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Division algebras with dimension 2t, t∈ N

Cristina Flaut

Abstract

In this paper we find a field such that the algebras obtained by the
Cayley-Dickson process are division algebras of dimension 2t,∀t ∈ N.

Subject Classification: 17D05; 17D99.

From Frobenius Theorem and from the remark given by Bott and Milnor
in 1958, we know that for n ∈ {1, 2, 4} we find the real division algebras
over the real field R. These are: R, C, H(the real quaternion algebra), O(the
real octonions algebra ). They are unitary and alternative algebras. In 1978,
Okubo gave an example of a division non alternative and non unitary real
algebra with dimension 8, namely the real pseudo-octonions algebra.(See[7]).
Here we find a field such that the algebras obtained by the Cayley-Dickson
process are division algebras of dimension 2t, ∀t ∈ N. First of all we describe
shortly the Cayley-Dickson process.

Definition 1. Let U be an arbitrary algebra. The vector spaces morphism
φ : U → U is called an involution of the algebra U if φ (φ (x)) = x and
φ (xy) = φ (y)φ (x) , ∀x, y ∈ U.

Let U be a arbitrary finite dimensional algebra with unity, 1 �= 0, with an
involution φ : U → U, φ (a) = a,where a+ a and aa belong in K · 1, for all a
in U . Let α ∈ K, be a non zero fixed element . Over the vector space U ⊕ U,
we define the multiplication:

(a1, a2) (b1, b2) =
(
a1b1 − αb2a2, a2b1 + b2a1

)
. (1)
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In this way we obtain an algebra structure over U ⊕ U. We denote the
obtained algebra by (U,α) and it is called the derivate algebra obtained
from the algebra U by Cayley-Dickson process. It is proved easily that
the algebra U is isomorphic with a subalgebra of the algebra (U,α), and
dim (U,α) = 2 dimU . We denote v = (0, 1) ∈ U and we obtain that v2 = −α·1,
then (U,α) = U ⊕ Uv. In the next, we denote the elements of the form α · 1
by α and each of these elements is in U .

Let x = a1 + a2v ∈ (U,α) . Denoting x = ā1 − a2v, we remark that
x+ x = a1 + a1 ∈ K · 1, xx = a1a1 + αa2a2 ∈ K · 1. The map:

ψ : (U,α) → (U,α) ψ (x) = x̄ ,

is an involution of the algebra (U,α), which extends the involution φ. If
x, y ∈ (U,α) , we have xy = y x.

For x ∈ U we denote t (x) = x+ x ∈ K, n (x) = xx ∈ K, and we call them
the trace, respectively the norm of the element x from U . If z ∈ (U,α) , so
that z = x+yv, then z+z = t (z) ·1 and zz = zz = n (z) ·1, where t (z) = t (x)
and n (z) = n (x) + αn(y) . From this, we have that (z + z) z=z2 + zz=z2 +
n (z) · 1, therefore

z2 − t (z) z + n (z) = 0, ∀z ∈ (U,α) ,

so that each algebra obtained by the Cayley-Dickson process is a quadratic
algebra. We remark that all algebras obtained by this process are flexible
and power-associative algebras.

If in the Cayley-Dickson process we take U = K, charK �= 2 and the
involution ψ(x) = x, we obtain at the step t an algebra of dimension 2t.

At the step 0, we obtaine the field K. This algebra has dimension 1.
At the step 1, we obtaine K (α) = (K,α) , α �= 0. This algebra has dimen-

sion 2. If the polynomial X2 + α is irreducible over K , then K (α) is a field,
otherwise K (α) = K ⊕K and it is a non division algebra.

At the step 2, we obtaine H (α, β)=(K (α) , β) , β �= 0, the generalized
quaternion algebra. This algebra has dimension 4. This is an associative
algebra, but it is not a commutative algebra.

At the step 3, we obtaine O (α, β, γ) = (H (α, β) , γ) , γ �= 0, the generalized
octonion algebra or the Cayley-Dickson algebra. This algebra has dimension
8. This algebra is alternative(i.e. x2y = x(xy) and yx2 = (yx)x) but it is a
non associative and non commutative algebra.

