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REGULARITY FOR CERTAIN CLASSES
OF MONOMIAL IDEALS*

Mircea Cimpoeas

Abstract

We introduce a new class of monomial ideals, called strong Borel
type ideals, and we compute the Mumford-Castelnouvo regularity for
principal strong Borel type ideals. Also, we describe the d-fixed ideals
generated by powers of variables and we compute their regularity.

Introduction.

Let K be an infinite field, and let S = K[z, ..., 2,],n > 2 be the polynomial
ring over K. Bayer and Stillman [2] note that a Borel fixed ideal I satisfies
the following property (I : x5°) = (I : (z1,...,2;)>) forall j = 1,...,n.
Herzog, Popescu and Vladoiu state that a monomial ideal is of Borel type if it
fulfill the previous condition. We mention that this concept appears also in [3,
Definition 1.3] as the so called weakly stable ideal. In fact, Herzog, Popescu
and Vladoiu notice that a monomial ideal I is of Borel type, if and only if
for any monomial u € I and for any 1 < j < i < n, there exists an integer

t > 0 such that xgu/x:(u) € I, where v;(u) > 0 is the exponent of z; in w.
(See [7, Proposition 1.2].) This property suggest us to define the so called
ideals of strong Borel type (Definition 1.1), or simply, (SBT)-ideals. In the
first section, we give the explicit form of a principal (SBT)-ideal (Lemma 1.4)
and we compute its regularity (Theorem 1.6).

Let d : 1 = dg|d1]---|ds be a strictly increasing sequence of positive in-
tegers. We say that d is a d-sequence. In [4] it was proved that for any
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34 M. CIMPOEAS

a € N there exists a unique sequence of positive integers ag, a1, ..., as such
that: a =Y ;_,aid; and 0 < ay < dfifl , for any 0 <t < s. The decomposition

a= Zf:o a.d; is called the d-decomposition of a. In particular, if d; = p* we
get the p-adic decomposition of a. Let a,b € N and consider the decomposi-
tions a = >;_awd; and b= >"7_ byd;. We say that a <q b if a; < by for any
0 <t <s. We say that a monomial ideal I C S is d-fixed, if for any monomial
u € I and for any indices 1 < j < i < n, if t <q v;(u) then u - xé/xf € I (see
[4, Definition 1.4]).

In [4], it was proved a formula for the regularity of a principal d-fixed ideal,
i.e the smallest d-fixed ideal which contains a given monomial v € S. This
formula generalizes the Pardue’s formula for the regularity of a principal p-
Borel ideal, proved in [1] and [8], and later in [7]. In the section 2, we describe
the d-fixed ideals generated by powers of variables (Proposition 2.2) and we
give a formula for their regularity (Corollary 2.8).

The author is grateful to his adviser Dorin Popescu for his encouragement
and valuable suggestions. He owes special thanks to Assistant Professor Alin
Stefan for valuable discussions on Section 2 of this paper. My thanks go also
to the School of Mathematical Sciences, GC University, Lahore, Pakistan for
supporting and facilitating this research.

1 Monomial ideals of strong Borel type.

Let K be an infinite field, and let S = K[z1, ..., x,],n > 2, be the polynomial
ring over K.

Definition 1.1. We say that a monomial ideal I C S is of strong Borel type
(SBT) if for any monomial w € I and for any 1 < j < i < n, there exists an
integer 0 < t < v;(u) such that xéu/m;’(u) € I, where v;(u) > 0 is the exponent
of x; in u.

Remark 1.2. Obviously, an ideal of strong Borel type is also an ideal of Borel
type, but the converse is not true. Take for instance I = (23,23) C K[y, 7).

The sum of two ideals of (SBT) is still an ideal of (SBT). The same is
true for an intersection or a product of two ideals of (SBT).

Definition 1.3. Let A C S be a set of monomials. We say that I is the
(SBT)-ideal generated by A, if I is the smallest, with respect to inclusion,
ideal of (SBT) containing A. We write I = SBT(A).

