On the structure of nilpotent endomorphisms and applications

Viviana Ene *

Abstract

The nilpotent endomorphisms over a finite free module over a domain with principal ideal are characterized. One may apply these results to the study of the maximal Cohen-Macaulay modules over the ring $R:=A[[x]] /\left(x^{n}\right), n \geq 2$, where A is a DVR.

Subject Classification: 15A21, 13C14.

1 Introduction

Our aim is to find some kind of a "normal form" for the nilpotent endomorphisms of a finite free module E over a principal ideal domain (briefly PID), similar with the Jordan form for the nilpotent endomorphisms of the linear spaces. We closely follow the procedure used to get the Jordan form for the nilpotent endomorphisms of linear spaces (see [G]). We shall see in Section 3 that this "normal form" looks very nice for those nilpotent endomorphisms which have the index of nilpotency equal to 2 , but it becomes very complicate for bigger index. Next we apply these results in the study of the MCM modules over the $\operatorname{ring} R:=A[[x]] /\left(x^{n}\right)$, where $A=K[[y]], K$ being a field, but all the results can be applied for the MCM modules over the ring $A[[x]] /\left(x^{n}\right)$, where A is a DVR. R is a finite A-algebra and any maximal Cohen-Macaulay (briefly MCM) module over R is free of finite rank over A. Giving a MCM R-module M is equivalent to give a morphism of A-algebras, $f_{M}: R \rightarrow \operatorname{End}_{A}(M)$ which is uniquely determined by $u=f_{M}(x) \in \operatorname{End}_{A}(M)$. Since $x^{n}=0$, we must

Key Words: Nilpotent endomorphism; Maximal Cohen-Macaulay module; Matrix factorization
*Work supported by the CEEX Programme of the Romanian Ministry of Education and Research, contract CEX 05-D11-11/2005
have $u^{n}=0$. Therefore we are interested to characterize the nilpotent endomorphisms of finite free A-modules.
Let us recall that, for a hypersurface ring $S /(f)$, where (S, \mathfrak{m}) is a local regular ring and f is a non-zero element in \mathfrak{m}, any $\operatorname{MCM} S /(f)$-module has a minimal free resolution of periodicity 2 which is completely given by a matrix factorization $(\varphi, \psi), \varphi, \psi$ being square matrices over S such that $\varphi \psi=\psi \varphi=f \cdot I_{m}$, for a certain positive integer m (see [E]).
Let us consider the hypersurface ring $R:=A[[x]] /\left(x^{n}\right)$ where $A=K[[y]]$ or, more generally, a DVR. We show in the last section that any MCM R - module is described by a matrix factorization of the form

$$
\left(\varphi=x \operatorname{Id}_{m}-T, \psi=x^{n-1} \operatorname{Id}_{m}+x^{n-2} T+\ldots+T^{n-1}\right)
$$

for some $m \times m$-matrix T with the entries in A which gives the action of x on M, thus $T^{n}=0$. Therefore, in order to find the matrix factorizations of the MCM R-modules, we need to study the structure of the nilpotent matrices over A.

2 Some general facts

For the beginning, let A be a PID, let $E=A^{m}$ be the finite free A-module of rank m, and let $u \in \operatorname{End}_{A}(E)$ be nilpotent. Let $n \geq 2$ such that $u^{n}=0$ and $u^{n-1} \neq 0$.
For $0 \leq k \leq n$, let $E_{k}:=\operatorname{ker}\left(u^{k}\right)$.
Claim 2.1. For any $0 \leq k \leq n-1, E_{k} \subsetneq E_{k+1}$.
Proof. Assume that there exists $0 \leq k \leq n-1$ such that $E_{k}=E_{k+1}$, and let $x \in E$. Then

$$
0=u^{n}(x)=u^{k+1} \circ u^{n-(k+1)}(x)
$$

which implies that $u^{n-(k+1)}(x) \in E_{k+1}=E_{k}$. Thus,

$$
0=u^{k}\left(u^{n-(k+1)}(x)\right)=u^{n-1}(x), x \in E
$$

contradiction!
It follows that

$$
E_{k+1} / E_{k} \neq 0,0 \leq k \leq n-1
$$

Claim 2.2. For any $0 \leq k \leq n-1, E_{k+1} / E_{k}$ is free over A.