At the step 3, we obtain the generalized sedenion algebra, which is a non-
alternative algebra, but it is a flexible and power-associative algebra. This
algebra has dimension 16.
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Definition 2. Let U be an arbitrary algebra over the field K. U is called
a division algebra if and only if U �= 0 and the equations:

ax = b, ya = b, ∀a, b ∈ U, a �= 0,

have unique solutions in U .

From the beginning, we remark that if we started from a finite field, K, we
don’t obtained a division algebra, for any step of the Cayley-Dickson process.
Indeed, we find the quaternion algebra. This algebra is always an associative
and non commutative algebra. If this algebra is a division algebra it became a
finite field. By Wedderburn’s theorem, this field is a commutative field, false.
Then we put the problem if we get the division algebra for all steps of the
Cayley-Dickson process. If the field K is infinite, the answer is positive and
we show that in the next.

Remark 3. If an algebra U is a finite dimensional algebra, then U is a
division algebra if and only if from the relation xy = 0 it results that x or y
must be zero.

Let X1, X2, ..., Xt be t algebraically independent elements over K. For
i ∈ {1, 2, ..., t} we build the algebra Ui over the field F = K (X1, X2, ..., Xt)
putting αj = Xj with j = 1, t . Let U0 = F and the involution ψ(x) = x. We
prove by induction on i that Ui is a division algebra for i=1, t.

Case 1.
For j = 1 we have U1 = U0 ⊕ U0 with α1 = X1, v1 = (0, 1) ∈ U1,

x = a+ bv1, y = c+ dv1, x = a− bv1 and the multiplication

xy = ac− α1db+ (bc+ da) v1.

If x, y are nonzero elements in U1 such that xy = 0 we have

ac−X1db = 0 (2)

and
bc+ da = 0. (3)

Since a, b, c, d are in F , from the relations (2) and (3), we have that a, b, c, d
are non identically zero elements. Indeed, since x �= 0 and y �= 0 we have the
possibilities:

i) a = c = 0 and b, d �= 0 ⇒ b = d = 0, false.
ii) a = d = 0 and b, c �= 0 ⇒ b = c = 0, false.
iii) b = c = 0 and a, d �= 0 ⇒ a = d = 0, false.
iv) b = d = 0 and a, c �= 0 ⇒ a = c = 0, false.
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These have the form:

a = f(X1, ..., Xt), b = g(X1, ..., Xt),

c = h(X1, ..., Xt), d = r(X1, ..., Xt), f, g, h, r ∈ F

Since we can multiply the relations (2) and (3) with the great common
divisor of denominators of f, g, h, r, we may suppose that f, g, h, r are in
K[X1, ..., Xt]. Replacing the elements a, b, c, d in the relation (2), we have:
x1 | f or x1 | h.

That means X1 | ac. It results X1 | a or X1 | c or X1 | a and X1 | c.
If X1 | a and X1 | c let i1, i2 be the greatest powers such that a = X i1

1 f1,
c = X i1

1 h2, f1, h1 ∈ K[X1, ..., Xt]. We replace in the relation (2), and we have:

X i1+i2
1 f1h1 −X1db = 0.

Since i1 + i2 ≥ 2, we obtain that X1 | db. We have the possibilities:

i) X1 | d and X1 � b. It results that there is a great power i3 such that
d = X i3

1 r1, r1 ∈ K[X1, ..., Xt]. We replace in the relations (2) and (3) and we
obtain:

X i1+i2
1 f1h1 −X i3+1

1 r1b = 0, (2.1)

bX i2
1 h1 +X i1+i3

1 f1r1 = 0. (3.1)

a) If i2 < i1 + i3 then X1 | bh1. Since X1 � b, we obtain X1 | h1. It results
h1 identically zero, so that c = 0, false.

b) i2 = i1 + i3. From the relation (2.1), we have:

X2i1+i3
1 f1h1 −X i3+1

1 r1b = 0.

