An. Şt. Univ. Ovidius Constanţa

Normality of monomial ideals in two sets of variables

Monica la Barbiera and Mariafortuna Paratore

Abstract

We study the normality of the monomial ideals in two sets of variables $L=I_{k} J_{r}+I_{s} J_{t} \subset K\left[X_{1}, \ldots, X_{m} ; Y_{1}, \ldots, Y_{n}\right], K$ is a field, $k+r=$ $s+t$, where I_{k} (resp. J_{r}) is the ideal of R generated by all the monomials of degree k (resp.r) in the variables $X_{1}, \ldots, X_{m}\left(\right.$ resp. $\left.Y_{1}, \ldots, Y_{n}\right)$. If L is not normal, we determine one element of the integral closure of all non complete powers of L.

Subject Classification: 13F20.

Introduction

In a recent work [4] G.Restuccia and R.Villarreal introduce the class of squarefree ideals of mixed products in a polynomial ring over a field k in two sets of variables. They are square-free monomial ideals generated in the same degree that are integrally closed ([5], §7.5). In [4] the authors studied when each power of a mixed product ideal is complete. In this case the ideal is said normal. This property is linked to properties of graded algebras arising from I. The most important of such algebras is the Rees algebra $\operatorname{Rees}(I)=\bigoplus_{i>0} I^{i} t^{i}$ ($[1], \S 1.5, \S 4.5)$.An important result says that if I is normal, then $\operatorname{Ree} \bar{s}(I)$ is normal ([5], 3.3.18).

It is possible to introduce the same class of mixed product ideals in a polynomial ring in two sets of variables in the not square-free case. More precisely, if $R=K\left[X_{1}, \ldots, X_{m} ; Y_{1}, \ldots, Y_{n}\right]$ is the polynomial ring in two sets

[^0]of variables over a field K, given the non negative integers k, r, s, t such that $k+r=s+t$, we can define the monomial ideals of R :
$$
L=I_{k} J_{r}+I_{s} J_{t}
$$
where I_{k} (resp. J_{r}) is the ideal of R generated by all the monomials of degree k (resp.r) in the variables X_{1}, \ldots, X_{m} (resp. $\left.Y_{1}, \ldots, Y_{n}\right)$.

The aim of this work is to study the normality of these monomial ideals as in the square-free case. We obtain again a complete classification of the ideals of this class. If the ideal L is not normal, we determine the powers of L that result complete and for all powers that are not complete we find a monomial that lies in the integral closure of the power but it does not lie in the power. The technics used are similar to those used in [4] and in [3]. The results obtained about the normality coincide with those obtained in [4] in all cases, except for the ideals $L=J_{r}+I_{m}$ and $L=J_{r}+I_{m} J_{t}$ that are normal if they are square-free monomial ideals, contrary they are not normal in the not square-free case.

We would like to thank Professor Gaetana Restuccia for useful suggestions and discussions about the main results of this paper.

1

Let $R=K\left[X_{1}, \ldots, X_{m} ; Y_{1}, \ldots, Y_{n}\right]$ be a polynomial ring over a field K in two sets of variables. Given the non negative integers k, r, s, t such that $k+r=s+t$, we define the monomial ideals of R :

$$
L=I_{k} J_{r}+I_{s} J_{t}
$$

where I_{k} (resp. J_{r}) is the ideal of R generated by all the monomials of degree k (resp.r) in the variables X_{1}, \ldots, X_{m} (resp. Y_{1}, \ldots, Y_{n}).

It is easy to see that we have the following classes of monomial ideals of R arising from the definition of L :

1) $L=J_{r}+I_{r}$, with $r>1$
2) $L=J_{r}+I_{m} J_{t}$, with $r=m+t$
3) $L=J_{r}+I_{s} J_{t}$, with $r=s+t$ and $s \neq m$
4) $L=I_{k} J_{r}+I_{s} J_{t}$, with $k+r=s+t$
5) $L=I_{k} J_{r}$, with $k, r>1$
6) $L=I_{k} J_{r}+I_{k+1} J_{r-1}$, with $k, r>0$.