Proof. Let $x+E_{k} \in E_{k+1} / E_{k}$ such that there exists $a \neq 0, a \in A$, with $a\left(x+E_{k}\right)=0$, that is $a x \in E_{k}$. Then $a u^{k}(x)=0$. But E is free, so $u^{k}(x)=$ 0 , which implies $x \in E_{k}$, that is $x+E_{k}=0$. This means that the torsion submodule of E_{k+1} / E_{k} is null. Since A is a domain with principal ideals, it results that E_{k+1} / E_{k} is free over A.

Claim 2.3. For any $0 \leq k \leq n-1, u\left(E_{k+1}\right) \subset E_{k}$.
Proof. This is obvious.
Claim 2.4. The morphism

$$
\bar{u}_{k}: \frac{E_{k+1}}{E_{k}} \rightarrow \frac{E_{k}}{E_{k-1}}, \bar{u}_{k}\left(x+E_{k}\right)=u(x)+E_{k-1}, x \in E_{k+1},
$$

induced by u, is injective, $\forall 1 \leq k \leq n-1$. In particular, this implies that

$$
r_{k}:=\operatorname{rank}_{A}\left(\frac{E_{k}}{E_{k-1}}\right) \geq r_{k+1}=\operatorname{rank}_{A}\left(\frac{E_{k+1}}{E_{k}}\right), 1 \leq k \leq n-1
$$

We also note that $m=r_{1}+r_{2}+\ldots+r_{n}$.
Proof. The composition $E_{k+1} \rightarrow E_{k} \rightarrow E_{k} / E_{k-1}$ of $u: E_{k+1} \rightarrow E_{k}$ with the canonical surjection $E_{k} \rightarrow E_{k} / E_{k-1}$ has the kernel E_{k}.

3 The structure of nilpotent endomorphisms over a PID

3.1 The case $\mathrm{n}=2$

Theorem 3.1. Let A be a PID and E be a finite free A-module of rank m. Let $u \in \operatorname{End}_{A}(E)$ such that $u^{2}=0$ and $u \neq 0$. There exists a basis B of E such that the matrix of u in the basis B is of the form

$$
M_{B}(u)=\left(\begin{array}{c|c}
0 & \Lambda \\
\hline 0 & 0
\end{array}\right),
$$

where the first left corner is of size $r_{2} \times r_{1}, r_{1} \geq r_{2}, r_{1}+r_{2}=m, \Lambda=$ $\operatorname{diag}\left(a_{1}, \ldots, a_{r_{2}}\right)$, where $a_{1}, \ldots, a_{r_{2}} \in A-\{0\}$ such that $a_{1}\left|a_{2}\right| \ldots \mid a_{r_{2}}$, the left down corner is of size $r_{1} \times r_{1}$, and the right down corner is of size $r_{1} \times r_{2}$.

Proof. With the notations of the previous section, we have (0) $=E_{0} \subset E_{1} \subset$ $E_{2}=E, u(E) \subset E_{1}$, by Claim 2.3, and

$$
\bar{u}_{1}: E / E_{1} \rightarrow E_{1}, \bar{u}_{1}\left(x+E_{1}\right)=u(x), x \in E
$$

is injective. Moreover $E / E_{1} \simeq \bar{u}_{1}\left(E / E_{1}\right) \subset E_{1}$ is free by Claim 2.2. We also have $r_{1}=\operatorname{rank}_{A}\left(E_{1}\right) \geq r_{2}=\operatorname{rank}_{A}\left(E / E_{1}\right)$ and $m=r_{1}+r_{2}$.

