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REGULARITY FOR CERTAIN CLASSES

OF MONOMIAL IDEALS∗

Mircea Cimpoeaş

Abstract

We introduce a new class of monomial ideals, called strong Borel
type ideals, and we compute the Mumford-Castelnouvo regularity for
principal strong Borel type ideals. Also, we describe the d-fixed ideals
generated by powers of variables and we compute their regularity.

Introduction.

Let K be an infinite field, and let S = K[x1, ..., xn], n ≥ 2 be the polynomial
ring over K. Bayer and Stillman [2] note that a Borel fixed ideal I satisfies
the following property (I : x∞

j ) = (I : (x1, . . . , xj)∞) for all j = 1, . . . , n.
Herzog, Popescu and Vladoiu state that a monomial ideal is of Borel type if it
fulfill the previous condition. We mention that this concept appears also in [3,
Definition 1.3] as the so called weakly stable ideal. In fact, Herzog, Popescu
and Vladoiu notice that a monomial ideal I is of Borel type, if and only if
for any monomial u ∈ I and for any 1 ≤ j < i ≤ n, there exists an integer
t > 0 such that xt

ju/x
νi(u)
i ∈ I, where νi(u) > 0 is the exponent of xi in u.

(See [7, Proposition 1.2].) This property suggest us to define the so called
ideals of strong Borel type (Definition 1.1), or simply, (SBT)-ideals. In the
first section, we give the explicit form of a principal (SBT)-ideal (Lemma 1.4)
and we compute its regularity (Theorem 1.6).

Let d : 1 = d0|d1| · · · |ds be a strictly increasing sequence of positive in-
tegers. We say that d is a d-sequence. In [4] it was proved that for any
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a ∈ N there exists a unique sequence of positive integers a0, a1, . . . , as such
that: a =

∑s
t=0 atdt and 0 ≤ at < dt+1

dt
, for any 0 ≤ t < s. The decomposition

a =
∑s

t=0 atdt is called the d-decomposition of a. In particular, if dt = pt we
get the p-adic decomposition of a. Let a, b ∈ N and consider the decomposi-
tions a =

∑s
t=0 atdt and b =

∑s
t=0 btdt. We say that a ≤d b if at ≤ bt for any

0 ≤ t ≤ s. We say that a monomial ideal I ⊂ S is d-fixed, if for any monomial
u ∈ I and for any indices 1 ≤ j < i ≤ n, if t ≤d νi(u) then u · xt

j/xt
i ∈ I (see

[4, Definition 1.4]).
In [4], it was proved a formula for the regularity of a principal d-fixed ideal,

i.e the smallest d-fixed ideal which contains a given monomial u ∈ S. This
formula generalizes the Pardue’s formula for the regularity of a principal p-
Borel ideal, proved in [1] and [8], and later in [7]. In the section 2, we describe
the d-fixed ideals generated by powers of variables (Proposition 2.2) and we
give a formula for their regularity (Corollary 2.8).

The author is grateful to his adviser Dorin Popescu for his encouragement
and valuable suggestions. He owes special thanks to Assistant Professor Alin
Ştefan for valuable discussions on Section 2 of this paper. My thanks go also
to the School of Mathematical Sciences, GC University, Lahore, Pakistan for
supporting and facilitating this research.

1 Monomial ideals of strong Borel type.

Let K be an infinite field, and let S = K[x1, ..., xn], n ≥ 2, be the polynomial
ring over K.

Definition 1.1. We say that a monomial ideal I ⊂ S is of strong Borel type
(SBT) if for any monomial u ∈ I and for any 1 ≤ j < i ≤ n, there exists an
integer 0 ≤ t ≤ νi(u) such that xt

ju/x
νi(u)
i ∈ I, where νi(u) > 0 is the exponent

of xi in u.

Remark 1.2. Obviously, an ideal of strong Borel type is also an ideal of Borel
type, but the converse is not true. Take for instance I = (x3

1, x
2
2) ⊂ K[x1, x2].

The sum of two ideals of (SBT) is still an ideal of (SBT). The same is
true for an intersection or a product of two ideals of (SBT).

Definition 1.3. Let A ⊂ S be a set of monomials. We say that I is the
(SBT)-ideal generated by A, if I is the smallest, with respect to inclusion,
ideal of (SBT) containing A. We write I = SBT (A).

In particular, if A = {u}, where u ∈ S is a monomial, we say that I is the
principal (SBT)-ideal generated by u, and we write I = SBT (u).