Definition 1.1 The integral closure of L is the set of all elements of R which are integral over L. We denote this set by \bar{L}.
If $L=\bar{L}, L$ is said to be integrally closed or complete. If all the powers of L , $L^{p}, p \geq 1$, are complete, the ideal L is said to be normal.

Remark 1.1 The monomial ideal $I_{k}\left(\right.$ resp. J_{r}) is normal because $I_{k}=$ $\left(I_{1}\right)^{k}\left(\right.$ resp. $\left.J_{r}=\left(J_{1}\right)^{r}\right)$ (see [5], 3.3.18).

As the integral closure of a monomial ideal is again a monomial ideal, one has the following description for the integral closure of L :

$$
\bar{L}=\left(f \mid f \text { is monomial in } \mathrm{R} \text { and } f^{i} \in L^{i}, \text { for some } \mathrm{i} \geq 1\right),
$$

(see [5],7.3.3).
Now, we study the classes 1), 2), 3), 4). We will prove that they are not normal ideals. In fact, we have the following:

Proposition 1.1 Let $R=K\left[X_{1}, \ldots, X_{m} ; Y_{1}, \ldots, Y_{n}\right]$ be a polynomial ring over a field K. Let L be one of the following ideals:
a) $L=J_{r}+I_{r}, r>1$.
b) $L=J_{r}+I_{m} J_{t}$, with $r=m+t$.
c) $L=J_{r}+I_{s} J_{t}$, with $r=s+t$ and $s \neq m$.

Then L^{i} is not integrally closed for all $i \geq 1$.

1. If i is odd, there exists $f=\left(X_{1} Y_{1} Y_{2}^{r-2}\right)^{i} \in \overline{L^{i}} / L^{i}$.
2. If i is even, there exists $f=\left(X_{1} Y_{1}^{r} Y_{2}^{r-1}\right)^{\frac{i}{2}} \in \overline{L^{i}} / L^{i}$.

Proof.

a) $L=J_{r}+I_{r}, r>1$.

From the equalities

1. $f^{r}=X_{1}^{r i} Y_{1}^{r i} Y_{2}^{r i(r-2)}=\left(X_{1}^{r}\right)^{i}\left(Y_{1}^{r}\right)^{i}\left(Y_{2}^{r}\right)^{i(r-2)}$,
2. $f^{r}=X_{1}^{r \frac{i}{2}} Y_{1}^{r^{2} \frac{i}{2}} Y_{2}^{\frac{i r}{2}(r-1)}=\left(X_{1}^{r}\right)^{\frac{i}{2}}\left(Y_{1}^{r}\right)^{\frac{i r}{2}}\left(Y_{2}^{r}\right)^{\frac{i}{2}(r-2)}$,
it follows that f^{r} is in $L^{r i}$. By a counting degree argument it follows that f is not in L^{i}.
b) $L=J_{r}+I_{m} J_{t}$.

From the equalities

1. $f^{m}=X_{1}^{m i} Y_{1}^{m i} Y_{2}^{m i(r-2)}$,
it is possible to write f^{m} as the product of an element of $I_{m} J_{t}$ and $m-1$ elements of J_{r}, that is
$f^{m}=\left(X_{1}^{m} Y_{2}^{t}\right)^{i} \prod_{s=1}^{m-1}\left(Y_{1}^{h_{s}} Y_{2}^{k_{s}}\right)^{i}$,
with $h_{s}+k_{s}=r$ for all $s=1, \ldots, m-1, \sum_{s=1}^{m-1} h_{s}=m$ and $\sum_{s=1}^{m-1} k_{s}=$ $m(r-2)-t$, it follows that f^{m} is in $L^{m i}$.
2. $f^{m}=X_{1}^{\frac{m i}{2}} Y_{1}^{\frac{m i r}{2}} Y_{2}^{\frac{i}{2} m(r-1)}=\left(X_{1}^{m} Y_{2}^{t}\right)^{\frac{i}{2}} \prod_{s=1}^{\frac{i}{2}(2 m-1)}\left(Y_{1}^{h_{s}} Y_{2}^{k_{s}}\right)^{i}$
with $h_{s}+k_{s}=r$ for all $s=1, \ldots, m-1, \sum_{s=1}^{\frac{i}{2}(2 m-1)} h_{s}=r m \frac{i}{2}-t$ and $\sum_{s=1}^{\frac{i}{2}(2 m-1)} k_{s}=m(r-1) \frac{i}{2}$, it follows that f^{m} is in $L^{m i}$.
c) $L=J_{r}+I_{s} J_{t}$

