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On the multivariate Skew-Normal distribution
and its scale mixtures

Raluca Vernic

Abstract

In this paper we study the multivariate skew-normal distribution and
its scale mixtures, as extensions of the similar non-skewed distributions.
Different parameterizations and some properties are investigated.

∗

Subject Classification: 60E05.

1 Introduction

Although popular and easy to handle, the classical normal distribution is not
always so adequate to model random phenomena. For example, it is well
known that insurance risks have skewed distributions (see e.g. Lane, 2000),
and the extensive use of the classical normal distribution to model this kind
of losses was questioned.

Introduced by Azzalini (1985), the skew-normal distribution is a skewed
extension of the normal distribution. Arnold and Beaver (2002) noticed that
skew normal distributions may be encountered in situations in which the obser-
vations obey a normal law, but they have been truncated with respect to some
hidden covariable. They exemplified this by the joint distribution of height and
waist measurements of the selected individuals for elite troops. More models
involving the skew-normal distribution in different scientific disciplines can be
found in the discussions on Arnold and Beaver (2002).
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Inferential aspects and other statistical issues of the skew-normal distribu-
tions are investigated by Azzalini and Capitanio (1999), and are illustrated
by numerical examples with data from biomedical measurements on a group
of athletes, on a group of individuals affected by hepatitis, and on a group of
patients affected by diabetes.

In this paper we study a specific form of the multivariate skew-normal
distribution and its scale mixtures. We start by recalling a first form of the
density of the skew-normal distribution and some of its properties (section
2), studied by Arnold and Beaver (2002). We then introduce a more general
form for the density with three different parameterizations, and we prove some
properties for this general form. Some of these properties were outlined with-
out details in Arnold and Beaver (2002). In section 3 we define a scale mixture
of the multivariate skew-normal distribution and state some properties for it.
Some examples are also given.

In the following, we denote an n×1 column vector by a bold-face letter and
its elements by the corresponding italic with a subscript denoting the number
of the element, i.e. x = (x1, . . . , xn)′. By 0 we denote the zero vector, by In

the n×n identity matrix, and we let e′= (1, 1, ..., 1). Also, if B is a symmetric
and positive definite n× n matrix, we denote by B1/2 the unique nonsingular
n × n matrix that satisfies B = B1/2B1/2, and by B−1/2 the inverse of B1/2.
As a remark, B1/2 is also symmetric.

2 Multivariate Skew-Normal distributions

As mentioned in section 1, the univariate skew-normal distribution was in-
troduced by Azzalini (1985) as a natural extension of the classical normal
distribution to accommodate asymmetry. In conjunction with coauthors, he
also extended this class to include the multivariate analog of the skew-normal.
A survey of such models is provided by Arnold and Beaver (2002). More re-
cently, Gupta et al. (2004) also studied a form of the skew-normal distribution
slightly different of the general one introduced by Arnold and Beaver (2002).

The general n-variate distribution can be developed in several ways. One
method consists of starting with the independent and identically distributed
standard normal random variables W1, W2, . . . , Wn, U and considering the dis-
tribution of W =(W1, W2, ..., Wn)′ given that λ0 + λ′

1W > U, where λ0 ∈ R

and λ1 ∈ R
n. This formulation involves a linear transformation of a hidden

truncation. Denoting A = {λ0 + λ′
1W > U} and letting X be the random vec-

tor with the same distribution as the conditional distribution of W given A,
then X follows an n-variate skew-normal distribution denoted by SNn (λ0, λ1),



On the multivariate Skew-Normal 85

with the density

f (x) =
Φ (λ0 + λ′

1x)

Φ
(

λ0√
1+λ′

1λ1

) n∏
j=1

ϕ (xj) , (1)

where ϕ and Φ are the standard normal N (0, 1) density and distribution
function, respectively.

A particular case of this density was obtained by Azzalini and Dalla Valle
(1996) for the choice λ0 = 0. The resulting density takes the form

f (x) = 2Φ (λ′
1x)

n∏
j=1

ϕ (xj) .

A useful reparameterization of (1) is obtained introducing δ0 =
λ0√

1 + λ′
1λ1

and δ1 =
λ1√

1 + λ′
1λ1

. Then λ0 =
δ0√

1 − δ′1δ1

, λ1 =
δ1√

1 − δ′1δ1

, and the

density (1) can be written as

f (x) =
1

Φ (δ0)
Φ

(
δ0 + δ′1x√
1 − δ′1δ1

)
n∏

j=1

ϕ (xj) .

