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Division algebras with dimension 2/, tc N

Cristina Flaut

Abstract

In this paper we find a field such that the algebras obtained by the
Cayley-Dickson process are division algebras of dimension 2¢,Vt € N.

Subject Classification: 17D05; 17D99.

From Frobenius Theorem and from the remark given by Bott and Milnor
in 1958, we know that for n € {1,2,4} we find the real division algebras
over the real field R. These are: R, C, H(the real quaternion algebra), O(the
real octonions algebra ). They are unitary and alternative algebras. In 1978,
Okubo gave an example of a division non alternative and non unitary real
algebra with dimension 8, namely the real pseudo-octonions algebra.(See[7]).
Here we find a field such that the algebras obtained by the Cayley-Dickson
process are division algebras of dimension 2¢,Vt € N. First of all we describe
shortly the Cayley-Dickson process.

Definition 1. Let U be an arbitrary algebra. The vector spaces morphism
¢ : U — U is called an involution of the algebra U if ¢ (¢ (z)) = = and

¢ (xy) = (y) ¢ (x),Va,y € U.

Let U be a arbitrary finite dimensional algebra with unity, 1 # 0, with an
involution ¢ : U — U, ¢ (a) = a, where a+@ and aa belong in K -1, for all a
in U. Let a € K, be a non zero fixed element . Over the vector space U @ U,
we define the multiplication:

(a1,az2) (b1, b2) = (a1by — abzaz, azby + baay) . (1)
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In this way we obtain an algebra structure over U & U. We denote the
obtained algebra by (U, «) and it is called the derivate algebra obtained
from the algebra U by Cayley-Dickson process. It is proved easily that
the algebra U is isomorphic with a subalgebra of the algebra (U,«), and
dim (U, ) = 2dim U. We denote v = (0, 1) € U and we obtain that v? = —a-1,
then (U, ) = U @ Uv. In the next, we denote the elements of the form « -1
by a and each of these elements is in U.

Let = = a1 + asv € (U,«). Denoting T = a1 — asv, we remark that
r+x=a1+a1 € K-1, 2% = a1a1 + aasaz € K - 1. The map:

V(U o) — (Ua) ) ==,

is an involution of the algebra (U,«), which extends the involution ¢. If
z,y € (U,a), we have Ty = J 7.

For z € U we denote t (z) =z +7T € K, n(z) = 27 € K, and we call them
the trace, respectively the norm of the element x from U. If z € (U, a), so
that z = z+yv,then z+zZ =t (z)-1 and 2Z =Zz = n(z) -1, where ¢ (z) =t (x)
and n (z) =n(z) + an(y) . From this, we have that (z +2z) z=2% + Zz=22 +
n (z) - 1, therefore

22 —t(2)z+n(2) =0,z € (U,a),

so that each algebra obtained by the Cayley-Dickson process is a quadratic
algebra. We remark that all algebras obtained by this process are flexible
and power-associative algebras.

If in the Cayley-Dickson process we take U = K, charK # 2 and the
involution v (x) = x, we obtain at the step ¢ an algebra of dimension 2°.

At the step 0, we obtaine the field K. This algebra has dimension 1.

At the step 1, we obtaine K (a) = (K, ), # 0. This algebra has dimen-
sion 2. If the polynomial X2 + « is irreducible over K , then K (o) is a field,
otherwise K (o) = K @ K and it is a non division algebra.

At the step 2, we obtaine H(a, 8)=(K(a),),8 # 0, the generalized
quaternion algebra. This algebra has dimension 4. This is an associative
algebra, but it is not a commutative algebra.

At the step 3, we obtaine O (o, 8,7) = (H («, 8) ,7) ,v # 0, the generalized
octonion algebra or the Cayley-Dickson algebra. This algebra has dimension
8. This algebra is alternative(i.e. %y = z(xy) and yz? = (yz)z) but it is a
non associative and non commutative algebra.