Let

$$
F_{1}:=\bar{u}_{1}\left(E / E_{1}\right) \subset E_{1} .
$$

There exists $\left\{x_{1}, \ldots, x_{r_{1}}\right\}$ a basis of E_{1} and $a_{1}\left|a_{1}\right| \ldots \mid a_{r_{2}} \in A-\{0\}$ such that $\left\{a_{1} x_{1}, \ldots a_{r_{2}} x_{r_{2}}\right\}$ is a basis of F_{1}. For each $1 \leq i \leq r_{2}$, we choose $z_{i} \in E$ such that $\bar{u}_{1}\left(z_{i}+E_{1}\right)=a_{i} x_{i}$, that is, $u\left(z_{i}\right)=a_{i} x_{i}$. Then we claim that $B=\left\{x_{1}, \ldots, x_{r_{1}}, z_{1}, \ldots, z_{r_{2}}\right\}$ is a basis of E.
B is linearly independent: Let

$$
\sum_{i=1}^{r_{1}} \alpha_{i} x_{i}+\sum_{j=1}^{r_{2}} \beta_{j} z_{j}=0
$$

We apply u and obtain

$$
\sum_{j=1}^{r_{2}} \beta_{j} u\left(z_{j}\right)=0
$$

that is

$$
\sum_{j=1}^{r_{2}} \beta_{j} a_{j} x_{j}=0
$$

which implies $\beta_{j}=0$ for all j. Next, we get

$$
\sum_{i=1}^{r_{1}} \alpha_{i} x_{i}=0
$$

which implies $a_{i}=0$, for all i.
B generates E over A : Let $y \in E$. Then $y+E_{1} \in E / E_{1}$. We apply \bar{u}_{1} and get $u(y) \in F_{1}$. It results that

$$
u(y)=\sum_{i=1}^{r_{2}} \beta_{i} a_{i} x_{i}=\sum_{i=1}^{r_{2}} \beta_{i} u\left(z_{i}\right)
$$

Next, we get

$$
u\left(y-\sum_{i=1}^{r_{2}} \beta_{i} z_{i}\right)=0
$$

which implies that

$$
y-\sum_{i=1}^{r_{2}} \beta_{i} z_{i}=\sum_{i=1}^{r_{1}} \alpha_{i} x_{i}
$$

for some $\alpha_{i} \in A$.
Now, it is obvious that the matrix of u in the basis B of E is given as in the statement of the theorem.

3.2 The case $\mathrm{n}=3$

We shall see in this section that the structure of the nilpotent endomorphisms which have the nilpotency index equal to 3 is more complicate. The general case can be manipulated as the case $n=3$. We prefer to give all the proofs in this case since the general case involves only similar calculations but which are complicate as writing.

Theorem 3.2. Let A be a PID and let E be a finite free A-module of rank m. Let $u \in \operatorname{End}_{A}(E)$ such that $u^{3}=0$ and $u^{2} \neq 0$. There exists a basis B of E such that the matrix of u in the basis B is of the form

$$
M_{B}(u)=\left(\begin{array}{c|c|c}
0_{r_{1} \times r_{1}} & \Lambda_{r_{1} \times r_{2}} & \Delta_{r_{1} \times r_{3}} \\
\hline 0_{r_{2} \times r_{1}} & 0_{r_{2} \times r_{2}} & \Gamma_{r_{2} \times r_{3}} \Lambda_{r_{3} \times r_{3}}^{\prime} \\
\hline 0_{r_{3} \times r_{1}} & 0_{r_{3} \times r_{2}} & 0_{r_{3} \times r_{3}}
\end{array}\right),
$$

where $r_{1} \geq r_{2} \geq r_{3}, r_{1}+r_{2}+r_{3}=m, \Lambda=\left(\frac{\operatorname{diag}\left(a_{1}, \ldots, a_{r_{2}}\right)}{0}\right)$ has the last $r_{1}-r_{2}$ rows $0, \Lambda^{\prime}=\operatorname{diag}\left(b_{1}, \ldots, b_{r_{3}}\right), a_{1}\left|a_{2}\right| \ldots\left|a_{r_{2}}, b_{1}\right| b_{2}|\ldots| b_{r_{3}} \in$ $A-\{0\}$, and the matrix Γ is left invertible.