Lemma 1.4. Let 1 ≤ i1 < i2 < · · · < ir ≤ n be some integers, α1, . . . , αr

be some positive integers and u = xα1
i1

xα2
i2

· · ·xαr

ir
∈ S. Then, the principal
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(SBT)-ideal generated by u, is:

I = SBT (u) =
r∏

q=1

(m[αq]
q ),

where
mq = {x1, . . . , xiq} and m[αq ]

q = {xαq

1 , . . . , x
αq

iq
}.

Proof. Denote I ′ =
∏r

q=1(m
[αq ]
q ). If v is a minimal monomial generator of I ′,

then v = xα1
j1

xα2
j2

· · ·xαr

jr
, for some 1 ≤ jq ≤ iq, where 1 ≤ q ≤ r.

Since

v =
xαr

jr

xαr

ir

· · · xα2
j2

xα2
i2

· xα1
j1

xα1
i1

u,

and I is of (SBT) it follows that v ∈ I and thus I ′ ⊆ I. For the converse,
simply notice that I ′ is itself an (SBT)-ideal.

Remark 1.5. For any monomial ideal I ⊂ S, we denote m(I) = max{m(u) :
u ∈ G(I)}, where G(I) is the set of the minimal generators of I and m(u) =
max{i : xi|u}. Also, if M is a graded S-module of finite length, we denote
s(M) = max{t : Mt �= 0}.

Let I ⊂ S be a Borel type ideal. In [7], it is defined a chains of ideals
I = I0 ⊂ I1 ⊂ · · · ⊂ Ir = S as follows. We let I0 = I. Suppose I� is already
defined. If I� = S then the chain ends. Otherwise, we let n� = m(I�) and
set I�+1 = (I� : x∞

n�
). Notice that r ≤ n, since n� > n�+1 for all 0 ≤ � < r.

The chain I = I0 ⊂ I1 ⊂ · · · ⊂ Ir = S is called the sequential chain of I. [7,
Corollary 2.5] states that

(1) I�+1/I�
∼= (Jsat

� /J�)[xn�+1, . . . , xn],

for all 0 ≤ � < r, where J� ⊂ S� = K[x1, . . . , xn�
] is the ideal generated by

G(I�). Also, [7, Corollary 2.5] gives a formula for the regularity of I, more
precisely,

(2) reg(I) = max{s(Jsat
0 /J0), s(Jsat

1 /J1), · · · , s(Jsat
r−1/Jr−1)} + 1.

Our next goal is to give a formula for the regularity of a principal (SBT)-
ideal. In order to do it, we shall use the previous remark.

Let 1 ≤ i1 < i2 < · · · < ir ≤ n be some integers, α1, . . . , αr be some
positive integers and u = xα1

i1
xα2

i2
· · ·xαr

ir
∈ S. For each 1 ≤ q ≤ r, 1 ≤ f ≤ q

with αf ≤ αq and 1 ≤ j ≤ iq, we define the numbers:

χ
(f)
qj :=

{
αj + αq − 1, if j < q and αj ≥ αf

αf − 1, otherwise
,
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χ(f)
q :=

iq∑
j=1

χ
(f)
qj and χq = max

f
χ(f)

q .

Theorem 1.6. With the above notations, we have reg(SBT (u)) =
r

max
q=1

χq+1.

Proof. Firstly, we describe the sequential chain of I.
Since Ir := I =

∏r
q=1(m

[αq ]
q ), it follows that Ir−1 := (Ir : x∞

ir
) =

∏r−1
q=1(m

[αq ]
q ).

Analogously, we get Iq := (Iq+1 : x∞
iq+1

) =
∏q

e=1(m
[αe]
e ), for all 0 ≤ q < r.

Therefore, the sequential chain of I is

I = Ir ⊂ Ir−1 ⊂ · · · ⊂ I1 ⊂ I0 = S.

Let Jq be the ideal of Sq = K[x1, . . . , xiq ] generated by G(Iq), for 1 ≤ q ≤ r.
Denoting sq = s(Jsat

q /Jq), (2) from Remark 1.5 implies reg(I) = max{sq :
1 ≤ q ≤ r}, so, in order to compute the regularity of I, we must determine
the numbers sq. We claim that sq = χq.

First of all, note that Jq = Iq∩Sq and Jsat
q = Iq−1∩Sq. Let 1 ≤ f ≤ q with

αf ≤ αq and w = x
χ

(f)
q1

1 · · ·xχ
(f)
q,iq

iq
. Since χ

(f)
qe ≥ αe for any 1 ≤ e ≤ q− 1 we get

x
χ

(f)
q1

1 · · ·xχ
(f)
q,q−1

q−1 ∈ Jsat
q =

∏q−1
e=1(m

[αe]
e )Sq, therefore w ∈ Jsat

q . On the other
hand, one can easily see that w /∈ Jq, so w is a nonzero element in Jsat

q /Jq

with deg(w) = χq, thus sq ≥ χq.
In order to prove the converse inequality, we consider a monomial u ∈ Jsat

q

with deg(u) ≥ χq + 1 and we show that u ∈ Jq. Assume, by contradiction,
that u /∈ Jq. Since u ∈ Jsat

q , it follows that u = xα1
j1

· · ·xαq−1
jq−1

· xβ1
1 · · ·xβiq

iq
,

where 1 ≤ je ≤ ie for 1 ≤ e ≤ q − 1 and β1 + · · · + βiq ≥ χq − ∑q−1
e=1 αe.