We prove that $f^{s} \in L^{s i}$ in the same way of the previous case choosing $m=s$.
Remark 1.2 In the squarefree case the ideals $J_{r}+I_{r}$ and $L=J_{r}+I_{s} J_{t}$ are not normal ideal, while the ideal $L=J_{r}+I_{m} J_{t}$ is normal (see [4]).
Remark 1.3 A general case of $L=J_{r}+I_{r}$ is the ideal $L=J_{r}+I_{m}$, with $r \neq m$. This ideal isn't normal too. In fact we have that L^{i} is not integrally closed for all $i \geq 1$.

There are the following cases:
a) If r, m are even, then there exists

$$
f= \begin{cases}\left(X_{1}^{\frac{m}{2}} Y_{1}^{\left(\frac{r}{2}-1\right)} Y_{2}\right)^{i} \in \overline{L^{i}} \backslash L^{i}, & \text { if } i \text { is odd } \\ \left(X_{1}^{\frac{m}{2}} Y_{1}^{r} Y_{2}^{\frac{r}{2}}\right)^{\frac{i}{2}} \in \overline{L^{i}} \backslash L^{i} & \text { if } i \text { is even }\end{cases}
$$

To show that f lies in the integral closure of L^{i}, it suffices to observe the equalities

1. $f^{2}=\left(X_{1}^{\frac{m}{2}} Y_{1}^{\left(\frac{r}{2}-1\right)} Y_{2}\right)^{2 i}=\left(X_{1}^{m}\right)^{i}\left(Y_{1}^{r-2} Y_{2}^{2}\right)^{i}$,
it follows that f^{2} is in $L^{2 i}$. As $\operatorname{deg}_{X}(f)=\frac{m}{2} i$ and $\operatorname{deg}_{Y}(f)=\frac{r}{2} i$, by a counting degree argument it follows that $\operatorname{deg}(f)=\frac{(m+r)}{2} i$ and f is not in L^{i}.
2. $f^{2}=\left(X_{1}^{\frac{m}{2}} Y_{1}^{r} Y_{2}^{\frac{r}{2}}\right)^{i}=\left(X_{1}^{m}\right)^{\frac{i}{2}}\left(Y_{1}^{r}\right)^{i}\left(Y_{2}^{r}\right)^{\frac{i}{2}}$,
it follows that f^{2} is in $L^{2 i}$. As $\operatorname{deg}_{X}(f)=\frac{m i}{4}$ and $\operatorname{deg}_{Y}(f)=\frac{3 r i}{4}$, by a counting degree argument it follows that $\operatorname{deg}(f)=\frac{(m+3 r)}{4} i$ and f is not in L^{i}.
b) If $(m, r)=m \neq 1$ odd, then there exists

$$
f= \begin{cases}\left(X_{1} X_{2} Y_{1}^{(m-2) \frac{r}{m}}\right)^{i} \in \overline{L^{i}} \backslash L^{i} & \text { if } i \text { is odd } \\ \left(X_{1} Y_{1}^{r-\frac{r}{m}} Y_{2}^{r}\right)^{\frac{i}{2}} \in \overline{L^{i}} \backslash L^{i} & \text { if } i \text { is even }\end{cases}
$$

c) If $(m, r)=r \neq 1$ odd, then there exists

$$
f= \begin{cases}\left(X_{1}^{\frac{m}{r}} Y_{1}^{\frac{m}{r}} Y_{2}^{r-2}\right)^{i} \in \overline{L^{i}} \backslash L^{i} & \text { if } i \text { is odd } \\ \left(X_{1}^{\frac{m}{r}} Y_{1}^{r} Y_{2}^{r-1}\right)^{\frac{i}{2}} \in \overline{L^{i}} \backslash L^{i} & \text { if } i \text { is even }\end{cases}
$$

We prove the cases b) and c) in the similar way as the case a).
Proposition 1.2 Let $R=K\left[X_{1}, \ldots, X_{m} ; Y_{1}, \ldots, Y_{n}\right]$ be a polynomial ring over a field K. Let $L=I_{k} J_{r}+I_{s} J_{t}$ be an ideal of R, with $k>1, s=k+2, t \geq$ $1, k+r=s+t$. Then :

1. If i is odd, there exists $f=\left(X_{1} X_{2}^{k} Y_{1}^{r-1}\right)^{i} \in \overline{L^{i}} / L^{i}$.
2. If i is even, there exists $f=\left(X_{1}^{k} X_{2}^{k+1} Y_{1}^{2 r-1}\right)^{\frac{i}{2}} \in \overline{L^{i}} / L^{i}$.