It results that X1 | r1b. Since X1 � b, we have r1 identically zero, then d = 0,
false.

c) i2 > i1 + i3. It result X1 | f1r1, then f1 or r1 are identically zero, false.

ii) X1 � d and X1 | b. Let i4 be the greatest power such that b = X i4
1 g1,

g1 ∈ K[X1, ..., Xt]. We replace in the relations (2) and (3) and we obtain:

X i1+i2
1 f1h1 −X i4+1

1 dg1 = 0, (2.2)

X i2+i4
1 g1h1 +X i1

1 df1 = 0. (3.2)

a) If i1 < i4 + i2 then X1 | df1, therefore f1 is identically zero, false.
b) i1 = i4 + i2. Then we have X2i2+i4

1 f1h1 − X i4+1
1 dg1 = 0, therefore

X1 | dg1, so that g1 is identically zero, false.
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c) i1 > i4 + i2, then X1 | g1h1, false.

iii) X1 | d and X1 | b. We replace in the relations (2) and (3) and we have:

X i1+i2
1 f1h1 −X i3+i4+1

1 r1g1 = 0, (2.3)

X i2+i4
1 g1h1 +X i1+i3

1 r1f1 = 0. (3.3)

a) i1 + i3 < i4 + i2. Then X1 | r1f1, false.
b) i1 + i3 > i4 + i2. Then X1 | g1h1, false.
c) i1 + i3 = i4 + i2. We have:
c1) i1 + i2 > i3 + i4 + 1, then X1 | r1g1, false.
c2) i1 + i2 < i3 + i4 + 1, then X1 | f1h1, false.
c3) i1 + i2 = i3 + i4 + 1. Since i1 + i3 = i4 + i2, we add this last two

relations and we have i1 + 2i2 + i4 = 2i3 + i1 + i4 + 1, false.

Then we have X1 | a or X1 | c. We suppose that X1 | a or X1 � c. From
the relation (3), we have X1 | b, therefore X1 | g. Let s1, s2 be the greatest
numbers such that Xs1

1 | f,Xs2
2 | g and Xs1+1

1 � f,Xs2+1
1 � g. Then f = Xs1

1 f1
and g = Xs2

1 g1 with f1, g1 ∈ K[X1, ..., Xt]. Replacing in the relation (2), we
obtain:

Xs1
1 f1c−Xs2+1

1 dg1 = 0. (2.4)

We have the cases:
1) s1 > s2 + 1. We have X1 | dg1 then X1 | r, r = X1r1, r1∈K[X1,...,Xt]. We

replace in the relation (3) and we obtain:

Xs2
1 g1c+Xs1+1

1 r1f1 = 0. (3.4)

Then X1 | g1c therefore X1 | g1, so that g1 is identically zero, that means
b = 0, false.

2) s1 < s2 + 1. From the relation (2.4), we have X1 | f1c, it results that
X1 | f1, then f1 is identically zero therefore a = 0, false.

3) s1 = s2 + 1. From the relation (3.4), we obtain X1 | g1c then g1 is
identically zero, therefore b = 0, false.

We obtain that U1 is a division algebra.

Case 2.
For j = 2 we have U2 = U1 ⊕ U1 with α2 = X2, v2 = (0, 1) ∈ U2,

x = a+ bv2, y = c+ dv2, x̄ = ā− bv2 and the multiplication

xy = ac− α2d̄b+ (bc̄+ da) v2.

If x, y are nonzero elements in U2 such that xy = 0 we have

ac−X2d̄b = 0 (4)
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and
bc̄+ da = 0. (5)

Like in Case 1, is obviously that a, b, c, d are nonzero elements. Let {u1, u2, u3, u4}
be a basis in U2 over F. Then, we can write:

a =
4∑

j=1

fj(X1, ..., Xt)uj, b =
4∑

j=1

gj(X1, ..., Xt)uj ,

c =
4∑

j=1

hj(X1, ..., Xt)uj , d =
4∑

j=1

rj(X1, ..., Xt)uj ,

where the elements fj(X1, ..., Xt), gj(X1, ..., Xt), hj(X1, ..., Xt), rj(X1, ..., Xt)
belong in F. We remark that fj(X1, ..., Xt), gj(X1, ..., Xt), hj(X1, ..., Xt),
rj(X1, ..., Xt) can be chosen inK[X1, ..., Xt]. We replace the elements a, b, c, d in
the relation (4) and we obtain X2 | ac.

