful in certain cases of (1), cf. [9], [29], [30], [31], [32],
for instance.

Another natural question regarding Pell equations is to find how many
solutions do exist. The results of A. Thue [26] and C.L. Siegel [25] establishing
that (1) has finitely many solutions if dδ1 �= bδ2 have ineffective proofs and
provide no estimations for this number or for the size of solutions. P. Yuan [33,
Theorem 2.1] shows that, for a, b, c ≥ 1 and δ ∈ {±1,±2,±4, } such that
neither ab nor bc is a perfect square and gcd(abc, δ) = 1, the system

ax2 − bz2 = δ, cy2 − bz2 = δ (2)

has a positive integer solution if and only if each equation in (2) is solvable
and ac is a perfect square. Moreover, in these circumstances, (2) has infinitely
many solutions in positive integers. Masser and Rickert (loc.cit.) have given a
procedure to obtain values for δ1, δ2 such that the number of common positive
solutions to the generalized Pell equations x2−2z2 = δ1, y2−3z2 = δ2 is bigger
than any prescribed bound.

More stringent results are known for particular cases. For the special form

x2 − az2 = 1, y2 − bz2 = 1, (3)

Anglin [1] showed that (3) has at most one positive solution provided that
b ≤ 200. The first general bound on the number of solutions to systems of Pell
equations of this type has been given by H.P. Schlickewei [24], who proved that
no more than 4×8278

integer solutions exist. Masser and Rickert [17] bounded
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the number of positive solutions of (3) by 16. M.A. Bennett [7] lowered this
bound to 3. Such a result is almost best possible, since for

n(l, m) =
α2l − α−2l

4
√

m2 − 1
,

with l and m integers greater than 1 and α = m +
√

m2 − 1, it is readily seen
that (x1, y1, z1) = (m, n(l, m), 1) and

(x2, y2, z2) =
(

α2l + α−2l

2
, 2n(l, m)2 − 1, 2n(l, m)

)

are two positive integral solutions to (3) with a = m2−1 and b = n(l, m)2−1.
More generally, if one defines c(l, m) by

4c(l, m) − 1 =
(
√

m +
√

m − 1 )l − (
√

m −√
m − 1 )l

2
√

m − 1
,

then, for l ≡ 3 (mod 4), one has c(l, m) integer and (1, 1, 1) and
(

(
√

m +
√

m − 1 )l + (
√

m −√
m − 1 )l

2
√

m
, 4c(l, m) − 3, 4c(l, m)− 1

)

are two positive solutions to mx2− (m−1)z2 = c(l, m)y2− (c(l, m)−1)z2 = 1.
Since there are known no examples of simultaneous Pell equations with

three solutions, it is widely believed that the tight bound for the number
of solutions to (1) with δ1 = δ2 = 1 is two. The most precise statement
formalizing this generally accepted opinion appears in [33].

Conjecture. There is at most one positive solution to the simultaneous
Pell equations

ax2 − by2 = 1, cy2 − dz2 = 1, (4)

with the exception of

(a, b, c, d) =
(
1, m2 − 1, 1, n(l, m)2 − 1

)

or
(a, b, c, d) =

(
m/a2

0, (m − 1)/b2
0, c(l, m)/c2

0, (c(l, m) − 1)/d2
0

)
,

where a0, b0, c0, d0 are positive integers, when there exist two positive solu-
tions.

Yuan succeeded to confirm this conjecture for systems of the form (3) with
max{ a, b } > 14 · 1056. His result has been improved by M.A. Bennett, M.



58 M. Cipu

Cipu, M. Mignotte and R. Okazaki [8] by proving that the above Conjecture
is unconditionally true when a = c = 1 and b �= d. (For a detailed proof,
the reader may consult [12].) Similar results have been obtained for other
particular cases of system (1). Quite recently, Cipu and Mignotte [13] have
proved that the equations (4), where a, b, c and d are positive integers with
c �= d, a > 1, b > 1, have at most two positive solutions. In [13] it is also
shown that the system of Diophantine equations

x2 − ay2 = 1, y2 − bz2 = 1 (5)

has at most two common solutions with x, y, z > 0.
The proofs of these results combine upper bounds for the putative solutions

(obtained à la Baker) with suitable gap principles (assuring that consecutive
solutions are rather far apart from each other).