Proof.

1. Let $f=\left(X_{1} X_{2}^{k} Y_{1}^{r-1}\right)^{i}$ be a monomial of R. To show that f lies in the integral closure of L^{i}, it suffices to observe the equality

$$
f^{2}=X_{1}^{2 i} X_{2}^{2 k i} Y_{1}^{2 i(r-1)}=\left(X_{2}^{k} Y_{1}^{r}\right)^{i}\left(X_{1}^{2} X_{2}^{k} Y_{1}^{r-1}\right)^{i},
$$

it follows that $f^{2} \in L^{2 i}$.
2. Let $f=\left(X_{1}^{k} X_{2}^{k+1} Y_{1}^{2 r-1}\right)^{\frac{i}{2}}$ be a monomial of R. Since

$$
f^{2}=X_{1}^{i k} X_{2}^{i(k+1)} Y_{1}^{i(2 r-1)}=\left(X_{1} X_{2}^{k-1} Y_{1}^{r}\right)^{\frac{3 i}{2}}\left(X_{1}^{2 k-3} X_{2}^{5-k} Y_{1}^{r-2}\right)^{\frac{i}{2}},
$$

it follows that $f^{2} \in L^{2 i}$.
By counting degree argument it follows that f is not in L^{i}.
Remark 1.4 In the square-free case, the powers of the ideal $L=I_{k} J_{r}+I_{s} J_{t}$ are not complete (see [4]).

2

Let $R=K\left[X_{1}, \ldots, X_{m} ; Y_{1}, \ldots, Y_{n}\right]$ be the polynomial ring of Section 1. We consider the remaining two classes of ideals of R examined before.
i) $L=I_{k} J_{r}+I_{k+1} J_{r-1}$,
ii) $L=I_{k} J_{r}$.

We will be able to prove that they are both normal.
A crucial result for obtaining the normality of i) is the following:

Lemma 2.1 Let $L=I_{k} J_{r}+I_{k+1} J_{r-1}$ and $L^{\prime}=I_{k-1} J_{r}+I_{k} J_{r-1}$ (resp. $L^{\prime}=$ $\left.I_{k} J_{r-1}+I_{k+1} J_{r-2}\right) \subset R=K\left[X_{1}, \ldots, X_{m} ; Y_{1}, \ldots, Y_{n}\right]$. If $\wp \subset R$ is a face ideal, such that $X_{i} \notin \wp$, for some i (resp. $Y_{j} \notin \wp$, for some j), then

$$
(L)_{\wp}=\left(L^{\prime}\right)_{\wp}=J_{r-1} .
$$

Proof. If we localize L and L^{\prime} at \wp, the variable X_{i} is invertible in $(L)_{\wp}$ and in $\left(L^{\prime}\right)_{\wp}$. Since $X_{i}^{k-1} \in I_{k-1}$ and $X_{i}^{k} \in I_{k}$, we have $\left(I_{k-1}\right)_{\wp}=R$ and $\left(I_{k}\right)_{\wp}=R$, and it follows $\left(I_{k-1} J_{r}\right)_{\wp}=\left(I_{k-1}\right)_{\wp}\left(J_{r}\right)_{\wp}=\left(J_{r}\right)_{\wp}$ and $\left(I_{k} J_{r-1}\right)_{\wp}=$ $\left(I_{k}\right)_{\wp}\left(J_{r-1}\right)_{\wp}=\left(J_{r-1}\right)_{\wp}$. Hence

$$
\left(L^{\prime}\right)_{\wp}=\left(J_{r}\right)_{\wp}+\left(J_{r-1}\right)_{\wp}=\left(J_{r-1}\right)_{\wp} .
$$