This will also be denoted by S̃Nn (δ0, δ1). As we will see in the following, this
reparameterization can simplify the writing of some formulas.

Let us now recall some properties of this skew-normal distribution (see e.g.
Arnold and Beaver, 2002). Its moment generating function (mgf) is given by

MX (t) = exp
{

t′t
2

} Φ
(

λ0+λ′
1t√

1+λ′
1λ1

)
Φ
(

λ0√
1+λ′

1λ1

) = exp
{

t′t
2

}
Φ (δ0 + δ′1t)

Φ (δ0)
. (2)

It was also shown that all conditionals as well as all marginals of the

density (1) are of the same type. If we partition X =
(

Ẋ
Ẍ

)
into two subvec-

tors of dimensions m and n − m respectively, we need to similarly partition

λ1 =
(

λ̇1

λ̈1

)
and, of course, x =

(
ẋ
ẍ

)
. Then the conditional distribution

of Ẋ given Ẍ = ẍ is SNm

(
λ0 + λ̈′

1ẍ, λ̇1

)
and its unconditional distribution is

Ẋ ∼SNm

(
λ0√

1+λ̈′
1λ̈1

, λ̇1√
1+λ̈′

1λ̈1

)
.



86 Raluca VERNIC

The expected value of X is given by

EXi =
λ1i√

1 + λ′
1λ1

ϕ

(
λ0√

1+λ′
1λ1

)
Φ
(

λ0√
1+λ′

1λ1

) = δ1i
ϕ (δ0)
Φ (δ0)

. (3)

Considerable simplification occurs when λ0 = 0, case in which
ϕ (δ0)
Φ (δ0)

=

√
2
π

.

A more general form of skew-normal distribution is obtained by introducing
a location parameter μ and scale parameter Σ in model (1). Here μ ∈R

n and
Σ is an n × n symmetric and positive definite matrix with Σ = Σ1/2Σ1/2, as
stated in the introduction. We define

X = μ + Σ1/2V,

where V has density (1). Then, from Arnold and Beaver (2002), the density
of X is of the form

fX (x) ∝ exp
(
−1

2
(x − μ)′ Σ−1 (x − μ)

)
Φ
(
λ0 + λ′

1Σ
−1/2 (x − μ)

)
=(4)

exp
(
−1

2
(x − μ)′ Σ−1 (x − μ)

)
Φ

(
δ0 + δ′1Σ

−1/2 (x − μ)√
1 − δ′1δ1

)
,

where “∝” means “proportional with”.We denote this by X ∼SNn (μ,Σ; λ0, λ1)
or alternatively by S̃Nn (μ,Σ; δ0, δ1).

Introducing γ = Σ1/2δ1, hence δ1 = Σ−1/2γ, we obtain a second repa-
rameterization, denoted by SN∗

n (μ,Σ; δ0, γ). This second reparameterization
derives from the skew-elliptical distributions (see Branco and Dey, 2001), of
which the skew-normal distribution is a particular case, and it is useful for the
presentation of some properties.

We will now give the exact form of the density fX for all three parameter-
izations.

Proposition 1 The exact form of the density of the above skew-normal dis-
tributed random variable is

fX (x) =

[
Φ

(
λ0√

1 + λ′
1λ1

)]−1

ϕn (x; μ,Σ)Φ
(
λ0 + λ′

1Σ
−1/2 (x − μ)

)
=(5)

=
1

Φ (δ0)
ϕn (x; μ,Σ)Φ

(
δ0 + δ′1Σ

−1/2 (x − μ)√
1 − δ′1δ1

)
= (6)

=
1

Φ (δ0)
ϕn (x; μ,Σ)Φ

(
δ0 + γ′Σ−1 (x− μ)√

1 − γ′Σ−1γ

)
, (7)
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where ϕn (.; μ,Σ) is the n-dimensional normal Nn (μ,Σ) density.

Proof. From Proposition 4 in Azzalini and Dalla Valle (1996) we know
that if a ∈ R,b ∈ R

n and Y is an n×1 vector of independent standard normal
random variables, then

E [Φ (a + b′Y)] = Φ
(

a√
1 + b′b

)
.