At the step 3, we obtain the generalized sedenion algebra, which is a non-
alternative algebra, but it is a flexible and power-associative algebra. This
algebra has dimension 16.
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Definition 2. Let U be an arbitrary algebra over the field K. U is called
a division algebra if and only if U # 0 and the equations:

ax =b,ya="bVa,be U,a #0,

have unique solutions in U.

From the beginning, we remark that if we started from a finite field, K, we
don’t obtained a division algebra, for any step of the Cayley-Dickson process.
Indeed, we find the quaternion algebra. This algebra is always an associative
and non commutative algebra. If this algebra is a division algebra it became a
finite field. By Wedderburn’s theorem, this field is a commutative field, false.
Then we put the problem if we get the division algebra for all steps of the
Cayley-Dickson process. If the field K is infinite, the answer is positive and
we show that in the next.

Remark 3. If an algebra U is a finite dimensional algebra, then U is a
division algebra if and only if from the relation xy = 0 it results that = or y
must be zero.

Let X1, Xo,..., Xt be t algebraically independent elements over K. For
i € {1,2,...,t} we build the algebra U; over the field F' = K (X1, X2, ..., X¢)
putting o; = X; with j = 1,¢ . Let Up = F and the involution ¢ (z) = z. We
prove by induction on 4 that U; is a division algebra for i=1,t.

Case 1.
For j = 1 we have Uy = Uy ® Uy with oy = X1, v1 = (0,1) € Uy,
r=a+bv, y=c+ dvi, T =a — bv; and the multiplication

xy = ac — ardb + (be + da) v1.
If x,y are nonzero elements in U; such that zy = 0 we have
ac— X1db=0 (2)

and
bc + da = 0. (3)

Since a, b, ¢, d are in F', from the relations (2) and (3), we have that a, b, ¢,d
are non identically zero elements. Indeed, since  # 0 and y # 0 we have the
possibilities:

i)a=c=0and bd#0=0b=d=0, false.

il)a=d=0and b,c#0=b=c=0, false.

iii)b=c=0and a,d# 0= a=d=0, false.

iv)b=d=0and a,c # 0= a=c=0,false.
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These have the form:
a= f(Xh "'7Xt)a b= g(Xla "'7Xt)7

c=h(X1,..,Xp), d=r(X1,...,Xs), f,9,h,r € F

Since we can multiply the relations (2) and (3) with the great common
divisor of denominators of f,g,h,r, we may suppose that f,g,h,r are in
K[Xj,...,X]. Replacing the elements a,b,c,d in the relation (2), we have:
x1 | f or x| h.

That means X; | ac. It results X; |a or X7 | cor X; | a and X | c.
If Xi|aand X; | clet i, iz be the greatest powers such that a = Xflfl,
c= X{"hs, f1,h1 € K[X1,..., X¢]. We replace in the relation (2), and we have:
X fihy — Xqdb = 0.

Since i1 + iz > 2, we obtain that X | db. We have the possibilities:

i) X1 | d and Xy { b. It results that there is a great power i3 such that
d=X{r1, m € K[X1, ..., X4]. We replace in the relations (2) and (3) and we
obtain: o _

X{1+Z2flh1 - X{3+17“1b = O7 (2.1)
bX12hy + X7 fir = 0. (3.1)

a) If i9 < i1 + i3 then X5 | bhy. Since X7 1 b, we obtain X; | hq. It results
h1 identically zero, so that ¢ = 0, false.
b) ia = i1 + i3. From the relation (2.1), we have:

X fihy — X b = 0.