In the same way we have

$$
(L)_{\wp}=\left(J_{r}\right)_{\wp}+\left(J_{r-1}\right)_{\wp}=\left(J_{r-1}\right)_{\wp} .
$$

Then $(L)_{\wp}=\left(L^{\prime}\right)_{\wp}$.
Remark 2.1 In the square-free case, we have $\left(I_{k}\right)_{\wp}=\left(I_{k-1}^{\prime}\right)_{\wp}$, where I_{k-1}^{\prime} is a square-free ideal of R generated by monomials of degree $k-1$ in the variables $X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots X_{m}$ and $\wp \subset R$ a face ideal, with the variable $X_{i} \notin \wp$. The same result is obtained for J_{r} (see [5], 7.5.1). Hence for all mixed product ideals we have $(L)_{\wp}=\left(L^{\prime}\right)_{\wp}$.
In the not square-free case, the result is true only for the ideals $L=I_{k} J_{r}+$ $I_{k+1} J_{r-1}, L=I_{k} J_{r}, L=I_{k} J_{r}+I_{s} J_{t}$, and L^{\prime} is the ideal generated in the degree $k+r-1$ by all the variables. For other ideals the localization produces the ring R. For example, if $L=I_{r}+J_{r}$ and $X_{i} \notin \wp$, we have $(L)_{\wp}=\left(I_{r}\right)_{\wp}+\left(J_{r}\right)_{\wp}=$ $R+\left(J_{r}\right)_{\wp}=R$.

Proposition 2.1 Let $L=I_{k} J_{r}+I_{k+1} J_{r-1}$, with $k \geq 0$ and $r \geq 1$. Then L is complete.

Proof. By induction on $k+r$. If $k+r=1$, then $k=0, r=1$ and $L=J_{1}+I_{1}$ is integrally closed.

Assume $k+r>1$. By induction hypothesis the ideal $L^{\prime}=I_{k-1} J_{r}+I_{k} J_{r-1}$, generated in the degree $k+r-1$, is complete. We set $M=\bar{L} / L$. If $M \neq(0)$, take an associated prime ideal \wp of M. Since $M \hookrightarrow R / L$, an associated prime ideal of M is an associated prime of R / L, this implies that \wp is a face ideal, since the monomial ideal L has a primary decomposition into monomial ideals and every associated prime is a face ideal (see [5], 5.1.3). Suppose that $\wp \neq \mathcal{M}$, where \mathcal{M} is a maximal ideal, then there exists a variable $X_{i} \notin \wp$. From Lemma 2.1, we have:

$$
\left(L^{\prime}\right)_{\wp}=(L)_{\wp}
$$

and

$$
M_{\wp}=(\bar{L} / L)_{\wp}=(\bar{L})_{\wp} /(L)_{\wp}=\left(\overline{L^{\prime}}\right)_{\wp} /\left(L^{\prime}\right)_{\wp}=0,
$$

because L^{\prime} is complete. Contradiction, because \wp is in the support of M. Hence the maximal ideal \mathcal{M} is the only associated prime of M and there exists a monomial $f \in(\bar{L} / L)$ such that $(L: f)=\mathcal{M}$. The support of f contains one of the variables Y_{i} : if $f=\underline{X}^{a}$, then $f \in \bar{L} \Rightarrow f^{i} \in L^{i}$ for some $i \geq 1$. Hence we must have $r=1$ and $f^{i} \in\left(I_{k+1}\right)^{i}$. As I_{k+1} is normal then $f \in\left(I_{k+1}\right) \subset L$. Contradiction, because $f \notin L$. Let $Y_{1} \in \operatorname{supp}(f)$ such that $\operatorname{deg}_{Y_{1}}(f) \geq \operatorname{deg}_{Y_{i}}(f)$ for $i=2, \ldots, n$. Then we can write

$$
Y_{1} f=g \omega
$$

where ω is a monomial of L (of degree $k+r$) and g is a monomial of R. (We observe that $\operatorname{deg}(g)>0$ because $f^{i} \in L^{i}$ and $Y_{1} \notin \operatorname{supp}(g)$ because $\notin L$.)