Let A = {1, . . . , iq} \ {j1, . . . , jq−1}. Since u /∈ Jq and xα1
j1

· · ·xαq−1
jq−1

∈ Jsat
q it

follows βj ≤ αq − 1 for all j ∈ A.
Write {1, . . . , q− 1} = ∪m

i=1Ei, where Ei = {ei1, . . . , eiki}, such that jeik
=

jei for all 1 ≤ k ≤ ki and Ei ∩ Ei′ = ∅ whenever i �= i′. With these notations,

u = x
αe11+···+αe1k1

+βje1
je1

· · ·xαem1+···+αemkm
+βjem

jem
·
∏
j∈A

x
βj

j .

Let 1 ≤ f ≤ q be such that αf ≤ αq, βj < αf for all j ∈ A and αf be
the largest integer among all the αf ′ , with f ′ satisfying the above conditions.
Suppose that there exist some 1 ≤ i ≤ m and 1 ≤ k ≤ ki such that αeik

< αq.
It follows that βjei

≤ αf − αeik
− 1, otherwise u ∈ Jq. One can immediately

conclude that
∑q−1

e=1 αe +
∑iq

j=1 βj ≤ χ
(f)
q .
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Example 1.7. Let u = x6
2x

7
3 ∈ S = K[x1, x2, x3]. From Lemma 1.4 it follows

that I = SBT (u) = (x6
1, x

6
2)(x7

1, x
7
2, x

7
3). With the notations of 1.5 and 1.6,

we have J1 = (x6
1, x

6
2) ⊂ K[x1, x2] and J2 = I. Also, Jsat

1 = K[x1, x2] and
Jsat

2 = (x6
1, x

6
2) ⊂ S. Obviously, χ1 = χ

(1)
1 = 2 · 5 = 10, i.e. s(Jsat

1 /J1) =
s(K[x1, x2]/(x6

1, x
6
2)) = 10. We have χ

(1)
2 = (6 + 7 − 1) + 2 · 5 = 23 and

χ
(2)
2 = 3 · 6 = 18, therefore χ2 = 23 and thus reg(I) = max{10, 23}+ 1 = 24.

In the end of this section, we mention the following result, which generalizes
a result of Eisenbud-Reeves-Totaro (see [6, Proposition 12]).

Proposition 1.8. [5, Corollary 8] If I is a Borel type ideal, then

reg(I) = min{e : e ≥ deg(I), I≥e is stable},

where deg(I) is the maximal degree of a minimal monomial generator of I.

In particular, this holds for (SBT)-ideals, and thus we get the following
corollary.

Corollary 1.9. With the notations of Theorem 1.5, if I = SBT (u) and e ≥
r

max
q=1

χq + 1, then I≥e is stable.

Remark 1.10. Note also that the regularity of an (SBT)-ideal, I ⊂ S, is
upper bounded by n(deg(I)− 1) + 1, (see [9, Theorem 2.2]). In fact, deg(I) is
the maximum degree of a minimal generator of I as an (SBT)-ideal!

2 d-fixed ideals generated by powers of variables.

Let us fix some notations. Let u1, . . . , um ∈ S be some monomials. We say
that I is the d-fixed ideal generated by u1, . . . , um, if I is the smallest d-fixed
ideal , w.r.t inclusion, which contains u1, . . . , um, and we write

I =< u1, . . . , um >d .

In particular, if m = 1, we say that I is the principal d-fixed ideal generated
by u = u1 and we write I =< u >d.

In the case when I is a principal d-fixed ideal , [4, Theorem 3.1] gives a
formula for the Castelnuovo-Mumford regularity of I. Using similar techniques
as in [4], we shall compute the regularity for d-fixed ideals generated by powers
of variables. We recall some results proved in [4] which are useful. Let α
be a positive integer and let I =< xα

n >d⊂ S = K[x1, . . . , xn]. Suppose
α =

∑s
t=0 αtdt with αs �= 0. Then:
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• I =
∏s

t=0(m
[dt])αt , where m = {x1, . . . , xn} and m[d] = {xd

1, . . . , x
d
n} [4,

1.6].