Applying this result to the density condition
∫∞
−∞ fX (x) dx = 1, we have for

example for the form (4) of the density fX,

1 = c

∫ ∞

−∞
exp

(
−1

2
(x− μ)′ Σ−1 (x − μ)

)
Φ
(
λ0 + λ′

1Σ
−1/2 (x − μ)

)
dx =

= c
√

(2π)n |Σ|
∫ ∞

−∞
ϕn (y;0,In) Φ (λ0 + λ′

1y) dy = c
√

(2π)n |Σ| E [Φ (λ0 + λ′
1Y)] =

= c
√

(2π)n |Σ|Φ
(

λ0√
1 + λ′

1λ1

)
,

hence
c =

1√
(2π)n |Σ|Φ

(
λ0√

1+λ′
1λ1

) .

Introducing this in (4) we obtain (5). The other two forms of fX, (6) and (7),
result in a similar way.

It is now easy to see that if we take λ1 = δ1= γ = 0 we obtain the well-
known density of the multivariate normal distribution Nn (μ,Σ) .

We will now present some important properties of this general form of skew-
normal distribution. Some of these properties were just stated by Arnold and
Beaver (2002), without details or proofs.

First, the mgf of X follows easily from the definition of X and from (2), as

MX (t) = et′μMV

(
Σ1/2t

)
= exp

{
t′μ +

t′Σt
2

}
Φ
(
δ0 + δ′1Σ

1/2t
)

Φ (δ0)
=

= exp
{
t′μ +

t′Σt
2

}
Φ (δ0 + γ′t)

Φ (δ0)
. (8)

The property of having marginals and conditionals of the same type con-

tinues to hold. In order to prove this, we partition as before X =
(

Ẋ
Ẍ

)
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into two subvectors of dimensions m and n − m respectively, and similarly

Σ =
(

Σ11 Σ12

Σ21 Σ22

)
, μ =

(
μ̇
μ̈

)
, δ1 =

(
δ̇1

δ̈1

)
, γ =

(
γ̇
γ̈

)
and t =

(
ṫ
ẗ

)
.

We have the following proposition.

Proposition 2 With the above notations, if X ∼SN∗
n (μ,Σ; δ0, γ), then

(i) Ẋ ∼SN∗
m (μ̇,Σ11; δ0, γ̇) ;

(ii) The conditional distribution of Ẋ given Ẍ = ẍ is SNm(
μ̇ (ẍ) ,Σ11 − Σ12Σ−1

22 Σ21; l0, l1
)
, where

μ̇ (ẍ) = μ̇ + Σ12Σ
−1
22 (ẍ − μ̈) ,

l0 =
δ0 + γ̈′Σ−1

22 (ẍ − μ̈)√
1 − γ′Σ−1γ

, l1 =

(
Σ11 − Σ12Σ−1

22 Σ21

)−1/2 (
γ̇ − Σ12Σ−1

22 γ̈
)√

1 − γ′Σ−1γ
.

Proof. (i) We will use the mgf. Taking ẗ = 0 in (8) gives

MX

(
ṫ
0

)
= exp

{
ṫ′μ̇ +

ṫ′Σ11ṫ
2

}
Φ
(
δ0 + γ̇′ṫ

)
Φ (δ0)

.

We then have Ẋ ∼SN∗
m (μ̇,Σ11; δ0, γ̇).

(ii) Arnold and Beaver (2002) noticed that the conditional density of Ẋ given
Ẍ = ẍ satisfies

fẊ (ẋ |ẍ ) ∝ exp
{
−1

2
(ẋ − μ̇ (ẍ))′

(
Σ11 − Σ12Σ−1

22 Σ21

)−1
(ẋ− μ̇ (ẍ))

}

Φ

(
δ0 + δ′1Σ

−1/2 (x − μ)√
1 − δ′1δ1

)
.

We will now prove that this is a general skew-normal density with the loca-
tion and scale parameters equal to μ̇ (ẍ) and Σ11 −Σ12Σ−1

22 Σ21, respectively.
Based on the expression between the brackets of Φ, we need to find the form
of the two other parameters. For this purpose, we consider the partition

Σ−1 =
(

T11 T12

T21 T22

)
.