We assume that Y_{j} divides g for $j \neq 1$. Let $c=\operatorname{deg}_{Y_{1}}(f)$, as Y_{1}^{c+1} divides $Y_{1} f$ then Y_{1}^{c+1} divides ω. Assume that $Y_{1} \in \operatorname{supp}(\omega)$ and note that $Y_{j} \in$ $\operatorname{supp}(\omega)$; if $Y_{j} \notin \operatorname{supp}(\omega)$ the equality

$$
Y_{1} f=\left(\omega Y_{j} / Y_{1}\right)\left(Y_{1} g / Y_{j}\right)
$$

implies that $f \in L$.
Theorem 2.1 Let $L=I_{k} J_{r}+I_{k+1} J_{r-1}$, with $k \geq 0$ and $r \geq 1$. Then L is normal.

Proof. By induction on $k+r$. If $k+r=1, L=I_{1}+J_{1}$ is normal. Now we assume $k+r \geq 2$ and we use induction on p, for all $p \geq 1$.
$p=1: L=\bar{L}$ by lemma 2.1.
$p>1$: we assume L^{i} complete for $1 \leq i<p$. We set $M=\overline{L^{p}} / L^{p}$. If $M \neq(0)$, take an associated prime ideal \wp of M. Since $M \hookrightarrow R / L^{p}$, an associated prime ideal of M is an associated of R / L^{p}, this implies that \wp is a face ideal (since the monomial ideal $L^{p}=q_{1} \cap \cdots \cap q_{s}$ is a primary decomposition into monomial ideals and every associated prime is a face ideal (see [5] 5.1.3)).We suppose that $\wp \neq \mathcal{M}, \mathcal{M}$ is a maximal ideal. If a variable $X_{i} \notin \wp$ then (by lemma 2.1):

$$
\left(L^{\prime p}\right)_{\wp}=\left(L^{p}\right)_{\wp},
$$

where $L^{\prime}=I_{k-1} J_{r}+I_{k} J_{r-1}$ generated in the degree $k+r-1$.
We have

$$
M_{\wp}=\left(\overline{L^{p}} / L^{p}\right)_{\wp}=\left(\overline{L^{p}}\right)_{\wp} /\left(L^{p}\right)_{\wp}=\left(\overline{L^{\prime p}}\right)_{\wp} /\left(L^{\prime p}\right)_{\wp} \subseteq\left(\overline{L^{\prime p-1}}\right)_{\wp} /\left(L^{\prime p-1}\right)_{\wp}=0,
$$

because $\left(L^{\prime}\right)^{p-1}$ is complete by induction hypothesis (on $k+r$ and p). This is a contradiction, because \wp is in the support of M. Hence the maximal ideal
\mathcal{M} is the only associated prime of M and there exists a monomial $f \in\left(\overline{L^{p}} / L^{p}\right)$ such that $\left(L^{p}: f\right)=\mathcal{M}$. The support of f contains one of the variables Y_{i} : if $f=\underline{X}^{a}$, then $f \in \overline{L^{p}} \Rightarrow f^{i} \in L^{p i}$ for some $i \geq 1$. Hence we must have $r=1$ and $f^{i} \in\left(I_{k+1}\right)^{i p}$. As I_{k+1} is normal then $f \in\left(I_{k+1}\right)^{p} \subset L^{p}$. This is a contradiction because $f \notin L^{p}$. Let $Y_{1} \in \operatorname{supp}(f)$ such that $\operatorname{deg}_{Y_{1}}(f) \geq \operatorname{deg}_{Y_{i}}(f)$ for $i=2, \ldots, n$. Then we can write

$$
Y_{1} f=g \omega_{1} \cdots \omega_{p}
$$

where $\omega_{1} \ldots \omega_{p}$ are monomials of L (of degree $k+r$) and g is a monomial of R. (We observe that $\operatorname{deg}(g)>0$ because $f^{i} \in L^{i p}$ and $Y_{1} \notin \operatorname{supp}(g)$ because $f \notin L^{p}$.)

