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On the structure of nilpotent endomorphisms
and applications

Viviana Ene ∗

Abstract

The nilpotent endomorphisms over a finite free module over a domain
with principal ideal are characterized. One may apply these results
to the study of the maximal Cohen-Macaulay modules over the ring
R := A[[x]]/(xn), n ≥ 2, where A is a DVR.

Subject Classification: 15A21, 13C14.

1 Introduction

Our aim is to find some kind of a ”normal form” for the nilpotent endomor-
phisms of a finite free module E over a principal ideal domain (briefly PID),
similar with the Jordan form for the nilpotent endomorphisms of the linear
spaces. We closely follow the procedure used to get the Jordan form for the
nilpotent endomorphisms of linear spaces (see [G]). We shall see in Section
3 that this ”normal form” looks very nice for those nilpotent endomorphisms
which have the index of nilpotency equal to 2, but it becomes very complicate
for bigger index. Next we apply these results in the study of the MCM modules
over the ring R := A[[x]]/(xn), where A = K[[y]], K being a field, but all the
results can be applied for the MCM modules over the ring A[[x]]/(xn), where
A is a DVR. R is a finite A–algebra and any maximal Cohen-Macaulay (briefly
MCM) module over R is free of finite rank over A. Giving a MCM R–module
M is equivalent to give a morphism of A–algebras, fM : R → EndA(M) which
is uniquely determined by u = fM (x) ∈ EndA(M). Since xn = 0, we must
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have un = 0. Therefore we are interested to characterize the nilpotent endo-
morphisms of finite free A–modules.
Let us recall that, for a hypersurface ring S/(f), where (S,m) is a local regular
ring and f is a non–zero element in m, any MCM S/(f)–module has a minimal
free resolution of periodicity 2 which is completely given by a matrix factor-
ization (ϕ, ψ), ϕ, ψ being square matrices over S such that ϕψ = ψϕ = f · Im,
for a certain positive integer m (see [E]).
Let us consider the hypersurface ring R := A[[x]]/(xn) where A = K[[y]] or,
more generally, a DVR. We show in the last section that any MCM R– module
is described by a matrix factorization of the form

(ϕ = x Idm−T, ψ = xn−1 Idm +xn−2T + . . .+ T n−1),

for some m×m–matrix T with the entries in A which gives the action of x on
M, thus T n = 0. Therefore, in order to find the matrix factorizations of the
MCM R–modules, we need to study the structure of the nilpotent matrices
over A.

2 Some general facts

For the beginning, let A be a PID, let E = Am be the finite free A–module of
rank m, and let u ∈ EndA(E) be nilpotent. Let n ≥ 2 such that un = 0 and
un−1 �= 0.
For 0 ≤ k ≤ n, let Ek := ker(uk).

Claim 2.1. For any 0 ≤ k ≤ n− 1, Ek � Ek+1.

Proof. Assume that there exists 0 ≤ k ≤ n− 1 such that Ek = Ek+1, and let
x ∈ E. Then

0 = un(x) = uk+1 ◦ un−(k+1)(x),

which implies that un−(k+1)(x) ∈ Ek+1 = Ek. Thus,

0 = uk(un−(k+1)(x)) = un−1(x), x ∈ E,

contradiction!

It follows that
Ek+1/Ek �= 0, 0 ≤ k ≤ n− 1.

Claim 2.2. For any 0 ≤ k ≤ n− 1, Ek+1/Ek is free over A.



On the structure of nilpotent 73

Proof. Let x + Ek ∈ Ek+1/Ek such that there exists a �= 0, a ∈ A, with
a(x + Ek) = 0, that is ax ∈ Ek. Then auk(x) = 0. But E is free, so uk(x) =
0, which implies x ∈ Ek, that is x + Ek = 0. This means that the torsion
submodule of Ek+1/Ek is null. Since A is a domain with principal ideals, it
results that Ek+1/Ek is free over A.