Then

δ′1Σ
−1/2 (x − μ) = γ′Σ−1 (x− μ) = (γ̇′T11 + γ̈′T21) (ẋ − μ̇)+

(γ̇′T12 + γ̈′T22) (ẍ − μ̈) =
= (γ̇′T11 + γ̈′T21) (ẋ − μ̇ (ẍ))+

+
[
(γ̇′T11 + γ̈′T21)Σ12Σ−1

22 + (γ̇′T12 + γ̈′T22)
]
(ẍ − μ̈) .
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It can be shown that

Σ12Σ−1
22 = −T−1

11 T12, Σ−1
22 = T22 − T21T−1

11 T12,

Σ11 − Σ12Σ−1
22 Σ21 = T−1

11 ,

so that

δ′1Σ
−1/2 (x-μ) = (γ̇′T11+γ̈′T21)T−1

11 T11 (ẋ-μ̇ (ẍ))+γ̈′ (T22-T21T−1
11 T12

)
(ẍ-μ̈)=

=
(
γ̇′+γ̈′T21T−1

11

) (
Σ11-Σ12Σ−1

22 Σ21

)-1
(ẋ-μ̇ (ẍ))+γ̈′Σ−1

22 (ẍ-μ̈) .

Hence,

Φ

(
δ0 + δ′1Σ−1/2 (x− μ)√

1 − δ′1δ1

)
=

Φ

(
δ0 + γ̈′Σ−1

22 (ẍ − μ̈)√
1 − δ′1δ1

+

(
γ̇′ − γ̈′Σ−1

22 Σ21

) (
Σ11 − Σ12Σ−1

22 Σ21

)−1√
1 − δ′1δ1

(ẋ − μ̇ (ẍ))

)
.

From this and (5), it is easy to find the expressions of the last two parameters
l0 and l1 given in (ii).

Remark 1 With the second parameterizations, (i) from Proposition 2 can
also be written as
Ẋ ∼S̃Nm

(
μ̇,Σ11; δ0, δ

(m)
1

)
, where δ

(m)
1 = Σ−1/2

11 γ̇ and generally δ
(m)
1 �= δ̇1.

To be more specific, if we accordingly partition Σ1/2=
(

Ω11 Ω12

Ω21 Ω22

)
, we

notice that γ̇ = Ω11δ̇1 + Ω12δ̈1, so that δ
(m)
1 = Σ−1/2

11

(
Ω11δ̇1 + Ω12δ̈1

)
.

Corollary 1 In particular, the marginal distributions of X ∼SN∗
n (μ,Σ; δ0, γ)

are given by
Xj∼SN∗

1

(
μj ,σ

2
j ; δ0, γj

)
, where σ2

j = σjj . We also have that

EXj = μj + γj
ϕ (δ0)
Φ (δ0)

. (9)

Proof. The first affirmation of the corollary is immediate from (i) in
Proposition 2.

Using now the marginal distribution, it is easy to determine the expected
value of Xj by writing Xj = μj + σjVj , where Vj∼S̃N1

(
δ0, σ

−1
j γj

)
. Applying

also (3), we get

EXj = μj + σjσ
−1
j γj

ϕ (δ0)
Φ (δ0)

= μj + γj
ϕ (δ0)
Φ (δ0)

.
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The following corollary is an immediate consequence of (ii) in Proposition
2.

Corollary 2 For the particular case n = 2 and m = 1, the conditional distri-
bution of X1 given X2 = x2 is

SN1

⎛⎝μ1+
σ12

σ2
2

(x2-μ2) , σ2
1-

σ2
12

σ2
2

; λ0+
γ2

σ2
2

(x2-μ2)√
1-γ′Σ−1γ

,
γ1-σ12σ

-2
2 γ2√(

σ2
1-σ

2
12σ

−2
2

)
(1-γ′Σ-1γ)

⎞⎠ .

Another important property of the skew-normal is that any linear combi-
nation of skew-normal distributed random vectors is still skew-normal.

Proposition 3 Let b be an n× 1 real vector and C an m× n matrix of rang
m, where m ≤ n. We define Y = b + CX, where X ∼SN∗

n (μ,Σ; δ0, γ) . Then
Y ∼SN∗

n

(
b + Cμ,CΣC′; δ0,Cγ

)
.