Proof. We preserve the notations and we have (0) $=E_{0} \subset E_{1} \subset E_{2} \subset E_{3}=$ $E, \bar{u}_{1}: E_{2} / E_{1} \rightarrow E_{1}, \bar{u}_{2}: E / E_{2} \rightarrow E_{2} / E_{1}$, and let $F_{1}=\operatorname{Im} \bar{u}_{1} \subset E_{1}$, $F_{2}=\operatorname{Im} \bar{u}_{2} \subset E_{2} / E_{1}$.
Let

$$
\left\{x_{11}, \ldots, x_{1 r_{1}}\right\}
$$

be a basis of E_{1} and $a_{1}\left|a_{2}\right| \ldots \mid a_{r_{2}} \in A-\{0\}$ such that

$$
\left\{a_{1} x_{11}, \ldots, a_{r_{2}} x_{1 r_{2}}\right\}
$$

is a basis of F_{1}. For $1 \leq j \leq r_{2}$, we choose $x_{1 j}^{\prime} \in E_{2}$ such that

$$
\bar{u}_{1}\left(x_{1 j}^{\prime}+E_{1}\right)=a_{j} x_{1 j}, 1 \leq j \leq r_{2},
$$

that is

$$
u\left(x_{1 j}^{\prime}\right)=a_{j} x_{1 j} 1 \leq j \leq r_{2}
$$

Then

$$
\left\{x_{11}^{\prime}+E_{1}, \ldots, x_{1 r_{2}}^{\prime}+E_{1}\right\}
$$

is a basis of E_{2} / E_{1}.
Now, let

$$
\left\{x_{21}+E_{1}, \ldots, x_{2 r_{2}}+E_{1}\right\}
$$

be a basis of E_{2} / E_{1} and $b_{1}\left|b_{2}\right| \ldots \mid b_{r_{3}} \in A-\{0\}$ such that

$$
\left\{b_{1}\left(x_{21}+E_{1}\right), \ldots, b_{r_{3}}\left(x_{2 r_{3}}+E_{1}\right)\right\}
$$

is a basis of F_{2}.
For $1 \leq j \leq r_{3}$, we choose $x_{2 j}^{\prime} \in E$ such that

$$
\overline{u_{2}}\left(x_{2 j}^{\prime}+E_{2}\right)=b_{j}\left(x_{2 j}+E_{1}\right)
$$

Then

$$
\left\{x_{21}^{\prime}+E_{2}, \ldots, x_{2 r_{3}}^{\prime}+E_{2}\right\}
$$

is a basis of E / E_{2}. Moreover,

$$
u\left(x_{2 j}^{\prime}\right)+E_{1}=b_{j} x_{2 j}+E_{1}, 1 \leq j \leq r_{3} .
$$

We claim that

$$
B:=\left\{x_{11}, \ldots, x_{1 r_{1}}\right\} \cup\left\{x_{11}^{\prime}, \ldots, x_{1 r_{2}}^{\prime}\right\} \cup\left\{x_{21}^{\prime}, \ldots, x_{2 r_{3}}^{\prime}\right\}
$$

is a basis of E.
B is linearly independent: Let

$$
\delta=\sum_{j=1}^{r_{1}} \alpha_{j} x_{1 j}+\sum_{j=1}^{r_{2}} \beta_{j} x_{1 j}^{\prime}+\sum_{j=1}^{r_{3}} \gamma_{j} x_{2 j}^{\prime}=0 .
$$

