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On pseudomonotone variational inequalities

Silvia Fulina

Abstract

Abstract. There are mainly two definitions of pseudomonotone
mappings. First, introduced by S. Karamardian in 1976, refers to the
maps on finite-dimensional spaces while the second one, introduced by
H. Brézis in 1968, is for operators on topological vector spaces in dual-
ity. Both represent extensions of the concept of a monotone mapping.
We investigate variational inequalities on Banach spaces involving pseu-
domonotone operators in the sense of Karamardian. We emphasize the
link between the two concepts in interconnection with the existence and
uniqueness of the solutions of variational inequalities.

Subject Classification: 47J20.

1. Introduction

Let (X, ‖·‖) be a real Banach space with the topological dual (X∗, ‖·‖∗),
〈·, ·〉 : X∗ × X → R the pairing of elements from X∗ and X .

We denote by 2X∗
the totality of all nonempty subsets of X∗ and con-

sider the multivalued or set-valued mapping A : X → 2X∗
. Let D (A) =

{x ∈ X : A (x) �= ∅} be its effective domain, R (A) = {f ∈ A (x) : x ∈ D (A)}
be its range and G (A) = R (A) × D (A) be its graph. We do not distinguish
between a set-valued mapping A and its graph G (A). So that, A or G (A) is
monotone if

〈f1 − f2, x1 − x2〉 ≥ 0 for all f1 ∈ A (x1) and f2 ∈ A (x2) or for all
(x1, f1) , (x2, f2) ∈ G (A).

To prove the existence of a solution of the operator equation (inclusion)
involving a monotone mapping A (x) 	 f it is necessary to assume that A is
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maximal. The set-valued mapping A is maximal monotone if its graph G (A)
has no monotone extension in X∗×X . The maximality ensures some required
topological properties.

The variational inequalities can be regarded as generalizations of these
equations.

In a more general framework (we give up the finite dimesion of X) let C
be a nonempty closed convex set in X and A be a set-valued mapping from X
into X∗. Then, for a given f ∈ X∗, the problem of finding an element u ∈ C
such that

〈Au − f, x − u〉 ≥ 0, ∀x ∈ C,

is called a variational inequality (V I) of the first kind. More precisely, some-
times we denote it by V I (A, C) and the set of solutions by SOL (A, C).

Clearly, when C = X or u is an interior point of C, then we range over
a neighborhood of u and the variational inequality V I (A, C) reduces to the
equation A (u) 	 f .

For the existence of variational inequalities, H. Brézis [1] introduced the
concept of pseudomonotone operators between two topological vector spaces
in duality, using the filter-convergence. In the case of Banach spaces, there
is a countable system of neighborhoods and we can bound ourselves to ordi-
nary sequences. A theory of the pseudomonotone-like mappings in the last
framework was elaborated by F.E. Browder and P. Hess [2] and it will be
used below. Because the pseudomonotonicity appears as an extension of the
maximal monotonicity, we emphasize first that a hemicontinuous maximal
monotone operator A with D (A) = X is pseudomonotone.

For the sake of simplicity, we consider in the sequel, if other is not stated,
that f = 0.

In section 2 we recall the definition of pseudomonotonicity in the sense
of Karamardian. We consider some variational inequalities involving pseu-
domonotone operators and their properties.

2. Variational inequalities and algebraic pseudomonotonicity in
the sense Karamardian.

Let C be a nonempty closed convex subset of a real Banach space X . An
operator T : C ⊂ X → X∗ is monotone if

〈Tx − Ty, x − y〉 ≥ 0, ∀x, y ∈ C.

T : C ⊂ X → X∗ is pseudomonotone if 〈Ty, x− y〉 ≥ 0 implies 〈Tx, x − y〉 ≥
0 for every pair of points x, y ∈ C , and T is strictly pseudomonotone if
〈Ty, x − y〉 ≥ 0 implies 〈Tx, x − y〉 > 0 for every pair of distinct points x, y ∈
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C. Other classes of algebraic monotone-like operators on finite-dimensional
subspaces were introduced in [5].

The symbols ”→”,”⇀” and ”
∗� ” denote the norm-convergence, the weak

convergence and the weak∗ convergence, respectively. Then T is hemicontin-
uous if the function t �→ 〈T (tx + (1 − t) y) , x − y〉 is continuous on [0, 1], and
T is demicontinuous if xn → x in X implies Txn

∗� Tx in X∗. Obviously, if T
is demicontinuous then the restrictions of to any finite-dimensional subspaces
of X are continuous.

Now we list some existence results for solutions of the V I (T, C). We start
with the following routine assertion:

Lemma 2.1. Let T : C → X∗ be a finite-dimensional continuous pseu-
domonotone operator. Then u ∈ C is a solution of the inequality

〈Tu, x− u〉 ≥ 0, ∀x ∈ C, (2.1)

if and only if

〈Tx, x − u〉 ≥ 0, ∀x ∈ C. (2.2)

Moreover, the set of solutions SOL (T, C) of the variational inequality (2.1)
is closed and convex.