Proof. We will use the mgf function. From (8),

MY (t) = et′bMX (C′t) = exp
{
t′ (b + Cμ) +

t′CΣC′t
2

}
Φ (δ0 + γ′C′t)

Φ (δ0)
.

Since CΣC′ is also a positive definite matrix, it follows that
Y ∼SN∗

n

(
b + Cμ,CΣC′; δ0,Cγ

)
.

Remark 2 With the second parameterization, the result in Proposition 3 can
also be written as
Y ∼S̃Nn

(
b + Cμ,CΣC′; δ0, δ1

)
, while with the third parameterization and

CΣ1/2δ1 = Cγ it becomes Y ∼SNn

(
b + Cμ,CΣC′; δ0,Cγ

)
.

Corollary 3 If X ∼SN∗
n (μ,Σ; δ0, γ) , then S =

∑n
i=1 Xi ∼ SN∗

1

(
μS , σ2

S ; δ0, γS

)
,

where
μS = e′μ =

∑n
j=1 μj , σ2

S = e′Σe =
∑n

i,j=1 σij , γS = e′γ =
∑n

j=1 γj.

Proof. We apply the linear property from Proposition 3 by taking b = 0

and C =

⎛⎜⎜⎝
1 1 ... 1
0 1 ... 0
... ... ... ...
0 0 ... 1

⎞⎟⎟⎠, and also Corollary 1 to obtain the marginal

distribution of S.

We will now briefly recall the general p-multivariate skew normal distribu-
tion (GMSN), introduced by Gupta et al. (2004) as a generalization of the
form of the multivariate skew normal distribution studied in detail in their pa-
per. Although they didn’t make a detailed study of this GMSN distribution,
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Gupta et al. (2004) defined it in order to have a closed family, in the sense
that it contains its marginal and conditional distributions. Its density has the
form

fp,q (y; μ,Σ,D, ν,Δ) = Φ−1
q

(
Dμ; ν,Δ + DΣD′)ϕp (y; μ,Σ)Φq (Dy; ν,Δ) ,

where μ,y ∈R
p, ν ∈R

q,Σ (p × p) and Δ (q × q) are two covariance matrices,
D (q × p) is an arbitrary matrix and Φq (.; ν,Δ) denotes the distribution func-
tion of the q-dimensional normal distribution Nq (ν,Δ). We notice that the
multivariate skew-normal distribution studied in this paper can be obtained
as a particular case of the GMSN taking q = 1.

3 Scale Mixtures of Multivariate Skew-Normal distribu-
tions

Branco and Dey (2001) defined the scale mixture of a skew-normal distribution
starting from the skew-elliptical distributions. In the following, we will define
it directly from the skew-normal distribution, and based on this definition we
will deduce some of its properties.

Let Θ be a positive random variable with distribution function H, and
let K : (0,∞) → (0,∞) be a weight function. Then we define the scale H-
mixture of the multivariate skew-normal distribution as the distribution of an
n-dimensional random vector X that, given Θ = θ, follows a multivariate skew-
normal SNn (μ,K (θ)Σ; λ0, λ1) distribution. We denote this by X ∼SNn −
H (μ,Σ; λ0, λ1) or alternatively by S̃Nn−H (μ,Σ; δ0, δ1) , where, as in section

1, δ0 =
λ0√

1 + λ′
1λ1

and δ1 =
λ1√

1 + λ′
1λ1

.

We notice that if the distribution of X given Θ = θ is, with the second
parameterization, S̃Nn (μ,K (θ)Σ; δ0, δ1) , with the third parameterization it
will be SN∗

n

(
μ,K (θ)Σ; δ0,

√
K (θ)γ

)
, where γ = Σ1/2δ1. Hence, we will also

use the notation X ∼SN∗
n −H (μ,Σ; δ0, γ), but keep in mind that this means

that the distribution of X given Θ = θ is SN∗
n

(
μ,K (θ)Σ; δ0,

√
K (θ)γ

)
and

not SN∗
n (μ,K (θ)Σ; δ0, γ) .
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The density of this distribution is then given by

fX (x) =
∫ ∞

0

fX (x |Θ = θ ) dH (θ) =

(5)
= [Φ (δ0)]