Then $0=\delta+E_{2}=\sum_{j=1}^{r_{3}} \gamma_{j}\left(x_{2 j}^{\prime}+E_{2}\right)$, which implies that all γ_{j} are zero. Next we consider $\delta+E_{1}$ and we get that all β_{j} are zero and, finally, all α_{j} are zero.
B generates E : Let $z \in E$. Then $\bar{u}_{2}\left(z+E_{2}\right)=u(z)+E_{1} \in F_{2}$. It results that there are some $\alpha_{j} \in A, j=\overline{1, r_{3}}$, such that

$$
u(z)+E_{1}=\sum_{j=1}^{r_{3}} \alpha_{j} b_{j}\left(x_{2 j}+E_{1}\right)
$$

It follows that

$$
u(z)+E_{1}=\sum_{j=1}^{r_{3}} \alpha_{j} u\left(x_{2 j}^{\prime}\right)+E_{1}
$$

hence

$$
u\left(z-\sum_{j=1}^{r_{3}} \alpha_{j} x_{2 j}^{\prime}\right) \in E_{1}
$$

which implies

$$
z-\sum_{j=1}^{r_{3}} \alpha_{j} x_{2 j}^{\prime} \in E_{2}
$$

and, next,

$$
\left(z-\sum_{j=1}^{r_{3}} \alpha_{j} x_{2 j}^{\prime}\right)+E_{1}=\sum_{j=1}^{r_{2}} \beta_{j} x_{1 j}^{\prime}+E_{1},
$$

for some $\beta_{j} \in A$. From this last relation we get the conclusion.
For the matrix of u in the basis $B, M_{B}(u)$, we have

$$
u\left(x_{1 j}\right)=0, j=\overline{1, r_{1}},
$$

thus the first r_{1} columns of $M_{B}(u)$ have all the entries 0 , next,

$$
u\left(x_{1 j}^{\prime}\right)=a_{j} x_{1 j} j=\overline{1, r_{2}},
$$

which means that the first entry in the column $r_{1}+1$ is a_{1}, and all the others are 0 , the second entry in the column $r_{1}+2$ is a_{2}, and all the others are 0 , and so on, until we fill the columns up to $r_{1}+r_{2}$. For the last r_{3} columns, observe first that

$$
\left\{x_{11}^{\prime}+E_{1}, \ldots, x_{1 r_{2}}^{\prime}+E_{1}\right\}
$$

and

$$
\left\{x_{21}+E_{1}, \ldots, x_{2 r_{2}}+E_{1}\right\}
$$

are bases of E_{2} / E_{1}. Then there exists an invertible matrix $\left(\gamma_{t j}\right)$, with entries in A, such that

$$
x_{2 j}+E_{1}=\sum_{t=1}^{r_{2}} \gamma_{t j}\left(x_{1 t}^{\prime}+E_{1}\right), j=\overline{1, r_{2}} .
$$

Then

$$
u\left(x_{2 j}^{\prime}\right)+E_{1}=b_{j} \sum_{t=1}^{r_{2}} \gamma_{t j}\left(x_{1 t}^{\prime}+E_{1}\right)=\sum_{t=1}^{r_{2}} \gamma_{t j} b_{j} x_{1 t}^{\prime}+E_{1}, j=\overline{1, r_{3}} .
$$

It follows that

$$
u\left(x_{2 j}^{\prime}\right)=\sum_{t=1}^{r_{2}} \gamma_{t j} b_{j} x_{1 t}^{\prime}+w_{j}
$$

for some $w_{j} \in E_{1}, 1 \leq j \leq r_{3}$. Let Δ be the $r_{1} \times r_{3}$-matrix whose columns are the coordinates of the vectors w_{j} in the basis $\left\{x_{11}, \ldots, x_{1 r_{1}}\right\}$ of E_{1}. In conclusion, we may express the matrix of u in blocks as in the statement of the theorem.

