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Stability of Discrete Shocks for Difference
Approximations to Systems of Conservation

Laws

Aurelian Nicola

Abstract

In this paper we analyse the stability of weak discrete stationary
shocks. The difference approximation is conservative, dissipative and
k-th order accurate (k = 1 or k = 3). In Sections 1-3, following the pre-
vious results of D. Michelson we adapt the multistep methods Runge-
Kutta and Adams-Bashforth to solve systems of conservation laws. In
section 4 we analyse the stability of the numerical method and pro-
vide maximal values for the Courant-Friederichs-Levy number. The
numerical examples presented in Section 5 confirm the robustness of the
algorithm.

Subject Classification: 65M12, 65M06, 35L65, 35L67.

1 Introduction

Let us consider a system of conservation laws

(1.1) ut + f(u)x = 0,

where f : Rn −→ Rn is a smooth vector function and the unknown function
u = u(x, t) ∈ Rn depends on −∞ < x < ∞ and t > 0. We are interested in
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order dissipation.
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studying the solution of (1.1) when it develops stationary shocks. By planar
stationary shock one means the solutions

(1.2) u = uL, x < x0; u = uR, x > x0,

where uL, uR satisfy the Rankine-Hugoniot condition

(1.3) f(uL) = f(uR).

Suppose that (1.1) is approximated by a dissipative system

(1.4) ut + f(u)x = −(i∂x)
k+1
2 [A(u)(i∂x)

k+1
2 ]u,

where k is an odd number. Stationary solutions ust of (1.4) which attain
the above limits uL and uR as x → −∞ and x → ∞ correspondingly are
called stationary viscous shocks. The travelling shocks by a change of variables
x− c · t → x are reduced to the stationary ones. Furthermore, if the difference
|uR − uL| is small, the shock is called weak. We assume that uL, uR lie in a
small neighbourhood of a point u0 such that the differential df [u0] of f at u0

has distinct real eigenvalues with a zero eigenvalue λ1(u0) = 0. Without loss
of generality we may assume that

(1.5) df [u0] = diag(λ1(u0), λ2(u0), ..., λn(u0)).

The eigenvalue λ1(u) should be also genuinely nonlinear, which means that
its e1 directional derivative is not null, i.e.

(1.6) dλ1[u0] · e1 �= 0,

where e1 = (1, 0, ..., 0)T ∈ Rn. We assume that the pair uL , uR is entropy
satisfying, i.e.

(1.7) λ1(uL) > 0 > λ1(uR)

and the right hand side of (1.4) is dissipative in a proper sense. Under the
above assumptions in [2] the authors proved the existence of viscous shocks
for cases k = 1 and k = 3.

The following natural question appears - are these shocks asymptotically
stable ? Namely, given an initial condition u(x, 0) which is a small perturbation
of the stationary viscous shock ust(x), will u(x, t) tend to ust(x) as t → ∞ ?
For k = 1 this problem was studied by Goodman in [1]. Under the asssumption
of zero mean perturbation, i.e.

∫ ∞

−∞
(u(x, 0) − ust(x))dx = 0,
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he proved that the shock is asymptotically stable. Liu in [3] removed the above
restriction, but assumed that uL and uR are connected by a non-degenerate
sum of n shocks. Then he showed that u(x, t) tends asymptotically to a sum
of travelling viscous shocks.
Let us consider the stability problem for the shock solution of the scalar equa-
tion

(1.8) ut +
(

u2

2

)
x

= −uxxxx .

The stationary shock ust satifies the equation

(1.9) uxxx =
1
2
(1 − u2), u(∓∞) = ±1,

and is not monotone. As a result, the energy method in the L2 space is not
applicable to (1.8). We study the stability of ust on a finite interval |x| ≤ l,
where

(1.10) δ−1
0 ε−1 ≤ l ≤ δ0ε

−k

or

(1.11) δ−1
0 ε−1 ≤ l ≤ δ0ε

−k−1

Here ε−1 is proportional to the width of the boundary layer

(1.12) ε−1 ∼ (λ1(uL)−
1
k ∼ |uR − uL|− 1

k

and δ0 is a small constant. The boundary conditions should also include

(1.13) P
(
f(u) + (i∂x)

k+1
2 [A(u)(i∂x)

k+1
2 u]

)
= 0, x = ±l,

where P : Rn → Rn is a projector on the first n1 components of u. This
implies that the integral ∫ l

−l

Pudx

is conserved in time. The restriction (1.10) applies if n1 = 1 or n1 = n, thus
for k = 1, we shall consider only these cases.