• Soc(S/I) = (J + I)/I, with

J =
s∑

t=0

(x1 · · ·xn)dt−1(m[dt])αt−1
∏
j>t

(m[dj ])αj [4, 2.1].

• reg(I) = max{e : ((J + I)/I)e �= 0} = αsds + (n − 1)(ds − 1)
(see [4, 3.1]).

• If e ≥ reg(I) then I≥e is stable (see [4, 3.6] or apply Proposition 1.8,
since any d-fixed ideal is of Borel type, see [4, 1.11]).

Lemma 2.1. If 1 ≤ j ≤ j′ ≤ n and α ≥ β are positive integers, then
< xα

j >⊂< xβ
j′ >.

Proof. Indeed, using [4, 1.7] it is enough to notice that < xα
j >⊂< xα

j′ >, since
xα

j ∈< xα
j′ >.

Our next goal is to give the set of the minimal generators of a d-fixed ideal
generated by some powers of variables. Using the previous lemma, we had
reduced to the next case:

Proposition 2.2. Let n ≥ 2 and let 1 ≤ i1 < i2 < · · · < ir = n be some
integers. Let α1 < α2 < · · · < αr be some positive integers. Then

I =< xα1
i1

, xα2
i2

, . . . , xαr

ir
>d=

r∑
q=1

I(q),

with

I(q) =
∑

γ1, . . . , γq ≤d αq,
γ1 + · · · + γi < αi, for i < q

γ1 + · · · + γi <d αq , for i < q
γ1 + · · · + γq = αq

q∏
e=1

s∏
t=0

(n[dt]
e )γet ,

where ne = {xie−1+1, . . . , xie}, n[dt]
e = {xdt

ie−1+1, . . . , x
dt

ie
}, i0 = 0 and γe =∑s

t=0 γetdt.

Proof. Let mq = {x1, . . . , xiq} for 1 ≤ q ≤ r. Obviously, nq = mq \ mq−1

for q > 1 and m1 = n1. Using the simple fact that I is the sum of principal
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d-fixed ideals generated by the d-generators of I together with [4, Proposition
1.6], we get:

I =
r∑

q=1

s∏
t=0

(m[dt]
q )αqt , where αq =

s∑
t=0

αqtdt.

Denote Sq = K[x1, . . . , xiq ] for 1 ≤ q ≤ r. In order to obtain the required
formula, we use induction on r ≥ 1, the case r = 1 being obvious. Let r > 1
and assume that the assertion is true for r − 1, i.e

I ′ =< xα1
i1

, . . . , x
αr−1
ir−1

>d=

=
r−1∑
q=1

∑
γ1, . . . , γq ≤d αq ,

γ1 + · · · + γi < αi, for i < q
γ1 + · · · + γi <d αq , for i < q

γ1 + · · · + γq = αq

q∏
e=1

s∏
t=0

(n[dt]
e )γet ⊂ Sr−1.

Obviously, I = I ′S+ < xαr
n >d= I ′S +

∏s
t=0(m

[dt]
r )αrt . Also, I ′S and I ′

have the same set of minimal generators and none of the minimal gener-
ators of I ′S is in I(r). But, a minimal generator of < xαr

n >d is of the
form w =

∏s
t=0

∏n
j=1 x

λtjdt

j with 0 ≤ λtj and
∑n

j=1 λtj = αrt. Suppose
w /∈ I ′S. In order to complete the proof, we shall show that w ∈ I(r). Let
vq =

∏s
t=0

∏iq

j=iq−1+1 x
λtj dt

j and let wq =
∏q

e=1 ve. Obviously, w = v1 · · · vr =
wr. Since w /∈ I ′ it follows that wq /∈ I(q) for any 1 ≤ q ≤ r−1. But wq /∈ I(q)

implies (∗) ∑s
t=0

∑iq

j=1 λtjdt < αq, otherwise wq ∈< x
αq

iq
Sq >d Sr−1 ⊂ I ′

and thus w ∈ I ′, a contradiction. We choose γe =
∑s

t=0

∑ie

j=ie−1+1 λtjdt for
1 ≤ e ≤ r. For 1 ≤ q < r, the inequality (∗) implies γ1 + · · · + γq < αq. On
the other hand, it is obvious that γ1 + · · · + γe ≤d αr for any 1 ≤ e ≤ r and
γ1 + · · · + γr = αr. Thus w ∈ I(r) as required.