In particular, if A = {u}, where uw € S is a monomial, we say that I is the
principal (SBT)-ideal generated by u, and we write I = SBT(u).

Lemma 1.4. Let 1 < i1 < ig < -+ < i, < n be some integers, aq,...,q,

o " an o o o
be some positive integers and u = i 'x;?---xi" € S. Then, the principal
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(SBT)-ideal generated by u, is:

T

I =SBT(u) = [](ml),

q
q=1
where
(o3 (o3

my = {z1,...,7;, } and mg‘l‘l] ={z1",... Ty
Proof. Denote I’ = szl(mgad). If v is a minimal monomial generator of I’,
then v = x?lla:?; . x?, for some 1 < j, < iy, where 1 < ¢ <r.
Since

I B e
i 12 i1
and I is of (SBT) it follows that v € I and thus I’ C I. For the converse,
simply notice that I” is itself an (SBT)-ideal. O

Remark 1.5. For any monomial ideal I C S, we denote m(I) = max{m(u) :
u € G(I)}, where G(I) is the set of the minimal generators of I and m(u) =
max{i : x;|u}. Also, if M is a graded S-module of finite length, we denote
s(M) = max{t: M; # 0}.

Let I C S be a Borel type ideal. In [7], it is defined a chains of ideals
I=IyclC---ClI.=S5 as follows. Welet Iy = 1. Suppose Iy is already
defined. If I, = S then the chain ends. Otherwise, we let ny, = m(I;) and
set Ipy1 = (Ip = x35). Notice that v < n, since ng > ngyy for all 0 < £ <.
The chain I =Ty C Iy C--- C I, =S is called the sequential chain of I. [7,
Corollary 2.5] states that

(1) I€+1/I€ = (J;at/‘]f)[xw-i-la s 71‘"])

for all 0 < ¢ < r, where J; C S¢ = K[z1,...,2p,] s the ideal generated by
G(Iy). Also, [7, Corollary 2.5] gives a formula for the regularity of I, more
precisely,

(2) reg(I) = max{s(J5" [ Jo), s(J5* [ J1), -, s(J32 ) Jr1)} + 1.

Our next goal is to give a formula for the regularity of a principal (SBT)-
ideal. In order to do it, we shall use the previous remark.

Let 1 < i1 < i9 < -+ < i < n be some integers, ai,...,q, be some
positive integers and v = x7 2}’ -z € S. Foreach 1 <¢<r, 1< f<gq
with ay < agy and 1 < j <44, we define the numbers:

3

. aj+aq_1; ij<qanda]2af
X T ay -1 therwi
f ) otherwise
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i’]
N S

Theorem 1.6. With the above notations, we have reg(SBT (u)) = m%f{ Xq+1.
praa

Proof. Firstly, we describe the sequential chain of I.
Since I, := I = [[;_,(m [%]) it follows that I,_; := (I, : 25°) = H*:l(mg%]).

T q=1
[ove]

Analogously, we get I := (Ig41 : 25° ) = [[2_,(me™’), for all 0 < ¢ < 7.

1q+1
Illelef()le, ‘lle Seqllelltlal ChalIl ()f _l 18

I=I.cl,yC---CchLCly=S5.

Let J, be the ideal of S; = K([z1,...,x;, | generated by G(I,), for 1 < ¢ <.
Denoting s, = s(J2*/J,), (2) from Remark 1.5 implies reg(I) = max{s, :
1 < ¢ < r}, so, in order to compute the regularity of I, we must determine
the numbers s,. We claim that s, = xq.