Claim 2.3. For any 0 ≤ k ≤ n− 1, u(Ek+1) ⊂ Ek.

Proof. This is obvious.

Claim 2.4. The morphism

ūk :
Ek+1

Ek
→ Ek

Ek−1
, ūk(x+ Ek) = u(x) + Ek−1, x ∈ Ek+1,

induced by u, is injective, ∀ 1 ≤ k ≤ n− 1. In particular, this implies that

rk := rankA(
Ek
Ek−1

) ≥ rk+1 = rankA(
Ek+1

Ek
), 1 ≤ k ≤ n− 1.

We also note that m = r1 + r2 + . . .+ rn.

Proof. The composition Ek+1 → Ek → Ek/Ek−1 of u : Ek+1 → Ek with the
canonical surjection Ek → Ek/Ek−1 has the kernel Ek.

3 The structure of nilpotent endomorphisms over a PID

3.1 The case n=2

Theorem 3.1. Let A be a PID and E be a finite free A–module of rank m.
Let u ∈ EndA(E) such that u2 = 0 and u �= 0. There exists a basis B of E
such that the matrix of u in the basis B is of the form

MB(u) =
(

0 Λ
0 0

)
,

where the first left corner is of size r2 × r1, r1 ≥ r2, r1 + r2 = m, Λ =
diag(a1, . . . , ar2), where a1, . . . , ar2 ∈ A − {0} such that a1 | a2 | . . . | ar2 ,
the left down corner is of size r1 × r1, and the right down corner is of size
r1 × r2.

Proof. With the notations of the previous section, we have (0) = E0 ⊂ E1 ⊂
E2 = E, u(E) ⊂ E1, by Claim 2.3, and

ū1 : E/E1 → E1, ū1(x+ E1) = u(x), x ∈ E,
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is injective. Moreover E/E1 	 ū1(E/E1) ⊂ E1 is free by Claim 2.2. We also
have r1 = rankA(E1) ≥ r2 = rankA(E/E1) and m = r1 + r2.

Let
F1 := ū1(E/E1) ⊂ E1.

There exists {x1, . . . , xr1} a basis of E1 and a1 | a1 | . . . | ar2 ∈ A − {0}
such that {a1x1, . . . ar2xr2} is a basis of F1. For each 1 ≤ i ≤ r2, we choose
zi ∈ E such that ū1(zi+E1) = aixi, that is, u(zi) = aixi. Then we claim that
B = {x1, . . . , xr1 , z1, . . . , zr2} is a basis of E.
B is linearly independent: Let

r1∑
i=1

αixi +
r2∑
j=1

βjzj = 0.

We apply u and obtain
r2∑
j=1

βju(zj) = 0,

that is
r2∑
j=1

βjajxj = 0,

which implies βj = 0 for all j. Next, we get
r1∑
i=1

αixi = 0,

which implies ai = 0, for all i.
B generates E over A: Let y ∈ E. Then y+E1 ∈ E/E1. We apply ū1 and get
u(y) ∈ F1. It results that

u(y) =
r2∑
i=1

βiaixi =
r2∑
i=1

βiu(zi).

Next, we get

u(y −
r2∑
i=1

βizi) = 0,

which implies that

y −
r2∑
i=1

βizi =
r1∑
i=1

αixi,

for some αi ∈ A.
Now, it is obvious that the matrix of u in the basis B of E is given as in the
statement of the theorem.
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3.2 The case n=3

We shall see in this section that the structure of the nilpotent endomorphisms
which have the nilpotency index equal to 3 is more complicate. The general
case can be manipulated as the case n = 3. We prefer to give all the proofs
in this case since the general case involves only similar calculations but which
are complicate as writing.