Example 2.3. Let d : 1|2|4|12 and let I =< x7
2, x

10
3 , x17

5 >d⊂ K[x1, . . . , x5].
We have 7 = 1 · 1 + 1 · 2 + 1 · 4, 10 = 1 · 2 + 2 · 4, 17 = 1 · 1 + 1 · 4 + 1 · 12. We
have

I(1) =< x7
2 >d= (x1, x2)(x2

1, x
2
2)(x

4
1, x

4
2).

In order to compute I(2), we need to find all the pairs (γ1, γ2) such that
γ1 < 7, γ1 <d 10 and γ2 = 10 − γ1. We have 4 pairs, namely (0, 10), (2, 8),
(4, 6) and (6, 4), thus

I(2) = (x2
1, x

2
2)(x

4
1, x

4
2)x

4
3 + (x4

1, x
4
2)x

6
3 + (x2

1, x
2
2)x

8
3 + (x10

3 ).
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In order to compute I(3), we need to find all (γ1, γ2, γ3) such that γ1 < 7,
γ1 + γ2 < 10, γ1 <d 17, γ1 + γ2 <d 17 and γ3 = 17 − γ1 + γ2. If γ1 = 0
then, the pair (γ2, γ3) is one of the following pairs: (0, 17),(1, 16),(4, 13) or
(5, 12). If γ1 = 1 then, the pair (γ2, γ3) is one of the following pairs: (0, 16)
and (4, 12). If γ1 = 4 then, the pair (γ2, γ3) is one of the pairs: (0, 13) and
(1, 12). If γ1 = 5 then, the pair (γ2, γ3) is (0, 12). Thus

I(3) = (x1, x2)(x4
1, x

4
2)(x

12
4 , x12

5 ) + (x4
1, x

4
2)x3(x12

4 , x12
5 )+

+(x4
1, x

4
2)(x4, x5)(x12

4 , x12
5 ) + (x1, x2)x4

3(x
12
4 , x12

5 )+

+(x1, x2)(x4
4, x

4
5)(x

12
4 , x12

5 ) + x3(x4
4, x

4
5)(x

12
4 , x12

5 )+

+x4
3(x4, x5)(x12

4 , x12
5 ) + x5

3(x
12
4 , x12

5 ) + (x4, x5)(x4
4, x

4
5)(x

12
4 , x12

5 ).

By Proposition 2.2, we get I = I(1) + I(2) + I(3).

Remark 2.4. For any 1 ≤ q ≤ r and any nonnegative integers γ1, . . . , γq ≤d

αq such that γ1 + · · · + γi < αi, γ1 + · · · + γi <d αq for 1 ≤ i < q and
γ1 + · · · + γq = αq we denote I

(q)
γ1,...,γq =

∏q
e=1

∏s
t=0(n

[dt]
e )γet . Proposition 2.2

implies:

I =
r∑

q=1

∑
γ1,...,γq

I(q)
γ1,...,γq

.

Let m = (x1, . . . , xn) ⊂ S be the irrelevant ideal of S. We have:

(I :S m) =
n⋂

j=1

(I : xj) =
n⋂

j=1

((
r∑

q=1

∑
γ1,...,γq

I(q)
γ1,...,γq

) : xj) =

=
n⋂

j=1

(
r∑

q=1

∑
γ1,...,γq

(I(q)
γ1,...,γq

: xj)).

On the other hand, if xj ∈ np for some 1 ≤ p ≤ q, then

J (q),j
γ1,...,γq

:= (I(q)
γ1,...,γq

: xj) =

=
q∏

e�=p

s∏
t=0

(n[dt]
e )γetnp,̂j

[dt](np
[dt])γpt−1(

∑
γpt>0

∏
j �=t

(n[dt]
e )γjt),

where np,̂j
[dt] = (xdt

ip−1+1, . . . , x
dt−1
j , . . . , xdt

ip
) and np,̂j

[dt](np
[dt])γpt−1 := S if

γpt = 0. Thus

(I :S m) =
r∑

q1=1

∑
γ1
1 ,...,γ1

q1

· · ·
r∑

qn=1

∑
γn
1 ,...,γn

qn

n⋂
j=1

J
(qj),j

γj
1 ,...,γj

qj

,
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where, for a given q = qj, we take the second jth sum for γj
1, . . . , γ

j
q ≤d αq such

that γj
1+· · ·+γj

i < αi, γj
1+· · ·+γj

i <d αq for 1 ≤ i < qj and γj
1+· · ·+γj

q = αq.

Proposition 2.5. Let n ≥ 2 and let 1 ≤ i1 < i2 < · · · < ir = n be some
integers. Let α1 < α2 < · · · < αr be some positive integers. We consider the
ideal I =

∑r
q=1 Iq, where Iq =< x

αq

iq
>d. Then, we have: reg(I) ≤ reg(Ir)

(We will see later in which conditions we have equality).