3.3 The general case

Let us consider now the general case, that is u nilpotent of arbitrary index $n \geq 2$. We recall that the morphisms

$$
\bar{u}_{k}: \frac{E_{k+1}}{E_{k}} \rightarrow \frac{E_{k}}{E_{k-1}}, \bar{u}_{k}\left(x+E_{k}\right)=u(x)+E_{k-1}, x \in E_{k+1}
$$

induced by u, are injective, $\forall 1 \leq k \leq n-1$. We denote $F_{k}=\operatorname{Im}\left(\bar{u}_{k}\right) \cong \frac{E_{k+1}}{E_{k}}$, for any k. Let

$$
\left\{x_{11}, \ldots, x_{1 r_{1}}\right\}
$$

be a basis of E_{1} and $a_{11}\left|a_{12}\right| \ldots \mid a_{1 r_{2}} \in A-\{0\}$ such that

$$
\left\{a_{11} x_{11}, \ldots, a_{1 r_{2}} x_{1 r_{2}}\right\}
$$

is a basis of F_{1}. For $1 \leq j \leq r_{2}$, we choose $x_{1 j}^{\prime} \in E_{2}$ such that

$$
\bar{u}_{1}\left(x_{1 j}^{\prime}+E_{1}\right)=a_{1 j} x_{1 j}, \forall 1 \leq j \leq r_{2}
$$

that is

$$
u\left(x_{1 j}^{\prime}\right)=a_{1 j} x_{1 j}
$$

Then

$$
\left\{x_{11}^{\prime}+E_{1}, \ldots, x_{1 r_{2}}^{\prime}+E_{1}\right\}
$$

is a basis of E_{2} / E_{1}. For $k \geq 2$, let

$$
\left\{x_{k 1}+E_{k-1}, \ldots, x_{k r_{k}}+E_{k-1}\right\}
$$

be a basis of $\frac{E_{k}}{E_{k-1}}$ and

$$
a_{k 1}\left|a_{k 2}\right| \ldots \mid a_{k r_{k+1}} \in A-\{0\}
$$

such that

$$
\left\{a_{k 1} x_{k 1}+E_{k-1}, \ldots, a_{k r_{k+1}} x_{k r_{k+1}}+E_{k-1}\right\}
$$

is a basis of F_{k}. We choose $x_{k 1}^{\prime}, \ldots, x_{k r_{k+1}}^{\prime} \in E_{k+1}$ such that

$$
\bar{u}_{k}\left(x_{k j}^{\prime}+E_{k}\right)=a_{k j} x_{k j}+E_{k-1}, j=\overline{1, r_{k+1}}
$$

Then

$$
\left\{x_{k j}^{\prime}+E_{k} \mid j=\overline{1, r_{k+1}}\right\}
$$

is a basis of $\frac{E_{k+1}}{E_{k}}$ since \bar{u}_{k} is injective. Then one can prove as in the case $n=3$ that the set of elements

$$
B:=\left\{x_{11}, \ldots, x_{1 r_{1}}, x_{11}^{\prime}, \ldots, x_{1 r_{2}}^{\prime}, x_{21}^{\prime}, \ldots, x_{2 r_{3}}^{\prime}, \ldots, x_{n-1,1}^{\prime}, \ldots, x_{n-1, r_{n}}^{\prime}\right\}
$$

is a basis of E. Performing the appropriate changes of coordinates in each factor space, the matrix of u in this basis looks as in the following:

Theorem 3.3. Let A be a principal ideals domain and let E be a finite free A-module of rank m. Let $u \in \operatorname{End}_{A}(E)$ such that $u^{n}=0$ and $u^{n-1} \neq 0, n \geq 2$. There exists a basis B of E such that the matrix of u in the basis B is of the form:

$$
M_{B}(u)=\left(\begin{array}{c|c|c|c|c|c}
0 & \Lambda_{1} & \Delta_{11} & \Delta_{12} & \ldots & \Delta_{1, n-2} \\
\hline 0 & 0 & \Gamma_{1} \Lambda_{2} & \Delta_{22} & \ldots & \Delta_{2, n-2} \\
\hline 0 & 0 & 0 & \Gamma_{2} \Lambda_{3} & \ldots & \Delta_{3, n-2} \\
\hline \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & \Gamma_{n-2} \Lambda_{n-1} \\
\hline 0 & 0 & 0 & 0 & \ldots & 0
\end{array}\right),
$$

where $\Lambda_{1}=\left(\frac{\operatorname{diag}\left(a_{11}, \ldots, a_{1 r_{2}}\right)}{0}\right)$ is of size $r_{1} \times r_{2}$ and has the last $r_{1}-r_{2}$ rows $0, \Lambda_{k}=\operatorname{diag}\left(a_{k 1}, \ldots, a_{k r_{k+1}}\right)$, has the size $r_{k+1} \times r_{k+1}, k \geq 2, \Gamma_{k}$ is left invertible and of size $r_{k+1} \times r_{k+2}$, for any k, and $\Delta_{i j}$ is of size $r_{i} \times r_{j+2}$, for any i, j. Moreover, for any k, the elements $a_{k 1}\left|a_{k 2}\right| \ldots \mid a_{k r_{k+1}} \in A-\{0\}$ are the invariants of the A-free modules $\bar{u}_{k}\left(\frac{E_{k+1}}{E_{k}}\right) \subset \frac{E_{k}}{E_{k-1}}, k=\overline{1, n-1}$.

4 Applications

Let $A:=K[[y]], S:=K[[x, y]]$, and $R_{n}:=A[[x]] /\left(x^{n}\right), n \geq 2$.
Proposition 4.1. (i) Let T be a $m \times m$-matrix with entries in A such that $T^{n}=0$. Then the pair of matrices

$$
\left(x \operatorname{Id}_{m}-T, x^{n-1} \operatorname{Id}_{m}+x^{n-2} T+\ldots+T^{n-1}\right)
$$

is a matrix factorization of x^{n} over S which defines a $M C M R_{n}$-module.
(ii) Every MCM R_{n}-module has a matrix factorization of x^{n} over S of the form

$$
\left(x \operatorname{Id}_{m}-T, x^{n-1} \operatorname{Id}_{m}+x^{n-2} T+\ldots+T^{n-1}\right),
$$

for some square matrix T with the entries in A such that $T^{n}=0$.
Proof. Any MCM R_{n}-module M is free over A of finite rank. Therefore, giving a MCM R_{n} - module M is equivalent with giving the action of x on the free A-module M, that is with giving an endomorphism $u \in \operatorname{End}_{A}(M)$ such that $u^{n}=0$ which can be represented by its matrix T in some basis of M over A. Obviously, $T^{n}=0$. If T is a $m \times m$-matrix with entries in A such that $T^{n}=0$, then the pair of matrices

$$
\left(\left(x \operatorname{Id}_{m}-T\right),\left(x^{n-1} \operatorname{Id}_{m}+x^{n-2} T+\ldots+T^{n-1}\right)\right)
$$

is a matrix factorization of x^{n} over $K[[x, y]]$ which defines a MCM R_{n}-module M and the action of x on the finite free A-module M is given by the matrix T. Conversely, let us consider a MCM R_{n}-module M whose minimal free $R-$ resolution is

$$
\ldots \xrightarrow{\bar{\psi}} R^{q} \xrightarrow{\bar{\varphi}} R^{q} \xrightarrow{\bar{\psi}} R^{q} \xrightarrow{\bar{\varphi}} R^{q} \rightarrow M \rightarrow 0,
$$