−1
∫ ∞

0

ϕn (x; μ,K (θ)Σ)Φ
(
λ0 + λ′

1 (K (θ)Σ)−1/2 (x − μ)
)

dH (θ) =

(6)
= [Φ (δ0)]

−1
∫ ∞

0

ϕn (x; μ,K (θ)Σ)Φ

(
δ0 + δ′1 (K (θ)Σ)−1/2 (x − μ)√

1 − δ′1δ1

)
dH (θ) =

(7)
= [Φ (δ0)]

−1
∫ ∞

0

ϕn (x; μ,K (θ)Σ)Φ

(
δ0 +

√
K (θ)γ′ (K (θ)Σ)−1 (x− μ)√

1 − γ′Σ−1γ

)
dH (θ) .

We will now present some properties of this scale mixture of a multivariate
skew normal distribution.

Its mgf is given by

MX (t) = E

[
E

(
et′X |Θ = θ

)]
(8)
=

= E

⎡⎣exp
{
t′μ +

t′K (Θ)Σt
2

} Φ
(
δ0 + δ′1

√
K (Θ)Σ1/2t

)
Φ (δ0)

⎤⎦ =

=
exp {t′μ}

Φ (δ0)
E

[
exp

{
K (Θ)

2
t′Σt

}
Φ
(
δ0 +

√
K (Θ)γ′t

)]
. (10)

We will now prove that the marginals and the linear combinations of these
distributions are of the same type, while their conditionals are not. For this

purpose, just as in the previous section, we partition X =
(

Ẋ
Ẍ

)
into two

subvectors of dimensions m and n−m respectively, and similarly Σ, μ, δ1, γ
and t. The following proposition holds.

Proposition 4 With the above notations, if X ∼SN∗
n − H (μ,Σ; δ0, γ), then

(i) Ẋ ∼SN∗
m − H (μ̇,Σ11; δ0, γ̇) ;

(ii) Xj ∼ SN∗
1−H

(
μj , σ

2
j ; δ0, γj

)
or, equivalently, Xj ∼ S̃N1−H

(
μj , σ

2
j ; δ0, γjσ

−1
j

)
;

(iii) Let b ∈R
n and C be an n × n non-singular matrix. If we define Y =

b + CX, then
Y ∼SN∗

n − H
(
b + Cμ,CΣC′; δ0,Cγ

)
;

(iv) S =
n∑

i=1

Xi ∼ SN∗
1 − H

(
μS , σ2

S ; δ0, γS

)
, where as before, μS = e′μ, σ2

S =

e′Σe, γS = e′γ;
(v) The conditional distribution of Ẋ given Ẍ = ẍ and Θ = θ is
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SNm

(
μ̇ (ẍ) ,K (θ)

(
Σ11 − Σ12Σ−1

22 Σ21

)
; l0 (θ) , l1

)
, where

μ̇ (ẍ) = μ̇ + Σ12Σ
−1
22 (ẍ − μ̈) ,

l0 (θ) = λ0 +
γ̈′Σ−1

22 (ẍ − μ̈)√
K (θ) (1 − γ′Σ−1γ)

, l1 =

(
Σ11 − Σ12Σ−1

22 Σ21

)−1/2 (
γ̇ − Σ12Σ−1

22 γ̈
)√

1 − γ′Σ−1γ
.

Proof. (i) Results immediately from the mgf (10) taking ẗ = 0.
(ii) Is a consequence of (i).
(iii) From Proposition 3, the distribution of Y given Θ = θ is
SN∗

n

(
b + Cμ,K (θ)CΣC′; δ0,

√
K (θ)Cγ

)
, and hence the result.

(iv) Results from Corollary 3, knowing that the distribution of S given Θ = θ

is SN∗
1

(
μS , K (θ)σ2

S ; δ0,
√

K (θ)γS

)
.

(v) Results from (ii) in Proposition 2, where the parameters are

μ̇+K (θ)Σ12 (K (θ)Σ22)
−1 (ẍ − μ̈) = μ̇ (ẍ) ,

K (θ)Σ11 − K (θ)Σ12 (K (θ)Σ22)
−1

K (θ)Σ21 = K (θ)
(
Σ11 − Σ12Σ−1

22 Σ21

)
,

λ0 +

√
K (θ)γ̈′ (K (θ)Σ22)

−1 (ẍ − μ̈)√
1 − γ′Σ−1γ

= l0 (θ) ,[√
K (θ)

]−1 (
Σ11 − Σ12Σ−1

22 Σ21

)−1/2√
K (θ)

(
γ̇ − Σ12Σ−1

22 γ̈
)√

1 − γ′Σ−1γ
= l1.