Proof. From [4, Corollary 3.6] it follows that (Iq)≥e is stable, if e ≥ reg(Iq) so
(Iq)≥e is stable for e = max{reg(I1), . . . , reg(Ir)}. Since I≥e =

∑r
q=1(Iq)≥e

and since a sum of stable ideals is still a stable ideal, it follows that I≥e is stable.
Therefore, from [6, Proposition 12], we get reg(I) ≤ e. On the other hand,
if we denote sq = max{t| αqt > 0} for any 1 ≤ q ≤ r, from [4, Theorem 3.1]
we get reg(Iq) = αqsq dsq +(iq − 1)(dsq − 1), thus max{reg(I1), . . . , reg(Ir)} =
reg(Ir). In conclusion, reg(I) ≤ reg(Ir).

Proposition 2.6. With the above notations, for any 1 ≤ q ≤ r we have:

(Iq : mq) + (I1 + · · · + Iq) ⊂ ((I1 + · · · + Iq) : mq) ⊂
⊂ ((I1 + · · · + Iq) : nq) = (Iq : nq) + (I1 + · · · + Iq).

Proof. Fix 1 ≤ q ≤ r. The first two inclusions are obvious. In order to prove
the last equality, it is enough to show that

((I1 + · · · + Iq) : xj) ⊂ (Iq : xj) + (I1 + · · · + Iq),

for any xj ∈ nq. Indeed, suppose u ∈ ((I1 + · · · + Iq) : xj), therefore xj · u ∈
I1 + · · · + Iq. If xj · u /∈ Iq it follows that xj · u ∈ Ie for some e < q. Thus
u ∈ Ie, since xj does not divide any minimal generator of Ie.

Let n ≥ 2 and let 1 ≤ i1 < i2 < · · · < ir = n be some integers. Let
α1 < α2 < · · · < αr be some positive integers. We write αq =

∑
t≥0 αqtdt.

Let sq = max{t| αqt > 0} for any 1 ≤ q ≤ r. Notice that s1 ≤ s2 ≤ · · · ≤ sr.
Indeed, assume, by contradiction, that there exist q < q′ such that sq > sq′ .
Then, from the d - decomposition of αq′ and αq, we have

αq′ =
sq′∑
t=0

αq′tdt ≤
sq′∑
t=0

(
dt+1

dt
− 1)dt = dsq′+1 − d0 ≤ dsq′+1 ≤ dsq ≤ αq,

absurd.
Let 1 ≤ q1 < q2 < · · · < qk = r be such that:

s1 = · · · = sq1 < sq1+1 = · · · = sq2 < · · · < sqk−1+1 = · · · = sqk
.
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For 1 ≤ j ≤ k, we define some positive integers χj as follows. If iqj −iqj−1 ≥ 2,
we put χj = (dsqj

− 1)(iqj − iqj−1)+ dsqj
(αqjsqj

− 1). Otherwise, suppose that
q = qj and there exists a positive integer 1 ≤ l ≤ r − q + 1 such that sq−1 <
sq < · · · < sq+l−1 and iq+l−1 = iq−1 + l. Denote i = iq. We define recursively
the numbers χi+m−1, for 1 ≤ m ≤ l, starting with m = l. Suppose that we
have already defined χi+m, . . . , χi+l−1. If αq+m−2,sq+m−2 > αq+m−1,sq+m−1 ,

we put χq+m−1 :=
sq+m−1∑

t=sq+m−2+1
αq+m−1,tdt − 1 and we switch from m to m− 1.

Otherwise, if αq+m−2,sq+m−2 ≤ αq+m−1,sq+m−1 we put

χq+m−1 := (αq+m−1,sq+m−2 − αq+m−2,sq+m−2 + 1) · dsq+m−2+

+
sq+m−1∑

t=sq+m−2+1

αq+m−1,tdt − 1

and, if m ≥ 2, we put also χq+m−2 := αq+m−2,sq+m−2 ·dsq+m−2 − 1. We switch
from m to m − 2. We continue this procedure until m ≤ 0.

With these notations, for the ideal I =< xα1
i1

, xα2
i2

, . . . , xαr

ir
>d, we have the

following theorem:

Theorem 2.7. max{e : (Soc(S/I))e �= 0} =
∑k

j=1 χj.

Proof. For each integer 1 ≤ j ≤ k, we consider the following ideal:

Jj =

⎧⎨
⎩

(xχj

iqj
), if iqj − iqj−1 = 1,

(xiqj−1 +1 · · ·xiqj
)dsqj

−1 · ∑qj

e=qj−1+1(n
[dsqj

]

e )αese−1, otherwise.