It results that X7 | r1b. Since X5 { b, we have r; identically zero, then d = 0,
false.
c) i3 > i1 + 3. It result X; | fir1, then f1 or r1 are identically zero, false.

ii) X1 td and X; | b. Let i4 be the greatest power such that b= X{*g;,
g1 € K[X1, ..., Xi]. We replace in the relations (2) and (3) and we obtain:

Xt fip — Xitldg, =0, (2.2)

X{2+i4glh1 + X{l df1 =0. (32)

a) If i1 < ig+io then X | dfy, there_for_e f1is identically zero, false.
b) i1 = 44 + 2. Then we have Xf”““flhl — X{“Hdgl = 0, therefore
X1 | dg1, so that g; is identically zero, false.



DIVISION ALGEBRAS 35

) i1 > 14 + 12, then X5 | g1hq, false.
ili) X7 | d and X7 | b. We replace in the relations (2) and (3) and we have:

X?Jrizflhl — X%3+i4+17“191 = 0, (23)

Xitiag py 4+ X0Fse £ =0, (3.3)

a) i1 + i3 < i4 + i2. Then X, | r1 f1, false.
b) i1 + i3 > i4 +i2. Then X7 | g1hq, false.
¢) i1+ i3 = iq + i2. We have:
c1) 91 +i2 > i3+ 44 + 1, then X, | r191, false.
CQ) i1+ 19 < i3+ 14 + 1, then Xy | fih1, false.
c3) i1 + 2 = i3 + 14 + 1. Since i1 + i3 = i4 + 12, we add this last two
relations and we have i1 + 2io + 14 = 2i3 + i1 + 14 + 1, false.

Then we have X1 | a or X3 | ¢. We suppose that X; | a or X1 { ¢. From
the relation (3), we have X5 | b, therefore X; | g. Let s1, s2 be the greatest
numbers such that X7* | f, X35> | g and X771 £, X2 4 g Then f = X' fy
and g = X72¢g1 with f1,g1 € K[X}, ..., X¢]. Replacing in the relation (2), we
obtain:

Xt fre— X2 dgy = 0. (2.4)

We have the cases:

1) 51 > s3 + 1. We have X | dgy then Xy [ 7,7 = X171, 71ek(x,,....x,]- We
replace in the relation (3) and we obtain:

XPgie+ X fi = 0. (3.4)

Then X; | gic therefore X7 | g1, so that g1 is identically zero, that means
b =0, false.

2) s1 < s3 + 1. From the relation (2.4), we have X; | fic, it results that
X1 | f1, then f is identically zero therefore a = 0, false.

3) s1 = s2 + 1. From the relation (3.4), we obtain X; | gic then g is
identically zero, therefore b = 0, false.

We obtain that U; is a division algebra.

Case 2.
For 7 = 2 we have Uy = Uy @ Uy with as = X5, vo = (0,1) € Us,
r =a+bvy, y =c+ dve, T =a — bvy and the multiplication

ry = ac — agdb + (b + da) vs.
If x,y are nonzero elements in U; such that zy = 0 we have

ac — Xadb =0 (4)
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and
be + da = 0. (5)

Like in Case 1, is obviously that a, b, ¢, d are nonzero elements. Let {u1, ua, ug, us}
be a basis in Us over F. Then, we can write:

4
a:ZfJ(Xla , Xi)uy, b—ZgJ X1, Xi)uy,
j=1
4 4
C:Zh’](Xla 7Xt)uj7 d*ZTJ(Xla 7Xt)uja
Jj=1 j=1

where the elements fj(Xh ...,Xt), gj(Xh ...,Xt), hj(Xl, ...,)(,5)7 Tj(Xl, ...,Xt)
belong in F. We remark that f;(X1,..., Xt), g;(X1, ..., X¢), hj (X1, ..., Xv),
r;(X1, ..., X¢) can be chosen in K[X1, ..., X;|. Wereplace the elements a, b, ¢,d in
the relation (4) and we obtain X» | ac.