Theorem 3.2. Let A be a PID and let E be a finite free A–module of rank
m. Let u ∈ EndA(E) such that u3 = 0 and u2 �= 0. There exists a basis B of
E such that the matrix of u in the basis B is of the form

MB(u) =

⎛
⎝ 0r1×r1 Λr1×r2 ∆r1×r3

0r2×r1 0r2×r2 Γr2×r3Λ′
r3×r3

0r3×r1 0r3×r2 0r3×r3

⎞
⎠ ,

where r1 ≥ r2 ≥ r3, r1 + r2 + r3 = m, Λ =
(

diag(a1, . . . , ar2)
0

)
has the last

r1 − r2 rows 0, Λ′ = diag(b1, . . . , br3), a1 | a2 | . . . | ar2 , b1 | b2 | . . . | br3 ∈
A− {0}, and the matrix Γ is left invertible.

Proof. We preserve the notations and we have (0) = E0 ⊂ E1 ⊂ E2 ⊂ E3 =
E, ū1 : E2/E1 → E1, ū2 : E/E2 → E2/E1, and let F1 = Im ū1 ⊂ E1,
F2 = Im ū2 ⊂ E2/E1.
Let

{x11, . . . , x1r1}
be a basis of E1 and a1 | a2 | . . . | ar2 ∈ A− {0} such that

{a1x11, . . . , ar2x1r2}

is a basis of F1. For 1 ≤ j ≤ r2, we choose x′1j ∈ E2 such that

ū1(x′1j + E1) = ajx1j , 1 ≤ j ≤ r2,

that is
u(x′1j) = ajx1j 1 ≤ j ≤ r2.

Then
{x′11 + E1, . . . , x

′
1r2 + E1}

is a basis of E2/E1.
Now, let

{x21 + E1, . . . , x2r2 + E1}
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be a basis of E2/E1 and b1 | b2 | . . . | br3 ∈ A− {0} such that

{b1(x21 + E1), . . . , br3(x2r3 + E1)}

is a basis of F2.
For 1 ≤ j ≤ r3, we choose x′2j ∈ E such that

ū2(x′2j + E2) = bj(x2j + E1).

Then
{x′21 + E2, . . . , x

′
2r3 + E2}

is a basis of E/E2. Moreover,

u(x′2j) + E1 = bjx2j + E1, 1 ≤ j ≤ r3.

We claim that

B := {x11, . . . , x1r1} ∪ {x′11, . . . , x′1r2} ∪ {x′21, . . . , x′2r3}

is a basis of E.
B is linearly independent: Let

δ =
r1∑
j=1

αjx1j +
r2∑
j=1

βjx
′
1j +

r3∑
j=1

γjx
′
2j = 0.

Then 0 = δ + E2 =
∑r3

j=1 γj(x
′
2j + E2), which implies that all γj are zero.

Next we consider δ+E1 and we get that all βj are zero and, finally, all αj are
zero.
B generates E: Let z ∈ E. Then ū2(z +E2) = u(z) +E1 ∈ F2. It results that
there are some αj ∈ A, j = 1, r3, such that

u(z) + E1 =
r3∑
j=1

αjbj(x2j + E1).

It follows that

u(z) + E1 =
r3∑
j=1

αju(x′2j) + E1,

hence

u(z −
r3∑
j=1

αjx
′
2j) ∈ E1,
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which implies

z −
r3∑
j=1

αjx
′
2j ∈ E2,

and, next,

(z −
r3∑
j=1

αjx
′
2j) + E1 =

r2∑
j=1

βjx
′
1j + E1,

for some βj ∈ A. From this last relation we get the conclusion.

For the matrix of u in the basis B, MB(u), we have

u(x1j) = 0, j = 1, r1,

thus the first r1 columns of MB(u) have all the entries 0, next,

u(x′1j) = ajx1j j = 1, r2,

which means that the first entry in the column r1 + 1 is a1, and all the others
are 0, the second entry in the column r1 +2 is a2, and all the others are 0, and
so on, until we fill the columns up to r1 + r2. For the last r3 columns, observe
first that

{x′11 + E1, . . . , x
′
1r2 + E1}

and
{x21 + E1, . . . , x2r2 + E1}

are bases of E2/E1. Then there exists an invertible matrix (γtj), with entries
in A, such that

x2j + E1 =
r2∑
t=1

γtj(x′1t + E1), j = 1, r2.