First of all, note that J, = I;NS, and J;* = I, 1NS,. Let 1 < f < g with
3 X&) (

ap < agand w = )" i, " Since qu) > a, forany 1 <e < ¢g—1 we get
&) )
i ~-x§“ e Jp =1 1(meae])Sq, therefore w € J3*. On the other

hand, one can easﬂy see that w ¢ Jg, so w is a nonzero element in J;‘“ /Jq
with deg(w) = x4, thus sq > xq4-

In order to prove the converse inequality, we consider a monomial u € J ;‘“
with deg(u) > x4 + 1 and we show that u € J;. Assume, by contradiction,

that v ¢ J,. Since u € JS‘“, it follows that u = :cjl ~~x?“_1 ?1 ﬁiq,
q—1

where 1 < jo < i. for 1 <e<g—1and 31+ -+ 0, > xq — Zq 1 Q.
Let A= {1,...,i} \ {j1,--,dq—1}. Since u ¢ J, and x7' - 'x;yq be Jgtit
follows §; < ay — 1 for all j € A.

Write {1,...,q¢— 1} = U~ E;, where E; = {e;1, ..., €, }, such that je,, =
Je; for all 1 < k < k; and E N E; = () whenever ¢ # /. With these notations,

eqytotae, e, o xaem1+~~~+ae,,,m" +Bjemm ) H xﬁj

w= x]ﬂ Jem

jEA
Let 1 < f < ¢ be such that oy < oy, 85 < ay for all j € A and ay be
the largest integer among all the o/, with f’ satisfying the above conditions.

Suppose that there exist some 1 <¢ <m and 1 < k < k; such that ae,, < ag.
It follows that 63 <af-— — 1, otherwise u € J;. One can immediately

conclude that 3971 v + Zj 1 ﬁg <Xy -
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Example 1.7. Let u = 252} € S = K21, 22, 23]. From Lemma 1.4 it follows
that I = SBT(u) = (29,25) (27,23, 25). With the notations of 1.5 and 1.6,
we have J; = (2§,25) C K[z1,22] and Jo = I. Also, J{* = K[z, 5] and
J3a = (29,25) C S. Obviously, x1 = X(ll) =2-5=10, i.e. s(Jj%/J;) =
s(Kx1,22]/(2$,25)) = 10. We have Xél) =(6+7—-1)+2-5 =23 and
Xg) = 3.6 = 18, therefore yo = 23 and thus reg(]) = max{10,23} + 1 = 24.

In the end of this section, we mention the following result, which generalizes
a result of Eisenbud-Reeves-Totaro (see [6, Proposition 12]).

Proposition 1.8. [5, Corollary 8] If I is a Borel type ideal, then
reg(I) = minf{e: e > deg(I), I>. is stable},
where deg(I) is the mazimal degree of a minimal monomial generator of I.

In particular, this holds for (SBT)-ideals, and thus we get the following
corollary.

Corollary 1.9. With the notations of Theorem 1.5, if I = SBT(u) and e >

m%f{ Xq + 1, then Is. is stable.
i

Remark 1.10. Note also that the reqularity of an (SBT)-ideal, I C S, is
upper bounded by n(deg(I) — 1)+ 1, (see [9, Theorem 2.2]). In fact, deg(I) is
the mazimum degree of a minimal generator of I as an (SBT)-ideal!

2 d-fixed ideals generated by powers of variables.

Let us fix some notations. Let uq,...,u, € S be some monomials. We say
that I is the d-fixed ideal generated by w1, ..., U, if I is the smallest d-fixed
ideal , w.r.t inclusion, which contains u1, ..., U, and we write

I =<ui,...,Un >4 -

In particular, if m = 1, we say that I is the principal d-fixed ideal generated
by u = u; and we write [ =< u >g4.

In the case when I is a principal d-fixed ideal , [4, Theorem 3.1] gives a
formula for the Castelnuovo-Mumford regularity of I. Using similar techniques
as in [4], we shall compute the regularity for d-fixed ideals generated by powers
of variables. We recall some results proved in [4] which are useful. Let o
be a positive integer and let I =< z% >qC S = Klz1,...,z,]. Suppose
a=Y7_,awd; with g # 0. Then:
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I =1];_,(mlet where m = {z1,...,2,} and m!¥ = {x¢,... 2} [4,
1.6].