Remark 3 From (v) in Proposition 4 we see that because the parameter l0 (θ)
depends on θ, the conditional distribution of Ẋ given Ẍ = ẍ is not a scale
mixture of a skew-normal distribution anymore.

Examples of scale mixtures of skew-normal distribu-
tions

1. Finite scale mixture of skew-normal. This distribution can be ob-

tained by taking Θ to be a finite discrete random variable given as Θ
(

θ1 ... θm

p1 ... pm

)
,

with 0 ≤ pi ≤ 1 and
∑m

i=1 pi = 1. The density of the finite scale mixture of
skew-normal is then given by

fX (x) = [Φ (δ0)]
−1

m∑
i=1

piϕn (x; μ,K (θi)Σ)Φ

(
λ0 +

1√
K (θi)

λ′
1Σ

−1/2 (x − μ)

)
.

In the particular case when Θ is degenerate in θ0 and K (θ0) = 1, we recover
the skew-normal distribution.
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2. Skew Logistic distribution. As pointed out by Choy (1995), the lo-
gistic distribution is a special case of a scale mixture of normal distribution,
when K (θ) = 4θ2 and Θ follows an asymptotic Kolmogorov distribution with
density

fΘ (θ) = 8
∞∑

k=1

(−1)k+1
k2θ exp

{−2k2θ2
}

.

However, this density is not computational attractive, but Chen and Dey
(1998) overcome this problem by finding a t-approximation to the logistic
distribution.

3. Skew Stable distribution. This distribution results by taking K (θ) =
2θ, where Θ follows a positive stable distribution Sp (α, 1) , with density given
by

fΘ (θ |α, 1) =
α

1 − α
θ
−

1
1 − α

∫ 1

0

s (u) exp

⎧⎨⎩−s (u) θ
−

α

1 − α

⎫⎬⎭ du,

for 0 < α < 1, with

s (u) =
[
sin (απu)
sin (πu)

] α

1 − α
[
sin ((1 − α) πu)

sin (πu)

]
.

We notice that the skew-normal distribution can also be obtained from the
skew-stable by taking α → 1.

4. Skew Exponential Power distribution. A skew exponential power
distribution can be obtained as a scale mixture of skew normal by choosing

K (θ) =
1

2c0θ
and fΘ (θ) =

1
θ(n+1)/2

fΘ (θ |α, 1) ,where fΘ (. |α, 1) is the one

given above, c0 =
Γ [3/ (2α)]
Γ [1/ (2α)]

and
1
2

< α < 1. Here α is called the kurtosis

parameter. Further references on the symmetric exponential power family of
distributions can be found in West (1987) and Choy (1995).

5. Skew t distribution. This distribution can be obtained taking K (θ) =
1
θ

and Θ ∼ Gamma
(ν

2
,
ν

2

)
. As two of its particular cases, we have the skew

Cauchy distribution for ν = 1, and again the skew-normal distribution as the
limiting case when ν → ∞.
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We can also consider the generalized version of Student’s t distribution by
taking Θ ∼ Gamma

(ν

2
,
τ

2

)
, ν, θ > 0, with the density given by

fΘ (θ) =
1

Γ
(ν

2

) (τ

2

)ν/2

θν/2−1 exp
{
−τ

2
θ
}

.

Branco and Dey (2001) showed that the density of the multivariate skew gen-
eralized t distribution is given for λ0 = 0 by

fX (x) = 2fν,τ (x; μ,Σ)Fν∗,τ∗ (λ′
1 (x − μ)) , (11)

where fν,τ (.; μ,Σ) is the density of an n-dimensional generalized Student’s
t distribution with location parameter μ and scale Σ, while Fν∗,τ∗ (.) is the
distribution function of an univariate standard generalized t distribution with
ν∗ = ν +n and τ∗ = τ +(x − μ)′ Σ−1 (x − μ) . Formula (11) is in fact another
way to define a skew distribution starting from its symmetric form, see e.g.
Arnold and Beaver (2002).
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