Let J = J1 · J2 · · ·Jk. We claim the following:
(1) J ⊂ (I : m),
(2) G(J) ∩ G(I) = ∅,
(3) max{e| (Soc(S/I))e �= 0} = max{e| ((J + I)/I)e �= 0}.
Suppose that we proved (1), (2) and (3). (1) and (2) implies

max{e| ((J + I)/I)e �= 0} = deg(J) := max{deg(u)| u ∈ G(J)}.

On the other hand, it is obvious that deg(J) =
∑k

j=1 χj and thus, by (3), we
complete the proof of the theorem.

In order to prove (1), we pick xi ∈ nq a variable, where q ∈ {1, . . . , r}. Let
j be the unique integer with the property that q ∈ {qj−1 +1, . . . , qj}. We want
to show that xi ·J ⊂ I. We consider two cases. First, we assume iqj −iqj−1 ≥ 2.
We claim that xiJj ⊂ Iqj−1+1+ · · ·+Iqj . Indeed, for any e ∈ {qj−1+1, . . . , qj},
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xi(xiqj−1 +1 · · ·xiqj
)dsqj

−1(n
[dsqj

]

e )αese−1 ⊂ Ie, thus xiJj ⊂ Iqj−1+1 + · · · + Iqj ,
as required. (See the proof of [4, Lema 2.1] for details.)

Suppose now iqj − iqj−1 = 1. Let j′ ≤ j, such that if we denote q = qj′ ,
there exists a positive integer j − j′ + 1 ≤ l with sq−1 < sq < · · · < sq+l−1,
iq+l−1 = iq−1 + l and iqj′+l

> iq+l−1 + 1 when q + l − 1 < r. We prove in fact
that xi · Jj′ · · ·Jj ⊂ Ij . Note that i = iq+m−1, where m = j − j′ + 1. Assume
m ≥ 2. If αq+m−2,sq+m−2 > αq+m−1,sq+m−2 , then

xi · Jq+m−2Jq+m−1 = (x
···+αq+m−2,dsq+m−2

−1

i−1 · x
�sq+m−1

t=sq+m−2+1 αq+m−1,tdt

i ) ⊂ Ij ,

because αq+m−2,dsq+m−2
− 1 ≥ αq+m−1,dsq+m−2

+ dsq+m−2 − 1 and therefore

xi ·Jq+m−2Jq+m−1 ⊂ (x
dsq+m−2−1

i−1 ·xαq+m−1,dsq+m−2
i−1 ·x

�sq+m−1
t=sq+m−2+1 αq+m−1,tdt

i ).

Now, the above assertion is obvious. If m = 1, the same trick works, with the
only difference that the first ”=” is replaced by ”⊆”.

If m ≥ 2 and αq+m−2,sq+m−2 ≤ αq+m−1,sq+m−2 , then xi · Jq+m−2Jq+m−1 is

the ideal generated by the product of the monomial x
αq+m−2,dsq+m−2

dsq+m−2−1

i−1

with

x

(αq+m−1,sq+m−2−αq+m−2,sq+m−2+1)dsq+m−2+
sq+m−1�

t=sq+m−2+1
αq+m−1,tdt

i .

By regrouping, we see that xi · Jq+m−2Jq+m−1 =

= (x
dsq+m−2−1

i−1 · (x(αq+m−2,dsq+m−2
−1)dsq+m−2

i−1 ·

x
(αq+m−1,sq+m−2−αq+m−2,sq+m−2+1)dsq+m−2
i ) ·x

sq+m−1�

t=sq+m−2+1
αq+m−1,tdt

i ) ⊂ Ij , as
required. If m = 1 the same trick works, with the only difference that the first
”=” is replaced by ”⊆”.

In order to prove (2) it is enough to show for any 1 ≤ j ≤ k that
G(J1 · · · Jj) ∩ G(Ie) = ∅ for any e ∈ {qj−1 + 1, . . . , qj}, because each of the
minimal generators of J1 · · · Jj does not contain variables xi with i > iqj . We
use induction on 1 ≤ j ≤ k. If j = 1, then G(J1) ∩G(I1) = ∅ from [4, Lemma
2.1]. Suppose the assertion is true for j − 1. We must consider two cases.