Case I) We assume that Y_{j} divides g for $j \neq 1$. Let $c=\operatorname{deg}_{Y_{1}}(f)$. As Y_{1}^{c+1} divides $Y_{1} f$ then Y_{1}^{c+1} divides $\omega_{1} \cdots \omega_{p}$. Assume that $Y_{1} \in \operatorname{supp}\left(\omega_{i}\right)$ for $i=1, \ldots, c+1$ and note that $Y_{j} \in \operatorname{supp}\left(\omega_{i}\right)$ for $i=1, \ldots, c+1$; if $Y_{j} \notin \operatorname{supp}\left(\omega_{i}\right)$ the equality

$$
Y_{1} f=\omega_{1} \cdots\left(\omega_{i} Y_{j} / Y_{1}\right) \cdots \omega_{c+1} \cdots \omega_{p}\left(Y_{1} g / Y_{j}\right)
$$

implies that $f \in L^{p}$.
Case II) Assume that $g=\underline{X}^{a}$ and X_{j} divides g.
a) First suppose that there exists a monomial ω_{l} of the form

$$
\omega_{l}=\left(X_{i_{1}} \cdots X_{i_{k}}\right)\left(Y_{1} Y_{j_{2}} \cdots Y_{j_{r}}\right)
$$

with $1 \leq i_{1} \leq \ldots \leq i_{k} \leq m, 1 \leq j_{2} \leq \ldots \leq j_{r} \leq n$ and $Y_{1} \in \operatorname{supp}\left(\omega_{l}\right)$. If $Y_{1} \notin \operatorname{supp}\left(\omega_{l}\right)$ and $X_{j} \in \operatorname{supp}\left(\omega_{l}\right)$, then we can write

$$
Y_{1} f=\omega_{1} \cdots \omega_{l-1}\left(X_{i_{1}} \cdots X_{i_{k}} X_{j}\right)\left(Y_{j_{2}} \cdots Y_{j_{r}}\right) \omega_{l+1} \cdots \omega_{p}\left(Y_{1} g / X_{j}\right)
$$

it follows $f \in L^{p}$.
Then there exists a monomial ω_{q} of the form:

$$
\omega_{q}=\left\{\begin{array}{l}
(1)\left(X_{s_{1}} \cdots X_{s_{k+1}}\right)\left(Y_{t_{1}} \cdots Y_{t_{r-1}}\right) \\
(2)\left(X_{s_{1}} \cdots X_{s_{k}}\right)\left(Y_{t_{1}} \cdots Y_{t_{r}}\right)
\end{array},\right.
$$

with $1 \leq s_{1} \leq \ldots \leq s_{k+1} \leq m, 1 \leq t_{1} \leq \ldots \leq t_{r} \leq n$ and $X_{j} \notin$ $\operatorname{supp}\left(\omega_{q}\right)$. In the case (1): $X_{s_{1}}, \ldots, X_{s_{k+1}} \nsubseteq X_{i_{1}}, \ldots, X_{i_{k}}$ and let $X_{s_{1}} \notin$ $\left\{X_{i_{1}}, \ldots, X_{i_{k}}\right\}$. From the equality

$$
Y_{1} f=g \omega_{l} \omega_{q} \prod_{i \neq l, q} \omega_{i}=\left(Y_{1} g / X_{j}\right)\left(X_{s_{1}} \omega_{l} / Y_{1}\right)\left(X_{j} \omega_{q} / X_{s_{1}}\right) \prod_{i \neq l, q} \omega_{i}
$$

it follows $f \in L^{p}$.
In the case (2): $\left\{Y_{t_{1}}, \ldots, X_{t_{r}}\right\} \nsubseteq\left\{Y_{j_{2}}, \ldots, Y_{j_{r}}\right\}$ and let $Y_{t_{1}} \notin\left\{Y_{j_{2}}, \ldots, Y_{j_{r}}\right\}$.
From the equality

$$
Y_{1} f=g \omega_{l} \omega_{q} \prod_{i \neq l, q} \omega_{i}=\left(Y_{1} g / X_{j}\right)\left(Y_{t_{1}} \omega_{l} / Y_{1}\right)\left(X_{j} \omega_{q} / Y_{t_{1}}\right) \prod_{i \neq l, q} \omega_{i},
$$

it follows $f \in L^{p}$.
b) Suppose that all monomials ω_{l} that contain Y_{1} in their support are

$$
\omega_{l}=\left(X_{i_{1}} \cdots X_{i_{k+1}}\right)\left(Y_{1} Y_{j_{2}} \cdots Y_{j_{r-1}}\right)
$$