For specific values of the coefficients, systems of the form (1) have been
completely solved by A. Baker and H. Davenport [4], E. Brown [11], C.M.
Grinstead [15], R.G.E. Pinch [22], among others. For further references, the
reader is referred to [27].

The problem of estimating the number of solutions to the system of Dio-
phantine equations (5) has been attacked by Yuan [32] using a different ap-
proach, based on properties of Lucas sequences. A key rôle play primitive
prime divisors of Lucas numbers. A result of Ljunggren [16], according to
which the Diophantine equation Ax2 − By4 = 1 has at most one positive so-
lution if A, B > 0, allows Yuan to conclude that the system of equations (5)
has at most one solution in positive integers for a = 4m(m + 1).

The aim of this paper is to study systems of the type (5) not covered by
Yuan’s result.

Teorema 1.1. If n and b are positive integers, then the simultaneous Pell
equations x2 − (4m2 − 1)y2 = y2 − bz2 = 1 have at most one solution (x, y, z)
in positive integers.

In the proof of this result linear forms in logarithms have no visible pres-
ence. In fact they are deep inside the proof of classification of Lehmer numbers
with no primitive divisors. The structure of the paper is as follows. In Section
2 we study Lehmer sequences naturally attached to positive solutions of (5).
Then we combine the ingredients to obtain a proof for Theorem 1.1.

2 From a solution to Lucas sequences

We aim to find common solutions for the pair of Pell equations

x2 − (4m2 − 1)y2 = 1, (6)
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y2 − bz2 = 1, (7)

where m, b are positive integers and b is not a perfect square. Taken separately,
each of these equations has solutions expressible in terms of their respective
fundamental solutions α and β and conjugates thereof α and β. Notice that
we have

α := 2m +
√

4m2 − 1, α := 2m −
√

4m2 − 1. (8)

Consider the Lucas sequences

Uk :=
αk − αk

α − α
, Vk :=

αk + αk

2
, U ′

k :=
βk − β

k

β − β
, V ′

k :=
βk + β

k

2
. (9)

Then any solution (x, y, z) of the system (6)–(7) has the form

x = Vk, y = Uk = V ′
l , z = U ′

l , for some positive integers k and l.

It will be necessary to partially decompose in factors the terms of the Lucas
sequence (Uk)k, so we also introduce a Lehmer sequence. Notice that α = ρ2

and α = ρ2, where

ρ :=
√

4m + 2 +
√

4m − 2
2

, ρ :=
√

4m + 2 −√
4m − 2

2
. (10)

Denote

xk =
ρk + ρk

ρ + ρ
, yk =

ρk − ρk

ρ − ρ
, for k odd, (11)

xk =
ρk + ρk

2
, yk =

ρk − ρk

ρ2 − ρ2 , for k even. (12)

It is easy to see that we have x0 = 1, x1 = 1, x2 = 2m, x3 = 4m − 1, y0 = 0,
y1 = 1, y2 = 1, y3 = 4m + 1, and the other terms are obtained from the linear
recurrence relations

xk+2 = 4mxk − xk−2, yk+2 = 4myk − yk−2, for k ≥ 2. (13)

A simple computation yields

(2m + 1)x2
k − (2m − 1)y2

k = 2, for any odd k, (14)

x2
k − (4m2 − 1)y2

k = 1, for any even k. (15)

Moreover,

Uk =
{

xkyk, for k odd,
2xkyk, for k even.

(16)



60 M. Cipu

The properties of Lucas sequences are rather well known. For ease of
reference, in the next lemma are recalled divisibility properties we shall use
subsequently. The proofs may be found in several places, for instance, in [23]
and [19].