Soc(S/I) = (J+1)/I, with

J = (1w () T (mlbl)es 4, 2.1].
t=0

>t

o reg(l) =max{e: (J+I)/I)e #0} = asds + (n—1)(ds — 1)
(see [4, 3.1]).
o If ¢ > reg(I) then Is. is stable (see [4, 3.6] or apply Proposition 1.8,

since any d-fixed ideal is of Borel type, see [4, 1.11]).

Lemma 2.1. If 1 < j < j/ < n and o > [ are positive integers, then
<a¥>c<al, >,

Proof. Indeed, using [4, 1.7] it is enough to notice that < z§ >C< x§ >, since
rF e<xy >. O

Our next goal is to give the set of the minimal generators of a d-fixed ideal
generated by some powers of variables. Using the previous lemma, we had
reduced to the next case:

Proposition 2.2. Letn > 2 and let 1 < 11 < 19 < -+ < i = n be some
integers. Let oy < ag < --- < . be some positive integers. Then

T
I=<af' a2, .. ,2)" >a= ZI(Q),
q=1

with
q S
d et
7@ — Z H H(n[e elyver,
Y1s---57q Sd Qgq, e=1t=0
At <ag, fori<g
M+t <qgaq, fori<g
M+t = ag
d d d .
where ne = {Ti,_,41,---,Ti, }, nl = {@if 1o @it} do = 0 and e =
Zf:o%tdt-
Proof. Let mgq = {w1,...,2;,} for 1 < ¢ < r. Obviously, n, = m, \ m,_;

for ¢ > 1 and m; = n;. Using the simple fact that I is the sum of principal
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d-fixed ideals generated by the d-generators of I together with [4, Proposition
1.6], we get:

T S S
I= Z H(m([]d‘])“q*‘, where ag = Z ogedy.
g=1t=0 t=0
Denote S, = Klx1,...,2;,] for 1 < ¢ < r. In order to obtain the required

formula, we use induction on r > 1, the case r = 1 being obvious. Let r > 1
and assume that the assertion is true for r — 1, i.e

arl

Qg
r =<Zy .. >d=
r—1 q s
d e
> [T 5
g=1 Yy s Vg <4 ag, e=1t=0

Y1+ < ag, fori<g
Y1+ + 7 <d aq, fori<g
Y1+ v =g

Obviously, I = I'S+ < 287 >q= I'S + [[}_,(m [d‘})a”. Also, I'S and I’
have the same set of minimal generators and none of the minimal gener-
ators of I'S is in I. But, a minimal generator of < x%" >4 is of the

form w = [[;_, HJ 1 ;\"d' with 0 < A and Z;L=1 Atj = Qp¢. Suppose
w gé I'S. In order to complete the proof, we shall show that w € I("). Let
=11 OHJ S x/\“d" and let wg = [[?_, ve. Obviously, w = vy ---v, =

wy. Since w ¢ I' it fqllows that w, ¢ 19 for any 1 < ¢ <r—1. But w, ¢ 19
implies (%) >7_, E;“zl Atjde < ag, otherwise w, €< xiaq“Sq >q S C I’
and thus w € I', a contradiction. We choose 7. = >_7_, Z;e:ikﬁl Aijdy for
1 <e<r. Forl<q<r, the inequality () implies 1 +--- + 74 < ag. On
the other hand, it is obvious that 1 + -+ + 7. <4 a, for any 1 < e < r and
Y1+ -+ = a,. Thus w € I") as required. O

Example 2.3. Let d : 12412 and let [ =< 21,239 217 >4C K|z1,...,25)].
Wehave 7=1-1+1-2+1-4,10=1-24+2-4,17=1-14+1-44+1-12. We
have

W =< 1:; >q= (xl,xg)(x%,xg)(m%,xé).