In the sequel, V I (T, C) and SOL (T, C) are referred to (2.1). First we
state an uniqueness result:

Proposition 2.2. If T : C → X∗ is strictly pseudomonotone, then of
V I (T, C) has at most one solution.

Finally, we can establish the existence result:

Theorem 2.3. Let X be a real Banach space, that C be a weakly compact
subset of X and T : C → X∗ be a pseudomonotone operator. Then V I (T, C)
admits a solution SOL (T, C) and is nonempty, weakly compact, and convex.

Corollary 2.4. Let X be a real reflexive Banach space, that C be a weakly
compact, convex subset of X , and T : C → X∗ a monotone operator. If for
any pair of points y, z ∈ X, the condition

lim
t→o+

inf 〈T (y + tz) , z〉 ≤ 〈Ty, z〉 (2.3)

holds, then V I(T, C) admits a solution and SOL (T, C) is nonempty, weakly
compact, and convex.
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We remark that condition (2.3) emphasized by J.-C. Yao [8] is weaker
than the hemicontinuity assumption and Corollary 2.4 extends the standard
Stampacchia’s existence result.

As a consequence of Proposition 2.2 and Theorem 2.3, an uniqueness result
holds:

Theorem 2.5. Let C be a weakly compact, convex subset of real Ba-
nach space X , and T : C → 2X∗

be a finite-dimensional continuous strictly
pseudomonotone operator. Then V I (T, C) admits a unique solution.

An excellent survey of developments of the variational inequalities in finite-
dimensional spaces has been performed in [3].

3. Set-valued mappings.

Now, we consider set-valued (multivalued) mappings A : X → 2X∗
and

denote by Conv (X∗) the totality of all convex closed subset of X∗. We
introduce the upper and lower support functions for A by the formulas

[A (x) , y]+ = sup
x∗∈A(x)

〈x∗, y〉 and [A (x) , y]− = inf
x∗∈A(x)

〈x∗, y〉 ,

with the upper norm on Conv (X∗) defined by ‖A (x)‖+ = sup
x∗∈A(x)

‖x∗‖X∗ .

Our operators could be non-convex and non-closed set-valued, i.e., we dis-
tinguish A (x) and co A (x) (the minimal closed convex set containing A (x) .

Denote gr co A = {(x, g) ∈ D (A) × X∗ : g ∈co A (x)}. In addition, the
following relations hold:

[A (x) , y]+ = [coA (x) , y]+ = [co A (x) , y]+ , ∀x, y ∈ X,

[A (x) , y]− = [coA (x) , y]− = [co A (x) , y]− , ∀x, y ∈ X,

[A (x) , y1 + y2]+ ≥ [A (x) , y1]+ + [A (x) , y2]− , ∀x, y1, y2 ∈ X,

[A (x) , y1 + y2]− ≤ [A (x) , y1]− + [A (x) , y2]+ , ∀x, y1, y2 ∈ X,

‖co A (x)‖+ = ‖A (x)‖+ , ∀x,∈ X.

We know the following definitions:

1) A mapping A : X → Conv (X∗) is called upper semicontinuous at
x ∈ D (A) if for each neighborhood V of A (x) in X∗ there is a neighborhood
U of x in X such that A (U) ⊂ V and A is upper semicontinuous if it is upper
semicontinuous at each point x ∈ D (A). The upper semicontinuity plays an
important role in the fixed-point theory for multivalued maps.
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2) The mapping A is called locally bounded if for any x ∈D (A) there
are positive numbers ε and M such that ‖A (y)‖+ ≤ M for y ∈ X with
‖y − x‖ < ε.

We generalize these definitions by introducing the notion of generalized
pseudomonotonicity, in the frame of Banach spaces which are not necesarily
finite-dimensional.

Definition 3.1. The mapping A : D (A) ⊂ X → 2X∗
is generalized pseu-

domonotone if for any sequence {(xn, x∗
n)} ⊂ G (co A) such that (xn, x∗

n) ⇀
(x, x∗) in X × X∗ and lim sup 〈x∗

n, xn − x〉 ≤ 0, it follows that x∗ ∈co A (x)
and 〈x∗

n, xn〉 → 〈x∗, x〉.
Our study of variational inequalities involving set-valued mappings is based

on the following Brouwer fixed-point extension ([9] see Zeidler, pp.453):

Proposition 3.2. Let C be a nonempty, convex, compact set in a locally
convex space X and S : C → 2C a mapping such that the set S (x) is nonempty
and convex for all x ∈ C, and the preimages S−1 (y) are relatively open with
respect to C for all y ∈ C. Then S has a fixed point.

We can now extend an existence result ([9],pp.453) to variational inequal-
ities with set-valued mappings, i.e., the following problem:

Find a pair (u, g) ∈ C × T (u) such that this satisfies the inequality

〈g, v − u〉 ≥ 0 for all v ∈ C. (3.1)

We give sufficient conditions for this problem to have solutions.