Remark 1.1 Note that the stationary solution ust tends exponentially fast
to uL, uR with respect to the variable εx, thus the boundaries x = ±l are
practically at infinity.
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Remark 1.2 The real motivation for the shock stability problem comes from
the aerodynamic computations. Hence instead of the continuous model (1.4)
we will consider a discrete approximation of (1.1). The continuous problem
could be solved in a similar way. The discrete settings will follow the paper
in [2] where the author proved the existence of weak discrete shocks for dis-
sipative approximations with k = 1 and k = 3. The most popular numerical
schemes for shock wave computations produce monotone shock profiles, thus
they exclude high order approximations. The results indicate that the high
order schemes, although producing one overshoot of about 20% in the shock
layer, converge exponentially fast to the stationary solution.

2 The Difference Approximation

The system of conservation laws (1.1) is approximated by the difference scheme

(2.1) G({Eju(x, t)}) = 0, j = (j1, j2) ∈ J ⊂ Z2, j2 ≤ 0,

where J is a finite set, G = G({uj}) is a smooth vector ( at least C3 ) function
of vector variables uj ∈ Rn, j ∈ J, and Ej = Ej1

x Ej2
t is a shift operator

(2.2) Eju(x, t) = u(x + j1h, t + j2h).

We consider u(x, t) in (1.4) as a grid function defined on a uniform grid with
a mesh size h

(2.3) Dh = Ih × (R+)h

in the half-strip [−l, l]× [0,∞). The scheme G should be conservative, i.e.

(2.4) G({Eju(x, t)}) = (Ex − I)G1({Eju(x, t)}) + (Et − I)G2({Eju(x, t)})

with the multi-index j in G1,and G2 varying over corresponding subsets of J .
We assume that G is consistent with (1.1)

(2.5) G1({u}) = f(u), G2({u}) = u,

where {u} stands for the set {uj} of vectors uj = u. Since the domain is
bounded, there are boundary conditions of the form

(2.6) SL({Eju(−l, t)}, uL) = 0, SR({Eju(l, t)}, uR) = 0,

where SL and SR depend smoothly on its arguments and j belongs to a finite
set. The range of j = (j1, j2) in SL is such that j1 ≥ 0, j2 ≤ 0 while in SR we
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have j1 ≤ 0 j2 ≥ 0, and the boundary conditions should be consistent with a
constant solution ,

(2.7) SL({u}), u) = SR({u}, u) = 0.

There are also the initial conditions

(2.8) u(x, t) = uin(x, t), x = j1 ∈ [−l, l], t = j2 ∈ [0, Δj2 − 1],

where −Δj2 is the minimal value of the index j2 in the functions G, SL and SR.
Note that we can always add to G, SL, SR, dummy variables uj so that they
have a common minimal j2. Then we consider a family of initial boundary
value problems which depend on the parameter ε ∼ (λ1(uL))

1
k with uL, uR

satisfying (1.3) and (1.7) so that uL(ε = 0) = uR(ε = 0) = u0 and l as in
(1.10) or (1.11). More precisely

(2.9) uL = u0 + μe1, uR = u0 − μe1 + O(μ2), μ =
bεk

(dλ1[u0] · e1)
,

where b is the (positive) dissipation coefficient and e1 is the unit vector as

in (1.6). Equation (2.1) is defined for (x, t) in a subdomain
◦

Dh such that
(x + j1, t + j2) ∈ Dh (see (2.2)) lies in Dh for all j ∈ J . We will assume
that h = 1 so that 2l is the number of mesh points in Ih. If we denote by

x−l, xl − 1 the left and right end points of
◦

Dh and sum the equation in (2.1)
for x ∈ [x−l, xl − 1], we obtain the global conservation law

(2.10) (Et − I)
∑

G2({Eju(x, t)}) = G1({Eju(x−l, t)})−G1({Eju(xl, t)}).

It would be natural to assume that

(2.11) G1({Eju(x±l, t)}) − f(uR,L) = 0,

i.e. (2.11) is a part of the boundary conditions from (2.6). More generally, we
will assume that

(2.12) P (G1({Eju(x±l, t)}) − f(uR,L)) = 0,

where P = P (μ) : Rn → Rn is a projector which depends smoothly on μ such
that P (0) is the standard projection on the first n1 components of u. As a
result the solution of IBVP (2.1), (2.7), (2.9) satisfies