In order to compute I, we need to find all the pairs (71,72) such that
v1 <7, 7 <4 10 and v2 = 10 — 1. We have 4 pairs, namely (0,10), (2,8),
(4,6) and (6,4), thus

19 = (2%, a})(ad od)a + (o a)af + (o, )] + o).
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In order to compute I®), we need to find all (y1,%2,73) such that v; < 7,
Y1+72 <10, 1 <a 17, 1 +72 <a 17T and v3 = 17—y + . If 1 =0
then, the pair (7y2,7s) is one of the following pairs: (0,17),(1,16),(4,13) or
(5,12). If 1 = 1 then, the pair (v2,73) is one of the following pairs: (0,16)
and (4,12). If y1 = 4 then, the pair (v2,v3) is one of the pairs: (0,13) and
(1,12). If y1 = 5 then, the pair (va2,7s) s (0,12). Thus

I®) = (w1, m9) (2], 25) (w1%, 287) + (2], w3) w3 (24, 287)+
+(x411a x%)(x4,:c5)(x}12,xé2) + (xla x2)$§($4 7xé2)+
+($1,$2)($3,$§)($}12,$5 )+J)3($4, )(.134 7135 )

+$§(l‘4,$5)(1‘}12,l‘5 )+x3(x41127x5 ) (1‘4,1‘5)(.134,.135)(1‘4112713%2).

By Proposition 2.2, we get [ = I 4 1(2) 4 163

Remark 2.4. For any 1 < q <r and any nonnegative mntegers yi,...,%q <d
oq such that vi + -+ v < oy, 71 + - —1—% <q oq for 1 < i < q and
Y1+ Y = g we denote Ifgl) 1 Ht 0( df])’)’m Proposition 2.2
z'mplz'es
I= Z Z ’)’17 Vg
q=17157q

Let m = (z1,...,2,) C S be the irrelevant ideal of S. We have:

(I:Sm):ﬂ(I:xj) ﬂ Z 19 yiay) =

Jj=1 Jj=1 g¢=171,.-,7

=10 Do W2,z

=1 q=17v1,...,7¢
On the other hand, if x; € n, for some 1 < p < g, then

Ty = (0 i) =
_ H H dt] ’YEtnp,j[dt] np[dt])’thfl( Z H(n[edt])%'t)’
e#p t=0 Ypt >0 jF#t
where npj[d‘] = (xf; RS .,ac?‘_l, . ,xfp*') and 5 sl (npldeyyme=1 .= g jf

Ypt = 0. Thus

(I 5 m) = Z > ooy ¥ ﬂJif,)’f-

1"/17 f"/l qr=17,.. Vg moj=1
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where, for a given ¢ = ¢7, we take the second j** sum for 'y{, . ,73 <4 aq such
that v+ -+ < i, W+ 47 <a g for1 <i<¢ and v+ -+7] = ag.

Proposition 2.5. Letn > 2 and let 1 < 11 < 19 < -+ < i = n be some

integers. Let oy < ag < --- < o be some positive integers. We consider the
ideal I = E;:l Iy, where I =< quq >q. Then, we have: reg(I) < reg(I,)

(We will see later in which conditions we have equality).

Proof. From [4, Corollary 3.6] it follows that (I;)>. is stable, if e > reg(I;) so
(I4)>e is stable for e = max{reg(Iy),...,reg(I;)}. Since Is, = Z;=1(Iq)ze
and since a sum of stable ideals is still a stable ideal, it follows that I is stable.
Therefore, from [6, Proposition 12], we get reg(I) < e. On the other hand,
if we denote s, = max{t| ag > 0} for any 1 < ¢ < r, from [4, Theorem 3.1]
we get reg(ly) = ags,ds, + (ig — 1)(ds, — 1), thus max{reg(I1),...,reg(l,)} =
reg(I). In conclusion, reg(l) < reg(I,). O

Proposition 2.6. With the above notations, for any 1 < q < r we have:
(g mg)+ L+ + 1) C((Ii+-+1g) tmg) C
C(Ii+-+1g) ing) =(Ig:ng) + (I + -+ I).