There exists

$$
\omega_{q}=\left\{\begin{array}{l}
\text { (1) }\left(X_{s_{1}} \cdots X_{s_{k}}\right)\left(Y_{t_{1}} \cdots Y_{t_{r}}\right) \\
(2)\left(X_{s_{1}} \cdots X_{s_{k+1}}\right)\left(Y_{t_{1}} \cdots Y_{t_{r-1}}\right) .
\end{array}\right.
$$

From now on, by using the same technic used in [5](Prop 7.5.8), we obtain the proof.

Remark 2.2 In the square-free case, the ideal $L=I_{k} J_{r}+I_{k+1} J_{r-1}$ is normal too (see [4]).

Theorem 2.2 Let $L=I_{k} J_{r}$, with $k, r>1$. Then L is normal.
Proof. First we prove that L is complete. It is enough to prove that
$I_{k} \cap J_{r}$ is integrally closed and $I_{k} J_{r}=I_{k} \cap J_{r}$.
To prove that $\overline{I_{k} \cap J_{r}}=\overline{I_{k}} \cap \overline{J_{r}}$, it is enough to prove that $\overline{I_{k} \cap J_{r}} \subseteq \overline{I_{k}} \cap \overline{J_{r}}$, since $\overline{I_{k}} \cap \overline{J_{r}}=I_{k} \cap J_{r} \subseteq \overline{I_{k} \cap J_{r}}$. For all $z \in \overline{I_{k} \cap J_{r}}$ there exists an equation $z^{l}+a_{1} z^{l-1}+\cdots+a_{l-1} z+a_{l}=0$, with $a_{i} \in\left(I_{k} \cap J_{r}\right)^{i}$ for all $i=1, \ldots, l$. It follows that $a_{i} \in\left(I_{k}\right)^{i}$ and $a_{i} \in\left(J_{r}\right)^{i}$. Hence $z \in \overline{I_{k}} \cap \overline{J_{r}}$.

Now, let $f \in I_{k}$ and $g \in J_{r}, G . C . D .(f, g)=1$, it follows that $f g$ is a l.c. $m(f, g)$, hence $f g \in I_{k} \cap J_{r}$.

Then L is complete.
For all $i>0$, it results

$$
L^{i}=\left(I_{k}\right)^{i}\left(J_{r}\right)^{i}=\left(I_{k}\right)^{i} \cap\left(J_{r}\right)^{i},
$$

hence L^{i} is integrally closed, because $\left(I_{k}\right)^{i}$ and $\left(J_{r}\right)^{i}$ are integrally closed.
Remark 2.3 In the square-free case, the ideal as $L=I_{k+1}, L=I_{k} J_{r}$ is normal too (see [4]).

For computing examples we used the computer algebra program [2], that was able to find the monomials of the integral closure of L^{i} in the simplest cases.

References

[1] W. Bruns - J. Herzog, Cohen-Macaulay rings, Cambridge studies in advanced mathematics, 39, Cambridge Univ. Press, 1993.
[2] W. Bruns - R. Kock, Normaliz - , a program for computing normalizations of affine semigroups (1998) Available via anonymous ftp from ftp.mathematik.Uni-Osnabrueck
[3] M.La Barbiera - M.Paratore, Complete powers of mixed product ideals, to appear (2002)
[4] G.Restuccia - R.H. Villarreal, On the normality of monomial ideals of mixed products, Comunications in Algebra, 29(8), 3571-3580 (2001)
[5] R.H. Villarreal, Monomial Algebras, Pure and Applied Mathematics (2000)

Monica La Barbiera
Dipartimento di Matematica,
Universita' di Messina
Contrada Papardo, salita Sperone 31,
98166 Messina (Italia)
e-mail:monicalb@dipmat.unime.it

Mariafortuna Paratore
Dipartimento di Matematica,
Universita' di Messina
Contrada Papardo, salita Sperone 31, 98166 Messina (Italia)
e-mail:paratore@dipmat.unime.it

[^0]: Key Words: Monomial ideals; Graded rings; Rees algebras.