Lemma 2.1. a) If d = gcd(k, n), then gcd(Uk, Un) = Ud.
b) If d = gcd(k, n), then gcd(Vk, Vn) = Vd, if k/d and n/d are odd, and 1

otherwise.
c) If d = gcd(k, n), then gcd(Uk, Vn) = Vd, if k/d is even, and 1 otherwise.
d) If Uk �= 1, then Uk | Un if and only if k | n.
e) If k ≥ 1, then Vk | Vn if and only if n/k is an odd integer.
f) If q ≥ 1 and 0 ≤ k ≤ n, then

U2qn+k − Uk = 2Vqn+kUqn, U2qn−k + Uk = 2Vqn−kUqn,

V2qn±k − Vk = 2(m2 − 1)Uqn±kUqn, V2qn±k + Vk = 2Vqn±kVqn.

In the proof of our main result, an essential rôle play primitive divisors of
Uk. Y. Bilu, G. Hanrot and P. Voutier [10] succeeded to completely solve the
problem of existence of primitive divisors for Lucas and Lehmer numbers. As
a consequence of their results, we have the information given in the upcoming
lemma. The first assertion follows by looking up Table 1 and Table 3 of [10].
The second part holds for any Lucas or Lehmer sequence.

Lemma 2.2. Any term Uk of index k > 1 has a primitive divisor. If p is a
primitive divisor of some Uk, then p divides another term Un if and only if k
divides n.

We also need specific information for the Lehmer sequences introduced
above.

Lemma 2.3. a) If k is odd, the four integers xk, yk, xk+2, yk+2 are pairwise
coprime.

b) If k is even, then gcd(xk, xk+2) = gcd(yk, yk+2) = 1,

gcd(xk+2, yk) =
{

2m for k ≡ 0 (mod 4),
1 for k ≡ 2 (mod 4),

gcd(xk, yk+2) =
{

1 for k ≡ 0 (mod 4),
2m for k ≡ 2 (mod 4).

Proof. a) By induction, it follows from (13) that gcd(xk, xk+2) and gcd(yk, yk+2)
divide gcd(x1, x3) and gcd(y1, y3), respectively. Using equation (16), one sees
that gcd(xk, yk+2) divides gcd(Uk, Uk+2), which is U1 = 1 by Lemma 2.1a).
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Similarly one gets gcd(xk+2, yk) = 1.
It remains to compute d := gcd(x2t+1, y2t+1). Notice that x2t+1y2t+1 is odd for
any t. Therefore d divides the greatest common divisor of (x2t+1 + y2t+1)/2 =
Ut+1 and (y2t+1 − x2t+1)/2 = Ut. Again by Lemma 2.1a), we conclude that
d | U1 = 1.

b) Put k = 2t. Then we have

gcd(x2t, x2t+2) = gcd(Vt, Vt+1) = 1 by Lemma 2.1b),

gcd(y2t, y2t+2) = gcd(Ut, Ut+1) = 1 by Lemma 2.1a).

Similarly, gcd(x2t, y2t+2) = gcd(Vt, Ut+1), which is V1 = 2m if t + 1 is even,
and 1 otherwise (see Lemma 2.1c)). Finally, gcd(x2t+2, y2t) = gcd(Vt+1, Ut) is
either V1 = 2m or 1, according to whether t is even or odd.

Lemma 2.4. For any even integer k, Vk is odd. For any odd k, Vk is divisible
by 2m and Vk/(2m) is odd.

Proof. From the linear recurrence relation Vk+2 = 4mVk+1 − Vk, it readily
follows that the terms of even, respectively odd, index are generated by

Vk+4 = (16m2 − 2)Vk+2 − Vk

from the initial terms V0 = 1, V2 = 8m2 − 1, respectively V1 = 2m, V3 =
2m(16m2 − 3). Hence, Vk is even if and only if k = 2t − 1. Moreover, the
integers zt := V2t−1/(2m) satisfy a second-order linear recurrence relation

zt+2 = (16m2 − 2)zt+1 − zt, t ≥ 1, z1 = 1, z2 = 16m2 − 3.

We end this section by quoting an old result of Ljunggren [16].

Lemma 2.5. The equation Ax4−By4 = C, with A, B > 0 and C ∈ {±1,±2},
has at most one solution in positive integers.