Proof. Fix 1 < g < r. The first two inclusions are obvious. In order to prove
the last equality, it is enough to show that

(I 44 1g) rzy) C Iy xy) + (I + - + 1),

for any x; € n,. Indeed, suppose u € ((I1 +---+ I) : ), therefore z; - u €
L+--+1,. Ifz; -u¢ it follows that =; - u € I, for some e < ¢g. Thus
u € I, since x; does not divide any minimal generator of I.. O

Let n > 2and let 1 < 43 < i3 < .-+ < i = n be some integers. Let
a; < ag < --- < a, be some positive integers. We write ag = Y, Qtqeds.
Let s, = max{t| age > 0} for any 1 < ¢ < r. Notice that s1 < s9 < -+ < s,.
Indeed, assume, by contradiction, that there exist ¢ < ¢’ such that s; > s4/.
Then, from the d - decomposition of oy and o, we have

Sq! Sq!
dtJrl
Qg = Zaq’tdt < Z( d, - ]-)dt = dsq/Jrl —do < dsq/Jrl < dsq < Qq,
t=0 t=0

absurd.
Let 1 < ¢1 < g2 < -+ < qr =r be such that:

S1=:0 = 8q <Squ41 == Sgp < <841 = 000 = Sgye
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For 1 < j <k, we define some positive integers ; as follows. If Bg; —lg—1 = 2,
we put x; = (ds,, = 1)(iq, —iq,_,) +ds,, (g;s,, — 1). Otherwise, suppose that
¢ = g; and there exists a positive integer 1 <[ < r — g+ 1 such that s;_; <
8g <+ < Sgqi—1 and ig4y—1 = iq—1 + [. Denote i = i;. We define recursively
the numbers x;4m—1, for 1 < m <[, starting with m = [. Suppose that we

have already defined Xitm,. ., Xiti—1- If Qgyrm—2,5,0m_> > Qgrm—1,501m_1>
Sq+m—1
we put Xgym—1 = > Ogtm—1,+d¢ — 1 and we switch from m to m — 1.

t=8q+m—2+1
Otherwise, if Qgrm—2,5,4m_2 < Qgrm—1,5,4m_1 W€ pUt

Xg+m—1 = (aq+m71,sq+m72 — Qlg4m—2,554m—2 T 1)- dSq+7n72+

Sqg4+m—1

+ Z Ogrm—1,tdr — 1

t=sq4+m—2+1

and, if m > 2, we put also Xgrm—2 = Qgtm—2,s44m_2 " dsyrm_o — 1. We switch
from m to m — 2. We continue this procedure until m < 0.

With these notations, for the ideal I =< x7',z3?, ..., 2" >q, we have the
following theorem:

Theorem 2.7. max{e: (Soc(S/I))e # 0} = Z?zl X;-

Proof. For each integer 1 < j < k, we consider the following ideal:

(373”.)7 if iq7‘ - in_l =1,
J' —= 9 ’ ds
’ (xiqj._lﬂ . 'xiqj)dsqf - Zj:qulﬂ(n[e q’])a“efl, otherwise.
Let J=J;-Jy---Ji. We claim the following:
(1) JC (I:m),
(2) GJ)NG(I) =0,
(3) max{e| (Soc(S/I)). # 0} = max{e| ((J +I)/I)e # 0}.
Suppose that we proved (1), (2) and (3). (1) and (2) implies

max{e| ((J+I)/I). # 0} = deg(J) := max{deg(u)| u € G(J)}.

On the other hand, it is obvious that deg(J) = Ekzl x; and thus, by (3), we
complete the proof of the theorem.