Theorem 3.3. Let T : C ⊂ X → 2X∗
be a set-valued mapping defined on

a nonempty subset C ⊂ X .
If the following conditions are satisfied:

(i) the mapping T : C ⊂ X → 2X∗
is locally bounded, upper semicontin-

uous, and generalized pseudomonotone where X is a locally convex space and
X∗ is the dual space of X under the strong topology;

(ii) the set C is nonempty, convex, and compact;
then the variational inequality (3.1) has a solution (u, g) ∈ C × T (u).

Proof. In the contrary case, to each h ∈ T (u) there corresponds an
element w ∈ C such that

〈h, w − u〉 < 0. (3.2)
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Define the multivalued mapping S : C → 2C by

S (u) := {w ∈ K : 〈h, w − u〉 < 0} .

Condition (3.2) implies that the set S (u) is nonempty for all u ∈ C. In
addition, S (u) is convex.

We show that the set S−1 (w) is relatively open in C. First of all, specify

S−1 (w) := {u ∈ K : 〈h, w − u〉 < 0} .

Let {un} be a (generalized) sequence in C\S−1 (u) with un → z and
hn ∈ T (un), so that 〈hn, w − un〉 ≥ 0 or 〈hn, un − w〉 ≤ 0 for all n. By
the local boundedness, we also have hn ⇀ g in X∗. From the generalized
pseudomonotonicity of T , we derive that h ∈ T (z). Thus, C\S−1 (u) is rela-
tively closed and S−1 (u) is relatively open in C.

By the previous proposition, there exists a fixed point u ∈ S (u). This lead
to the contradiction 〈h, u − u〉 < 0. Hence there is a g ∈ T (u) and u ∈ C,
satisfying (3.1).

4. Variational inequalities with set-valued mappings.

Let C ⊂ D (A) be a convex closed set. O.A. Solonoukha [7] investigated
the solvability for the multivariational inequality

[A (u) , v − u]+ ≥ 〈f, v − u〉 , v ∈ C. (4.1)

involving the set-valued mapping A : C → 2X∗, called briefly VISM.

We start giving an equivalence of VISM(A,C) with a usual multivalued
mapping in the form (3.1).

Lemma 4.1. Let uo be a solution of VISM (4.1) with co A (y)a bounded
set. Assume that C is also compact set and A is locally bounded, upper semi-
continuous and a generalized pseudomonotone mapping. Then there exists an
element g ∈co A (uo) such that

〈g, v − uo〉 ≥ 〈f, v − uo〉 , ∀v ∈ C.

Proof. If the claim is not true, to each g ∈co A (uo) there corresponds
an element w ∈ C such that 〈h, w − uo〉 ≥ 〈h, w − uo〉 . We define a similar
multivalued mapping S and we follow the proof of Theorem 3.3.



On pseudomonotone variational inequalities 89

This lemma allows us to approach the previous VISM(A,C) by a simpler
and regular form. In this setting, the mapping A is called coercive if

[A (x) , x]−
‖x‖ → ∞ as ‖x‖ → ∞.

In the standard way [6], we can establish the following existence result:

Theorem 4.2. Let C ⊂ D (A) be a closed convex and compact set in a
real reflexive Banach space and A : C → 2X∗

be a locally bounded, generalized
pseudomonotone mapping.

Assume, further, that A is coercive. Then VISM (4.1) has a nonempty
weakly compact set of solutions for any f ∈ X∗.

In the case C = X, if the mapping A satisfies the assumptions of Theorem
4.2, then, for any f ∈ X∗, the operator inclusion

co A (u) 	 f

has at least one solution u ∈ X . In other words, co A is surjective, i.e.,
R (co A) = X∗ .

More generally, let ϕ : Dom (ϕ) → R be a convex lower semicontinuous
function with the domain Dom ϕ = {x ∈ X : ϕ (x) < ∞}. Consider the varia-
tional inequality of second kind, that is, for a given f ∈ X∗, find u ∈ Dom (ϕ)
such that

[A (u) , v − u]+ + ϕ (v) − ϕ (u) ≥ 〈f, v − u〉 , ∀v ∈ Dom (ϕ) . (4.2)

The corresponding coerciveness condition has the form

[A (x) , x]− + ϕ (x)
‖x‖ → ∞ as ‖x‖ → ∞, (4.3)

and we can prove a similar existence result:

Theorem 4.3. Let ϕ : Dom (ϕ) → R be a convex lower semicontinu-
ous function on a real reflexive Banach space X and A : Dom (ϕ) → 2X∗

be a locally bounded generalized pseudomonotone mapping. Assume, further,
that A satisfies the coerciveness condition (4.3). Then the VISM (4.2) has a
nonempty weakly compact set of solutions for any f ∈ X∗.
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