where (φ, ψ) is a matrix factorization of x^{n} over $K[[x, y]]$ which defines M. Let $m:=\operatorname{rank}_{A} M$, let T be the nilpotent $m \times m$-matrix with entries in A which gives the action of x on the finite free A-module M, and let N be the MCM R_{n}-module given by the periodic resolution

$$
\ldots \xrightarrow{\bar{\mu}} R^{m} \xrightarrow{\bar{\nu}} R^{m} \xrightarrow{\bar{\mu}} R^{m} \xrightarrow{\bar{\nu}} R^{m} \rightarrow N \rightarrow 0
$$

where

$$
\nu=x \operatorname{Id}_{m}-T, \mu=x^{n-1} \operatorname{Id}_{m}+x^{n-2} T+\ldots+T^{n-1}
$$

Then N is an A-free module of rank m and the action of x over N is given by T. This means that the R-modules M and N are isomorphic, hence the module M has the matrix factorization (ν, μ).
Remark 4.2. The matrix (ν, μ) from (ii) can be not reduced, as we show in the following:

Example 4.3. Let us consider the MCM R_{3} module given by the matrix factorization $\left(\varphi:=\left(\begin{array}{cc}x & -y \\ 0 & x^{2}\end{array}\right), \psi:=\left(\begin{array}{cc}x^{2} & y \\ 0 & x\end{array}\right)\right.$). Then, as A-module, M has rank 3 and the action of x on M is given by the matrix $T:=\left(\begin{array}{lll}0 & y & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$, that is the matrix factorization (ν, μ) is given by

$$
\nu=\left(\begin{array}{ccc}
x & -y & 0 \\
0 & x & -1 \\
0 & 0 & x
\end{array}\right), \mu=\left(\begin{array}{ccc}
x^{2} & x y & y \\
0 & x^{2} & x \\
0 & 0 & x^{2}
\end{array}\right) .
$$

As an immediate consequence of the above proposition we get the known form of the indecomposable MCM modules over $R=k[[x, y]] /\left(x^{2}\right)$ (see [BGS, Proposition 4.1], [Y, Example 6.5]).
Proposition 4.4. Let M be an indecomposable MCM-module over $K[[x, y]] /\left(x^{2}\right)$. Then M has a matrix factorization of the following form:

$$
((x),(x)), \text { or }\left(\left(\begin{array}{cc}
x & y^{n} \\
0 & x
\end{array}\right),\left(\begin{array}{cc}
x & -y^{n} \\
0 & x
\end{array}\right)\right)
$$

for some positive integer n.

Proof. Let M be a MCM-module over $K[[x, y]] /\left(x^{2}\right)$. If the $m \times m$-matrix T over A defines the action of x over M, then $T^{2}=0$, and $(\varphi, \psi)=\left(\left(x \operatorname{Id}_{m}+T\right),\left(x \operatorname{Id}_{m}-T\right)\right)$ is a matrix factorization over $K[[x, y]]$ of M. Next we apply Theorem 3.1.

References

[BGS] Buchweitz, R.-O., Greuel, G.-M., Schreyer, F.-O, Cohen-Macaulay modules on hypersurface singularities II, Invent. math., 88 (1987), pp. 165-182.
[BH] W. Bruns, J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993.
[E] Eisenbud, D., Homological Algebra with an application to group representations, Trans. Amer. Math. Soc. 260(1980), pp. 35-64.
[EP] Ene, V., Popescu, D., On the structure of maximal Cohen-Macaulay modules over the ring $K[[x, y]] /\left(x^{n}\right)$, preprint 2006.
[G] Godement, R., Cours d'algèbre, Hermann Paris, 1978.
[Y] Yoshino, Y., Cohen-Macaulay modules over Cohen-Macaulay rings, Cambridge University Press, 1990

Faculty of Mathematics and Computer Science
Ovidius University of Constanta,
Bd. Mamaia 124,
900527 Constanta, Romania
E-mail: vivian@univ-ovidius.ro