In order to prove (1), we pick x; € ng a variable, where ¢ € {1,...,r}. Let
Jj be the unique integer with the property that ¢ € {g;—1+1,...,¢;}. We want
to show that x;-J C I. We consider two cases. First, we assume iq, —iq;_, > 2.
We claim that z;.J; C Iy, , 41+ --+14;. Indeed, for any e € {g;_1+1,...,¢;},
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xi(fﬂiqj._lJrl .. .xiqj )dqu _1(n[edbqj])ags,i*1 C I., thus xic]j C Iqj71+1 4+t Iqj7
as required. (See the proof of [4, Lema 2.1] for details.)

Suppose now ig, —iq,—1 = 1. Let j° < j, such that if we denote ¢ = ¢jr,
there exists a positive integer j — j' + 1 <1 with s4_1 < 8¢ < -+ < Sg4i—-1,
ig4i—1 = tg—1 + 1 and lqy,, > tgri-1+1 when ¢+ —1 < r. We prove in fact
that z; - Jj ---J; C I;. Note that i = ig4m—1, where m = j — j' + 1. Assume
m 2> 2. If agyrm—2,5,1m_n > Cgtm—1,551m—», then

s

g+m—1

et - —1 o _1,.:d
q+m 2,dsq+m,2 t=sqtm—_2+1 q+m—1,tat

i Jorm—2dgrm-1 = (;_4 "y Clj

because qg4m—2,4d, — 12> agrm—1,d, +ds,p_», — 1 and therefore

q+m—2 q+m—2

s
Sqgtm—1
d — Qgtm— Qgim—1,td

Sqpm—2 "1 atm—Lidsg o t=sqpm—2+1 Fatm—1t ‘)

i Jqrm—2Jq4m—1 C (2,9 “Ti1 T

Now, the above assertion is obvious. If m = 1, the same trick works, with the
only difference that the first ”=" is replaced by 7 C”.

Ifm>2and agrm—2,501m2 < Qgtm—1,591m_2> then x; - Jgym_oJgim—1is
. . Qgm—2,ds 5 sgyp o1
the ideal generated by the product of the monomial z, _; am—2 armo2

with

Sgtm—1
(Qgbm—1,54m o Cqtm—2,504m ot sy o th > . Qgtm—1,tdt
=sq+m—2
Ty

By regrouping, we see that z; - Jy4ym—2Jq4m—1 =

dsgim—n—1 (cgem—2,dg 1)d

= (z;9 N C w2

Sqtm—2

Sq+m—1
Z(.aq+m7115q+m_2 70‘Q+"7L7215q+m,—2+1)d5q+m,—2) . l‘:=5q+7n_2+1 aq+m,—1,tdt) . Ij7 N
required. If m = 1 the same trick works, with the only difference that the first
?=" is replaced by 7 C”.

In order to prove (2) it is enough to show for any 1 < j < k that
G(Ji---J;))NG(I.) = 0 for any e € {gj—1 + 1,...,q;}, because each of the
minimal generators of J; - - - J; does not contain variables z; with ¢ > ig;- We
use induction on 1 < j < k. If j = 1, then G(J1) NG(I1) = () from [4, Lemma
2.1]. Suppose the assertion is true for 7 — 1. We must consider two cases.

First, suppose iy; — iq;_, > 2. It follows J; = (xiqj_lJr1 cemi,, )dsqj—l .

. [dsy, ] . .
Zj=qj_1+1(ne Yh)eese = Since sq,_, < g, it follows that Jy---J;_1 - J; C



44 M. CIMPOEAS

(1. .. (Tig, )dsqj *1Jj, and it is easy to note that none of the minimal gen-
erator of the ideal from left is included in some I, with ¢;—1 +1 <e < gj.