Then

u(x′2j) + E1 = bj

r2∑
t=1

γtj(x′1t + E1) =
r2∑
t=1

γtjbjx
′
1t + E1, j = 1, r3.

It follows that

u(x′2j) =
r2∑
t=1

γtjbjx
′
1t + wj ,

for some wj ∈ E1, 1 ≤ j ≤ r3. Let ∆ be the r1 × r3–matrix whose columns
are the coordinates of the vectors wj in the basis {x11, . . . , x1r1} of E1. In
conclusion, we may express the matrix of u in blocks as in the statement of
the theorem.
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3.3 The general case

Let us consider now the general case, that is u nilpotent of arbitrary index
n ≥ 2. We recall that the morphisms

ūk :
Ek+1

Ek
→ Ek

Ek−1
, ūk(x+ Ek) = u(x) + Ek−1, x ∈ Ek+1,

induced by u, are injective, ∀ 1 ≤ k ≤ n− 1. We denote Fk = Im(ūk) ∼= Ek+1
Ek

,
for any k. Let

{x11, . . . , x1r1}
be a basis of E1 and a11 | a12 | . . . | a1r2 ∈ A− {0} such that

{a11x11, . . . , a1r2x1r2}
is a basis of F1. For 1 ≤ j ≤ r2, we choose x′1j ∈ E2 such that

ū1(x′1j + E1) = a1jx1j , ∀ 1 ≤ j ≤ r2,

that is
u(x′1j) = a1jx1j .

Then
{x′11 + E1, . . . , x

′
1r2 + E1}

is a basis of E2/E1. For k ≥ 2, let

{xk1 + Ek−1, . . . , xkrk
+ Ek−1}

be a basis of Ek

Ek−1
and

ak1 | ak2 | . . . | akrk+1 ∈ A− {0}
such that

{ak1xk1 + Ek−1, . . . , akrk+1xkrk+1 + Ek−1}
is a basis of Fk. We choose x′k1, . . . , x

′
krk+1

∈ Ek+1 such that

ūk(x′kj + Ek) = akjxkj + Ek−1, j = 1, rk+1.

Then
{x′kj + Ek | j = 1, rk+1}

is a basis of Ek+1
Ek

since ūk is injective. Then one can prove as in the case n = 3
that the set of elements

B := {x11, . . . , x1r1 , x
′
11, . . . , x

′
1r2 , x

′
21, . . . , x

′
2r3 , . . . , x

′
n−1,1, . . . , x

′
n−1,rn

}
is a basis of E. Performing the appropriate changes of coordinates in each
factor space, the matrix of u in this basis looks as in the following:
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Theorem 3.3. Let A be a principal ideals domain and let E be a finite free
A–module of rank m. Let u ∈ EndA(E) such that un = 0 and un−1 �= 0, n ≥ 2.
There exists a basis B of E such that the matrix of u in the basis B is of the
form:

MB(u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 Λ1 ∆11 ∆12 . . . ∆1,n−2

0 0 Γ1Λ2 ∆22 . . . ∆2,n−2

0 0 0 Γ2Λ3 . . . ∆3,n−2

...
...

...
...

...
...

0 0 0 0 . . . Γn−2Λn−1

0 0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where Λ1 =
(

diag(a11, . . . , a1r2)
0

)
is of size r1 × r2 and has the last r1 − r2

rows 0, Λk = diag(ak1, . . . , akrk+1), has the size rk+1 × rk+1, k ≥ 2, Γk is left
invertible and of size rk+1 × rk+2, for any k, and ∆ij is of size ri × rj+2, for
any i, j. Moreover, for any k, the elements ak1 | ak2 | . . . | akrk+1 ∈ A − {0}
are the invariants of the A–free modules ūk(

Ek+1
Ek

) ⊂ Ek

Ek−1
, k = 1, n− 1.