Since Us is a division algebra, like in the Case 1, we have X3 | a or X3 | c.
We suppose that X5 | @ and X5 f c. It results that X5 | f; ,Vj = 1,4, therefore
fi= ngj’-. Since X5 | a and X { ¢, from the relation (5), we have X5 | b,
then Xo | ¢;,Vj = 1,4, and g; = X2gj. Let s1 be the greatest power of
X5 such that X3' | f; ,Vj = 1,4, and s2 be the greatest power of X5 such
that X5' | g;,Vj = 1,4. Therefore we have X35 | f;, Vj = 1,4, and there is
an index t; € {1 ,3,4} such that, X5'™" ¢ f£,. In the same way, we have
X5 19,Vi=14 and there is an mdex ty € {1,2,3,4} such that, X521 § f,,.
We replace in the relatlon (4) and we have the cases:

1) s1 > so+1. We simplify with X‘(’2+1 and we have that X» | r;,Vj = 1,4.
Replacing in the relation (5), we surnplify and, since Xy 1 ¢ 3¢5 such that
X3 f hyy. We have X5°™ | g;Vj = 1,4, then g; are identically zero for all
Jj€{1,2,3,4}, false.

2) s1 < s34+ 1. We simplify by X5, and we have X» | f;,Vj = 1,4, since
Xo 1 ¢, false.

3) s1 = s2+ 1. Replacing in the relation (5), we simplify with X352, and we
obtain that X» | g;,Vj = 1,4, since X 1 ¢, false.

Therefore Us is a division algebra.

Case i.
By the induction step, we suppose that U;_; is a division algebra. We
have U; = U;—1 ®U;_1, with a; = X;, v; = (0,1) € U;, x = a+bv;, y = c+dv;,
Z = a — bv; and the multiplication

ry = ac — o;db + (b + da) v;
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If x,y are nonzero elements in U; such that xy = 0, we have that

ac — X;db =0 (6)

and
be + da = 0. (7)

But a, b, ¢, d are nonzero elements, since  # 0 and y # 0.

Let {u1,usz,...,uq} be a basis in U;_1 over F,q = 2"~!. Then we can write:

q
a=> fi(X1,..X)u;, b= Zg] (X1, o0y X,
J=1 J=1

where the elements fj(XI; N )(,5)7 gj(Xh ceey Xt), hj(Xl, N )(,5)7 Tj(Xl, vy Xt)
belong to F. We remark that f;(X1,..., X¢), ¢;(X1, ..., X¢), b (X1, ..., Xp),
ri(X1,...,Xt) € K[X1,..., X¢]. Replacing the elements a,b, ¢,d in the relation
(6), we obtain X; | ac

Like in the Case 1., since U;_; is a division algebra, we have X; | a or
X; | c. We suppose that X; | a or X; t c. It results that X; | f; ,Vj =1,¢, and
fi = Xif}. Since X; | a or X; { ¢, by the relation (7), we have X; | g; ,Vj =
1,q, and g; = X;gj. Let s1 be the greatest power of X; such that X;' | f;,
Vj = 1,q, and sy be the greatest power of X; such that X | g;,Vj = 1,¢.
Then we have X} | f;, Vj = 1, ¢, and there is an index ¢; such that Xf”'l tf-
Analogously, Xf | g5, Vj= m, and there is an index t5 such that X 2™ { f;,.
Replacing in the relation (6) we have the cases:

1) s1 > so + 1. We simplify by szﬂ, and it results that X; | r;,Vj =1,¢.
Replacing in the relation (7), we simplify and, since X; 1 ¢, 3 t3 such that
X; { hiy. We have X.°*' | g;Vj = 1,q, then g; are identically zero for all
jel, ...t false.

2) 51 < s2 + 1. We simplify with X', and we have X; | f;,Vj = 1,¢q, since
X t ¢, false.

3) s1 = s2 + 1. Replacing in the relation (7), and simplify with X2, then
we have that X; | g;,Vj = 1,¢, since X; { ¢, false.

Therefore the algebra U; is a division algebra and, by Cayley-Dickson
process, dimU; = 24,1 < i < n.
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