3 Proof of Theorem

Assume that the equations (5) have at least one common solution in positive
integers. Each such solution has the form

x = Vk, y = Uk = V ′
l , z = U ′

l (17)

for suitable natural numbers k and l. Let k0 be the smallest positive integer
k for which relations (17) hold. Then

y0 = Uk0 = V ′
l0 , z0 = U ′

l0 (18)
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for the corresponding l0. Notice that k0 > 1, otherwise y0 = 1, and therefore
z0 = 0.

We shall show that, for any solution (x, y, z) for the system (5) given
by (17), one has k = k0. Note that y0 divides y (cf. [32, Lemma 2.4]), so
that k0 divides k and l0 divides l. Moreover, k/k0 and l/l0 are odd. This and
Lemma 2.1 imply z0 | z. Hence the leftmost side in the sequence of equalities

z2

z2
0

=
U2

k − 1
U2

k0
− 1

=
Uk+1Uk−1

Uk0+1Uk0−1
=

xk+1xk−1yk+1yk−1

xk0+1xk0−1yk0+1yk0−1
(19)

is an integer.
If k0 > 2, then Uk0+1 and Uk0−1 have primitive divisors p and q respectively.

The last assertion of Lemma 2.2 implies

k0 + 1 divides k + 1 or k − 1 and k0 − 1 divides k + 1 or k − 1. (20)

Note that (20) holds even for k0 = 2 because U3 has a primitive divisor by
Lemma 2.2 and k0 − 1 = 1.

We shall discuss separately two cases.
The case k0 even. Then gcd(Uk0+1, Uk0−1) = gcd(Uk+1, Uk−1) = 1. There-

fore, if k0 + 1 divides k + 1 and k0 − 1 divides k − 1, then Uk+1/Uk0+1 and
Uk−1/Uk0−1 are coprime integers, whose product is a square. Hence, each of

xk+1yk+1

xk0+1yk0+1
and

xk−1yk−1

xk0−1yk0−1

is the square of an integer. But gcd(xt, yt) = 1 for odd t, see Lemma 2.3a),
so that xk+1 = A2xk0+1 and yk+1 = B2yk0+1 for certain positive integers
A, B. By relation (14) we have (2m + 1)x2

k0+1A
4 − (2m − 1)y2

k0+1B
4 = 2

and (2m + 1)x2
k0+1 − (2m − 1)y2

k0+1 = 2. These relations show that both
couples (1, 1), (A, B) verify equation (2m+1)x2

k0+1X
4−(2m−1)y2

k0+1Y
4 = 2.

Lemma 2.5 yields A = B = 1. Since the sequence (xt) is strictly increasing,
one concludes k = k0.

If k0 + 1 divides k − 1 and k0 − 1 divides k + 1 then Uk−1/Uk0+1 and
Uk+1/Uk0−1 are coprime integers, whence both

xk+1yk+1

xk0−1yk0−1
and

xk−1yk−1

xk0+1yk0+1

are squares of integers. Using Lemma 2.3a) we obtain xk+1 = A2xk0−1 and
yk+1 = B2yk0−1, for certain positive integers A, B. This implies that (2m +
1)x2

k0−1A
4 − (2m − 1)y2

k0−1B
4 = 2 and, by Ljunggren’s result, it follows that

k = k0 − 2, in contradiction with k ≥ k0.
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If k2
0−1 divides k+1 then from gcd(Uk0+1, Uk0−1) = 1 and Uk0±1 | Uk+1 it

follows Uk+1 = AUk0+1Uk0−1. Using this in relation (19), one concludes that
AUk−1 is a perfect square. As gcd(Uk+1, Uk−1) = 1, one has Uk−1 coprime
with A, so that A = S2, Uk−1 = T 2 for some positive integers S, T . Applying
Lemma 2.3a) one gets xk−1 = C2, yk−1 = D2. Therefore, (2m+1)C4− (2m−
1)D4 = 2. From (2m + 1) − (2m − 1) = 2 and the result of Ljunggren cited
above, it follows xk−1 = 1. The only even value of k for which this happens is
k = 2, when also k0 = 2.

A similar conclusion is reached when k2
0 − 1 divides k − 1.