(2.13) P
∑

G2({Ej(u(x, t)}) = P
∑

G2({Ej(uin}).
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If we linearize the above IBVP at the constant state u = u0 and μ = 0 with
arbitrary l, then one should assume that the linear problem

dG[u0]u = F, dSL[u0] = gL, dSR[u0] = gR,

is solvable in time. The resulting constant coefficient difference operators will
be denoted by dG[u0](Ex, Et), dS[u0](Ex, Et) or simply dG[u0], dS[u0]. The
Laplace-Fourier symbol of dG[u0] is defined as dG[u0](eiξ, es).
According to [4] we introduce the following assumptions
Dissipativity: The symbol dG[u](eiξ, es) is non-singular for all pairs (ξ, s)
with Re(s) ≥ 0 but s = 0 and ξ = 0 mod 2π, where u is any vector in a
neighbourhood of u0.
Accuracy: The difference operator dG[u0] restricted to the x variable is
exactly the k-th order accurate approximation of df [u0] ∂

∂x in the direction
e1 = (1, 0, . . . , 0)T .
Under these assumptions in [4] the author proved that the initial boundary
value problem is asymptotically stable.

3 Numerical schemes

The following approximation was sugested in [5]: the derivative f(u)x , in
(1.1) is approximated by

(3.1) F ({Eαu}) =
1

Δx
(D(k+1)

x f(u) + (−1)k1K(E
1
2
x − E

− 1
2

x )(k+1)u),

where k1 = k+1
2 and (Δx)−1D

(k+1)
x is k + 1 order central difference approxi-

mation of the operator ∂x and K = O∗(1) is a positive constant. For example

(3.2) D(k+1)
x =

k1∑
j=1

cj(Ej
x − E−j

x ), cj =
(−1)j−1(k1!)2

j(k1 − j)!(k1 + j)!
,

which has a maximal accuracy for the k + 2 point lattice. The equation (1.1)
is then replaced by

(3.3) ut + F ({Eαu}) = 0,

for which we can apply a classical O.D.E. solver. Let us consider now the
equation (3.3) in the space of grid functions u(x), x ∈ Ih. We will approximate
the equation (3.3) by an m-th O.D.E. solver with m ≥ k. For k = 1 the
approximation for the derivative becomes

F ({Eαu}) =
1

Δx

[
1
2
(E1

x − E−1
x )f(u) − K1(E1

x − 2I + E−1
x )u

]
,
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whereas for k = 3

F ({Eαu}) =
1

Δx

[
1
12

(E−2
x − 8E−1

x + 8E1
x − E2

x)f(u)

+K1(E−2
x − 4E−1

x + 6I − 4E1
x + E2

x)u
]
.

Let us consider now instead of (1.1) the equation (3.3). We then can apply as
solver the m-th order Adams-Bashforths multi-step method

(3.4) (I − E−1
t ) + Δt

m∑
i=1

diE
−i
t F (u) = 0, m ≥ k,

or an explicit r-stage Runge-Kutta method of the form

(3.5) kq = ΔtF

⎛
⎝u +

q−1∑
j=1

αqjkj

⎞
⎠ , Etu = u +

r∑
q=1

αr+1,qkq, αq,q−1 �= 0.

Both methods must be conservative, dissipative and k-th order accurate in
space and with k an odd number. Moreover, both schemes clearly satisfy
the accuracy and dissipativity assumptions stated in the previous section.
According to the boundary conditions in the case of the Runge-Kutta method
because of the global conservation laws we have to use the following ones

(3.6) PF1

⎛
⎝u +

q−1∑
j=1

αqjkj

⎞
⎠ ∣∣

x=x±l
− Pf(uL,R) = 0, 2 ≤ q ≤ r + 1.

In (3.5) we may consider the fourth-stage Runge Kutta method given by

xn+1 = xn +
1
6

(k1 + 2k2 + 2k3 + k4) ,

where ⎧⎪⎪⎨
⎪⎪⎩

k1 = Δt · F (x)
k2 = Δt · F (

x + 1
2 · k1

)
k3 = Δt · F (

x + 1
2 · k3

)
k4 = Δt · F (x + k3)

whereas in (3.4) a possible choice is given by the Adams-Bashforth explicit
method
(3.7)

xn+1 = xn +
Δt

24
(55F (x) − 59F (x − Δt) + 37F (x − 2Δt) − 9F (x − 3Δt)) .
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Runge-Kutta (−2.78, 0)
Adams - Bashforth (−1.25, 0)

Table 1: Intervals of stability.

where the first values for this method can be predicted with values like in
Runge-Kutta method. In Table 1 we list the interval of absolute stability for
the fourth-order four stage Runge-Kutta method and the fourth order Adams-
Bashforth method.