4 Applications

Let A := K[[y]], S := K[[x, y]], and Rn := A[[x]]/(xn), n ≥ 2.

Proposition 4.1. (i) Let T be a m×m–matrix with entries in A such that
T n = 0. Then the pair of matrices

(x Idm−T, xn−1 Idm +xn−2T + . . .+ T n−1)

is a matrix factorization of xn over S which defines a MCM Rn–module.

(ii) Every MCM Rn–module has a matrix factorization of xn over S of the
form

(x Idm−T, xn−1 Idm +xn−2T + . . .+ T n−1),

for some square matrix T with the entries in A such that T n = 0.

Proof. Any MCM Rn–module M is free over A of finite rank. Therefore,
giving a MCM Rn– module M is equivalent with giving the action of x on the
free A–module M, that is with giving an endomorphism u ∈ EndA(M) such
that un = 0 which can be represented by its matrix T in some basis of M over
A. Obviously, T n = 0. If T is a m × m–matrix with entries in A such that
T n = 0, then the pair of matrices

((x Idm−T ), (xn−1 Idm +xn−2T + . . .+ T n−1)),
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is a matrix factorization of xn over K[[x, y]] which defines a MCM Rn–module
M and the action of x on the finite free A–module M is given by the matrix
T. Conversely, let us consider a MCM Rn–module M whose minimal free R–
resolution is

. . . �ψ̄ Rq �ϕ̄ Rq �ψ̄ Rq �ϕ̄ Rq � M � 0,

where (ϕ, ψ) is a matrix factorization of xn over K[[x, y]] which defines M. Let
m := rankAM , let T be the nilpotent m×m–matrix with entries in A which
gives the action of x on the finite free A–module M , and let N be the MCM
Rn–module given by the periodic resolution

. . . �µ̄ Rm �̄ν Rm �µ̄ Rm �̄ν Rm � N � 0,

where
ν = x Idm−T, µ = xn−1 Idm +xn−2T + . . .+ T n−1.

Then N is an A–free module of rank m and the action of x over N is given
by T. This means that the R–modules M and N are isomorphic, hence the
module M has the matrix factorization (ν, µ).

Remark 4.2. The matrix (ν, µ) from (ii) can be not reduced, as we show in
the following:

Example 4.3. Let us consider the MCM R3 module given by the matrix fac-

torization (ϕ :=
(
x −y
0 x2

)
, ψ :=

(
x2 y
0 x

)
). Then, as A–module, M has

rank 3 and the action of x on M is given by the matrix T :=

⎛
⎝ 0 y 0

0 0 1
0 0 0

⎞
⎠ ,

that is the matrix factorization (ν, µ) is given by

ν =

⎛
⎝ x −y 0

0 x −1
0 0 x

⎞
⎠ , µ =

⎛
⎝ x2 xy y

0 x2 x
0 0 x2

⎞
⎠ .

As an immediate consequence of the above proposition we get the known
form of the indecomposable MCM modules over R = k[[x, y]]/(x2) (see [BGS,
Proposition 4.1], [Y, Example 6.5]).

Proposition 4.4. Let M be an indecomposable MCM–module over K[[x, y]]/(x2).
Then M has a matrix factorization of the following form:

((x), (x)), or
((

x yn

0 x

)
,

(
x −yn
0 x

))
,

for some positive integer n.
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Proof. Let M be a MCM–module over K[[x, y]]/(x2). If the m×m–matrix T
overA defines the action of x overM, then T 2 = 0, and (ϕ, ψ) = ((x Idm +T ), (x Idm−T ))
is a matrix factorization over K[[x, y]] of M. Next we apply Theorem 3.1.
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