Suppose now g, —iq;_, = 1. Let j° < j, such that if we denote ¢ = ¢jr,
there exists an positive integer j — j' + 1 < with sq_1 < ¢ < -++ < Sg4i—1,
tg+1—1 = tq—1 + [ and iqj,H > ig41i—1 + 1 when ¢+1—1 < r. We prove in fact
that «; - Jj - - J; C I;. Note that ¢ = ig4m—1, where m = j — j' + 1. Assume
m > 2. If Qgrm—2,5,0m_n > Qgtm—1,541m_2, then

Sqdm—1
e Qgm_2.dg -1 T Og4m—1,¢de—1
sy tm_2o t=5g4m—_2+1 ¥4 )
Jl .. Jj — (']1 .. Jj—2) . (‘T/‘ifl q+m ; qg+m ) C
Sqtm—1
( . )d%_l 71( togbme2ds o1 . t25 g m o+l Yatm—1di—1
1‘1,...71‘1%72 J T;_q Z; 5

and it is easy to see that none of the minimal generators of the last ideals is
in I;. The subcase agrm—2,s, m_o < Qgrm—1,5,4m_ 1 similar. Also, the case
m = 1.

In order to prove (3) it is enough to show the ” <” inequality, since obviously
(J+1)/I C Soc(S/I). Let u=a}" -z € (I : m) be a monomial such that

k
u ¢ I. We claim that deg(u) < ‘Zo X;- More precisely, we claim the following:
j=

(a) Z;q:jiq‘j_ﬁrl Bi < xj, for all 1 < j <7 such that iy, —ig,_, > 2.

(b) For each j with the property that there exists an positive integer 1 <1 <

r —q+ 1 (where ¢ = ¢;) such that s, 1 < sq < -+ < 8g41-1, iq; — lg;_, > 2
. . iq;_ l

and ig1;—1 = ig—1 + [, we have ZiZiq;tll+1 Bi <D a1 Xjtm—1-

Obviously, (a) and (b) implies (3).
In order to prove (a), assume that qu:jiq,-,lﬂ Bi > x;, therefore

iq,
E Bi = (ds,, = 1)(ig; —ig;_y — 1) + agys, s, -
i=iq;_,+1
. dSQ' -1 .
It follows that we can write u; =z, 7 - w, with
d
Sqj Sq5 \Qq; 5q.
w E (xiqu_kl,...,xiq] AR

for some ¢ € {xinIH, e T, }, and thus u; € I,;, a contradiction.

Consider now the case (b) and assume that

Yqj 141

!
Yo B> Xjrmot
m=1

=g 141
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Using similar arguments as in the case (a), we get u; € I ;, a contradiction. [

Corollary 2.8. With the previous notations, reg(I) = Z?zl xk + 1.

Proof. Since [ is an artinian ideal, reg(I) = max{e : Soc(S/I). # 0} + 1 so
the required result follows immediately from the previous theorem. O

Remark 2.9. We have already seen that reg(I) < reg(I,). Now, we are able
to say when we have equality, and this is only in the case when k = 1, i.e.
S$1 =82 ="---=5p. Indeed, if k=1, by [4, 3.1], reg(I;) = (ds,, — 1)(n — 1) +
ds, (ars, — 1)+ 1= x1+1. Conversely, if k > 1 then x1+ -+ xx < reg(l),
because x;j < (ds, —1)(ig; —ig;—1) + ds, (ars, — 1) for any j < k.

Example 2.10. 1. Letd: 1|2/6[12 and I =< x5, 23°, 217 >qC K[z1,..., z5].
We have k = 2, x1 = 15 and x2 = 22. Therefore, reg(I) = 27. An ele-
ment of mazimal degree in Soc(S/I) is x3x5x3xitail.

2. Let d : 1|4|12 and I =< 23,25, 2% >qC Klx1,22,73]. We have k = 3.
Since2=2-1,7=3-1+1-4and 16 =1-4+1-12, we get xy1 = 1,
X2 = 3 and x3 = 19. Therefore, reg(I) = 23. An element of mazimal

degree in Soc(S/I) is x1z3wi®.
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