Remark 3.1 If we now make the comparison on the basis of the same number
of function evaluation over a given interval we can apply the Adams-Bashforth
method with half steplength of the Runge-Kutta method. From the point of
view of the asymptotic stability characteristics, Runge-Kutta method are much
better than the Adams-Bashforth method, and method like Runge-Kutta are
easily programmed for a computation with a fixed steplength. In contrast to
multi-step methods, the Runge Kutta method being one-step method, requires
only the value at the last time point of the approximate solution and allows
one to carry out calculations under initial conditions which are natural for the
equation which we want to solve. Because the method does not make use of
information concerning the solution of the previous nodes of the grid , it is in
general less economical than Adams-Bashforth methods.

The Runge-Kutta method employed here is not exactly of the type (2.1) with
the boundary conditions (2.12). If we eliminate the intermediate steps kq the
resulting scheme should be rewritten as:

(3.8) (Et − I)u + (Ex − I)G1({Eju(x, t)}, x) = 0

One can consider the equation (3.8) for boundary points (i.e., not for inner
points) as artificial boundary conditions where the flux G1 changes its form
as a discrete function of x.

4 Stability analysis of the methods

Let us consider the expression of F ({Eαu}) from the equation (3.1). It is
clear that we have F (u) = (Ex − I)F1(u) and hence the scheme is in the
conservation form (2.4). Moreover, if we denote by dF̂ [u0] the Fourier symbol
of the differential of F at u0, The general form of the eigenvalues λ of ΔtdF̂ [u0]
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will be

(4.1) λ =
Δt

Δx

⎛
⎝λi(u0)

√−1
k1∑

j=1

2cj sin(jξ) + K1

(
2 sin

ξ

2

)k+1
⎞
⎠ .

In the case of m-th order Adams-Bashforth explicit method

(4.2) (I − E−1
t )u + Δt

m∑
i=1

diE
−i
t F (u) = 0,

and for the stability of the Cauchy problem one needs that the roots z of the
characteristic equation

(4.3) 1 − z−1 +
∑

diz
−iλ = 0,

should satisfy |z| ≤ 1, or in other words −λ should belong to the domain Ω of
absolute stability of the multi-step method. For small values of ξ, if m > k+1
, −λ from the formula (4.1) always belong to Ω. This will restrict the choice
of λi(u0) Δt

Δx and K1 · Δt
Δx .

Let us consider first the case when k = 1. Then the eigenvalue λ from (4.1)
takes the form :

λ =
Δt

Δx

(
λi(u0)

√−1 · sin(ξ) + 4 · K1 sin2

(
ξ

2

))
.

We consider the maximum of the values λi(u0), i = 1, . . . , n over all domain of
computation and first for simplicity the value of K1 = 0. In order to compute
the domain Ω of absolute stability in the case of 4-th order Runge-Kutta
explicit method we need to have:

(4.4)
∣∣∣∣1 − λ +

λ2

2!
− λ3

3!
+

λ4

4!

∣∣∣∣ ≤ 1.

In this case we can get the maximum value for λ should not exceed
√

8.
Furthermore, if we fix the value of λi(u0) Δt

Δx at the above maximal value we
have to compute the maximal value of K1 �= 0 such that the multi-step method
remain stable. In Table 2 we show some of the values λi(u0) Δt

Δx and K1
Δt
Δx

In Figure 1 we plot the graph of the left hand side expression in (4.4). It is
clear that the value of the expression is less than one and the method remains
stable. For k = 3 the relation (4.1) becomes

λ =
Δt

Δx

(
i · λi(u0) · 2 ·

(
8
12

sin(ξ) − 1
12

sin(2ξ)
)

+ 16 · K1 · sin4

(
ξ

2

))
.
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λi(u0) Δt
Δx K1

Δt
Δx

1.5 0.2
1 0.4

0.5 1

Table 2: Maximal values for stability for k = 1.
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”expr.dat ”
1

Figure 1: Graph of the expression (4.3) in case when k = 1.

We also ask if the following inequality holds

(4.5)
∣∣∣∣1 − λ +

λ2

2!
− λ3

3!
+

λ4

4!

∣∣∣∣ ≤ 1,

for all ξ ∈ [0, 2π] and some K1 �= 0. Some values for λi(u0) Δt
Δx and K1

Δt
Δx are

presented in Table 3. Furthermore, in Figure 2 we show the graph of left hand
side of (4.5).

In all the numerical experiments presented in the next section of the paper

λi(u0) Δt
Δx K1

Δt
Δx

1.5 0.1
1 0.17

0.5 0.3

Table 3: Maximal values for stability for k = 3.
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Figure 2: Graph of expression (4.3) when k = 3.
g

we make this analysis of the eigenvalue λ to provide a small enough value
for the time step Δt which should ensure the convergence of the multistep
method.