First, suppose iqj − iqj−1 ≥ 2. It follows Jj = (xiqj−1 +1 · · ·xiqj
)dsqj

−1 ·∑qj

e=qj−1+1(n
[dsqj

]

e )αese−1. Since sqj−1 < sqj , it follows that J1 · · ·Jj−1 · Jj ⊂
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(x1, . . . , xiqj−1
)dsqj

−1
Jj , and it is easy to note that none of the minimal gen-

erator of the ideal from left is included in some Ie with qj−1 + 1 ≤ e ≤ qj .
Suppose now iqj − iqj−1 = 1. Let j′ ≤ j, such that if we denote q = qj′ ,

there exists an positive integer j − j′ + 1 ≤ l with sq−1 < sq < · · · < sq+l−1,
iq+l−1 = iq−1 + l and iqj′+l

> iq+l−1 + 1 when q + l − 1 < r. We prove in fact
that xi · Jj′ · · · Jj ⊂ Ij . Note that i = iq+m−1, where m = j − j′ + 1. Assume
m ≥ 2. If αq+m−2,sq+m−2 > αq+m−1,sq+m−2 , then

J1 · · · Jj = (J1 · · · Jj−2) · (x
···+αq+m−2,dsq+m−2

−1

i−1 · x
�sq+m−1

t=sq+m−2+1 αq+m−1,tdt−1

i ) ⊂

(x1, . . . , xiqj−2
)dsqj−1

−1(x
···+αq+m−2,dsq+m−2

−1

i−1 · x
�sq+m−1

t=sq+m−2+1 αq+m−1,tdt−1

i ),

and it is easy to see that none of the minimal generators of the last ideals is
in Ij . The subcase αq+m−2,sq+m−2 ≤ αq+m−1,sq+m−2 is similar. Also, the case
m = 1.

In order to prove (3) it is enough to show the ”≤” inequality, since obviously
(J + I)/I ⊂ Soc(S/I). Let u = xβ1

1 · · ·xβn
n ∈ (I : m) be a monomial such that

u /∈ I. We claim that deg(u) ≤
k∑

j=0

χj . More precisely, we claim the following:

(a)
∑iqj

i=iqj−1+1 βi ≤ χj , for all 1 ≤ j ≤ r such that iqj − iqj−1 ≥ 2.

(b) For each j with the property that there exists an positive integer 1 ≤ l ≤
r − q + 1 (where q = qj) such that sq−1 < sq < · · · < sq+l−1, iqj − iqj−1 ≥ 2

and iq+l−1 = iq−1 + l, we have
∑iqj−1+l

i=iqj−1+1
βi ≤

∑l
m=1 χj+m−1.

Obviously, (a) and (b) implies (3).
In order to prove (a), assume that

∑iqj

i=iqj−1 +1 βi > χj , therefore

iqj∑
i=iqj−1 +1

βi ≥ (dsqj
− 1)(iqj − iqj−1 − 1) + αqjsqj

dsqj
.

It follows that we can write uj = x
dsqj

−1

i · w, with

w ∈ (x
dsqj

iqj−1 +1, . . . , x
dsqj

iqj
)αqj sqj ,

for some i ∈ {xiqj−1+1, . . . , xiqj
}, and thus uj ∈ Iqj , a contradiction.

Consider now the case (b) and assume that

iqj−1+l∑
i=iqj−1+1

βi >

l∑
m=1

χj+m−1.
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Using similar arguments as in the case (a), we get uj ∈ Iqj , a contradiction.

Corollary 2.8. With the previous notations, reg(I) =
∑k

j=1 χk + 1.

Proof. Since I is an artinian ideal, reg(I) = max{e : Soc(S/I)e �= 0} + 1 so
the required result follows immediately from the previous theorem.

Remark 2.9. We have already seen that reg(I) ≤ reg(Ir). Now, we are able
to say when we have equality, and this is only in the case when k = 1, i.e.
s1 = s2 = · · · = sr. Indeed, if k = 1, by [4, 3.1], reg(Ir) = (dsr − 1)(n − 1) +
dsr (αrsr − 1) + 1 = χ1 + 1. Conversely, if k > 1 then χ1 + · · ·+ χk < reg(Ir),
because χj < (dsr − 1)(iqj − iqj−1) + dsr (αrsr − 1) for any j < k.

Example 2.10. 1. Let d : 1|2|6|12 and I =< x7
2, x

10
3 , x17

5 >d⊂ K[x1, . . . , x5].
We have k = 2, χ1 = 15 and χ2 = 22. Therefore, reg(I) = 27. An ele-
ment of maximal degree in Soc(S/I) is x5

1x
5
2x

5
3x

11
4 x11

5 .

2. Let d : 1|4|12 and I =< x2
1, x

7
2, x

16
3 >d⊂ K[x1, x2, x3]. We have k = 3.

Since 2 = 2 · 1, 7 = 3 · 1 + 1 · 4 and 16 = 1 · 4 + 1 · 12, we get χ1 = 1,
χ2 = 3 and χ3 = 19. Therefore, reg(I) = 23. An element of maximal
degree in Soc(S/I) is x1x

3
2x

19
3 .
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