The case k0 odd. The proof goes through four subcases, with slight differ-
ences due to fact that Uk0+1 and Uk0−1 are no more coprime.

For the beginning, we consider what happens when k0 + 1 divides k + 1
and k0 − 1 divides k− 1. Then xk0+1yk0+1 | Uk+1 and Uk0−1 | Uk−1. If k0 ≡ 1
(mod 4), then k ≡ 1 (mod 4) as well, and from (12) and Lemma 2.3a),
resp. e), it follows that yk0+1 divides yk+1, resp. xk0+1 divides xk+1. Since
gcd(Uk+1/U2, Uk−1/U2) = 1, one necessarily has xk+1 = A2xk0+1 and yk+1 =
B2yk0+1 for some positive integers A, B. Then relation (15) yields x2

k0+1 −
(4m2−1)y2

k0+1 = 1 and x2
k0+1A

4−(4m2−1)y2
k0+1B

4 = 1. By Lemma 2.5, this
is only possible for A = B = 1, that is xk+1 = xk0+1. Therefore k equals k0, if
k0 is congruent to 1 modulo 4 and (k0 + 1) | (k + 1), (k0 − 1) | (k − 1). When
k0 ≡ 3 (mod 4), a similar reasoning invoking k0 − 1 leads to the conclusion
k = k0.

Next look at the subcase (k0 + 1) | (k − 1), (k0 − 1) | (k + 1). If k0 ≡ 1
(mod 4), then k ≡ 3 (mod 4), so that xk−1 is multiple of xk0+1. From xk0−1

coprime with yk−1xk+1yk+1 and gcd(yk−1/yk0+1, Uk+1/Uk0−1) = 1, one gets
xk−1 = A2xk0+1 and yk−1 = B2yk0+1 for some positive integers A, B. By
equation (15), x2

k0+1−(4m2−1)y2
k0+1 = 1 and x2

k0+1A
4−(4m2−1)y2

k0+1B
4 = 1.

This and Lemma 2.5 imply xk−1 = xk0+1. Hence, k − 1 = k0 + 1. As (k0 − 1)
divides (k+1), one obtains k0 = 5 and k = 7. Then, according to relation (19),
U8/U4 = 2V4 is a square, which is impossible because V4 is odd by Lemma 2.4.
When k0 ≡ 3 (mod 4), we obtain similarly k0 = k + 2, which contradicts
k ≥ k0.

Now we assume (k0 + 1) | (k + 1) and (k0 − 1) | (k + 1). Then, by
Lemma 2.1, Uk0+1 | Uk+1, Uk0−1 | Uk+1, and gcd(Uk0+1, Uk0−1) = U2 =
4m. Therefore k ≡ 3 (mod 4) and gcd(Uk+1, Uk−1) = U2, as well. From
relation (19), one infers Uk−1 = 2xk−1yk−1 = 4mS2 for a certain integer S.
Since gcd(xk−1, yk−1) = 1 (cf. Lemma 2.1c)) and 2m divides xk−1 (see Lemma
2.4), one has xk−1 = 2mA2 and yk−1 = B2 for suitable positive integers A, B.
Then relation (15) yields 4m2A4−(4m2−1)B4 = 1. Since 4m2−(4m2−1) = 1,
Lemma 2.5 implies A = B = 1, whence xk−1 = 2m, yk−1 = 1, and therefore
k = 3. This in turn implies k0 = 3, as desired.
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Finally, suppose that k − 1 is divisible by both k0 + 1 and k0 − 1. Then
k ≡ 1 (mod 4), Uk−1 is multiple of Uk0+1 and Uk0−1. From Lemma 2.1,
gcd(Uk0+1, Uk0−1) = gcd(Uk+1, Uk−1) = U2 = 4m. This and relation (19)
imply Uk+1 = 2xk+1yk+1 = 4mS2 for a certain integer S. Since xk+1 and yk+1

are coprime by Lemma 2.1 and xk+1 is divisible by 2m, one has xk+1 = 2mA2,
yk+1 = B2 for certain positive integers A, B. As before, one concludes A = 1,
whence k − 1 = 2, which is not divisible by 4.
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