5 Numerical examples

5.1 Example 1

Many problems in mechanics, in particular in gas dynamics lead us to the study
of nonlinear hyperbolic conservation laws. One of the simplest conservation
law (nonlinear hyperbolic partial differential equation) is the Burgers’ equation
(see e.g. [6])

ut +
(

u2

2

)
x

= 0, x ∈ R, t > 0.

We shall approximate the solution of the Burgers equation for a strong shock

u(0, t) = u0(x) =
{

uL , x ≥ 0
uR , x < 0 ,

where uL = 1, uR = −1. When we consider K1 = 1 we eliminate this
oscillations with a 4-th order term which smears the profiles of the numerical
approximation like in Figure 3.

Remark 5.1 By applying multi-step methods like Runge-Kutta or Adams Bash-
forth we can see that they smear the profile of the numerical solution. Finally,
in this case the methods converge to a stationary solution which attains the
limits uL and uR when x → −∞ and x → +∞, respectively. These numerical
solutions are called stationary viscous shocks.
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Figure 3: Stationary solution at time T = 1.1 using Runge-Kutta 4-th order
for K1 = 0.

5.2 Example 2

This example comes from a classical problem in gas dynamics. In this case we
apply the Runge-Kutta scheme to the one dimensional system,

ut + f(u)x = 0,

where
u = (ρ, ρu, E)T ,

and
f(u) = (ρu, P + ρu2, u(E + P ))T ,

augmented with P = (γ − 1)(E − 1
2ρu2). Here ρ, u, P and E are respectively,

the density, velocity, pressure and total specific energy. The initial data is of
the Riemann form

u(x, 0) =
{

uL if x < 0
uR if x > 0

The first Riemann problem was proposed by Sod [6]. If we denote m = ρu
then we have

u = (ρ, m, E)T ,

and the function

f(u) =
(

m, P +
m2

ρ
,

m

ρ
(E + P )

)T

.

The initial data is taken as

(ρL, uL, PL) = (1, 0, 1), (ρR, uR, PR) = (0.125, 0, 0.1).
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Numerical approximations for density in both cases k = 1 and k = 3 are
shown in Figure 4. In Figure 4 the numerical approximation for the density
is presented for both cases k = 1 and k = 3. This approximation is obtained
using the Runge-Kutta method. We can observe that the solution is composed
from three types of shocks , a rarefaction wave, a contact discontinuity and a
simple shock. Furthermore, in Figures 5 and 6 we show the numerical solutions
for the velocity and pressure profiles at the same final time T = 2.0.
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Figure 4: Plot of the density in cases k = 1 and k = 3..
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Figure 5: Plot of the velocity in cases k = 1 and k = 3.

5.3 Example 3

The third example is for the second Riemann problem which was proposed by
Lax (see [6]). In this example the initial data is given by

(ρL, uL, PL) = (0.445, 0.698, 3.528), (ρR, uR, PR) = (0.5, 0, 0.571).
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Figure 6: Plot of the pressure in cases k = 1 and k = 3.

We used again as solver the Runge-Kutta method. The numerical solutions of
Riemann problem - density, velocity, pressure - are presented in Figures 7, 8,
9, respectively.
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Figure 7: Plot of the density in cases k = 1 and k = 3.

5.4 Example 4

In this case we approximated the solution of two-dimensional Burgers equation

ut +
(

u2

2

)
x

+
(

u2

2

)
y

= 0,
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Figure 8: Plot of the velocity in cases k = 1 and k = 3.
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Figure 9: Plot of the pressure in cases k = 1 and k = 3.

subject to the initial conditions

u0(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0.5 −1 ≤ x < 0,−1 ≤ y < 0
0 0 ≤ x ≤ 1,−1 ≤ y < 0
−1 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

−0.2 −1 ≤ x < 0, 0 ≤ y ≤ 1.

To implement the boundary conditions at outflow boundary we used first order
extrapolation. In Figure 10 we present the solution at the time T = 1. for a
mesh with 41 × 41 points.

6 Conclusions and further work

This paper investigates the stability of discrete shocks approximations for par-
ticular cases k = 1 and k = 3. Numerical examples are shown to emphasize



60 Aurelian Nicola

Time T = 1. 
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Figure 10: The 2D IBVP Burgers equation , T = 1, on a mesh 41 × 41

the robustness of the discrete approximations based on multi-step methods.
Further work will be to apply the difference approximation to other two di-
mensional problems.
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