Since U1 is a division algebra, like in the Case 1, we have X2 | a or X2 | c.
We suppose that X2 | a and X2 � c. It results that X2 | fj , ∀j = 1, 4, therefore
fj = X2f

′
j . Since X2 | a and X2 � c, from the relation (5) , we have X2 | b,

then X2 | gj , ∀j = 1, 4, and gj = X2g
′
j. Let s1 be the greatest power of

X2 such that Xs1
2 | fj , ∀j = 1, 4, and s2 be the greatest power of X2 such

that Xs1
2 | gj , ∀j = 1, 4. Therefore we have Xs

2 | fj, ∀j = 1, 4, and there is
an index t1 ∈ {1, 2, 3, 4} such that, Xs1+1

2 � ft1 . In the same way, we have
Xs

2 | gj, ∀j = 1, 4, and there is an index t2 ∈ {1, 2, 3, 4} such that, Xs2+1
2 � ft2 .

We replace in the relation (4) and we have the cases:

1) s1 > s2+1. We simplify with Xs2+1
2 , and we have that X2 | rj , ∀j = 1, 4.

Replacing in the relation (5) , we simplify and, since X2 � c ∃ t3 such that
X2 � ht3 . We have Xs2+1

2 | gj,∀j = 1, 4, then gj are identically zero for all
j ∈ {1, 2, 3, 4} , false.

2) s1 < s2 + 1. We simplify by Xs1
2 , and we have X2 | fj, ∀j = 1, 4, since

X2 � c, false.
3) s1 = s2 + 1. Replacing in the relation (5), we simplify with Xs2

2 , and we
obtain that X2 | gj , ∀j = 1, 4, since X2 � c, false.

Therefore U2 is a division algebra.

Case i.
By the induction step, we suppose that Ui−1 is a division algebra. We

have Ui = Ui−1⊕Ui−1, with αi = Xi, vi = (0, 1) ∈ Ui, x = a+bvi, y = c+dvi,
x̄ = ā− bvi and the multiplication

xy = ac− αid̄b+ (bc̄+ da) vi.
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If x, y are nonzero elements in Ui such that xy = 0, we have that

ac−Xid̄b = 0 (6)

and
bc̄+ da = 0. (7)

But a, b, c, d are nonzero elements, since x �= 0 and y �= 0.

Let {u1, u2, ..., uq} be a basis in Ui−1 over F, q = 2i−1. Then we can write:

a =
q∑

j=1

fj(X1, ..., Xt)uj , b =
q∑

j=1

gj(X1, ..., Xt)uj,

c =
q∑

j=1

hj(X1, ..., Xt)uj , d =
q∑

j=1

rj(X1, ..., Xt)uj ,

where the elements fj(X1, ..., Xt), gj(X1, ..., Xt), hj(X1, ..., Xt), rj(X1, ..., Xt)
belong to F. We remark that fj(X1, ..., Xt), gj(X1, ..., Xt), hj(X1, ..., Xt),
rj(X1, ..., Xt) ∈ K[X1, ..., Xt]. Replacing the elements a, b, c, d in the relation
(6), we obtain Xi | ac

Like in the Case 1., since Ui−1 is a division algebra, we have Xi | a or
Xi | c. We suppose that Xi | a or Xi � c. It results that Xi | fj , ∀j = 1, q, and
fj = Xif

′
j. Since Xi | a or Xi � c, by the relation (7) , we have Xi | gj , ∀j =

1, q, and gj = Xig
′
j. Let s1 be the greatest power of Xi such that Xs1

i | fj ,

∀j = 1, q, and s2 be the greatest power of Xi such that Xs2
i | gj , ∀j = 1, q.

Then we haveXs
i | fj , ∀j = 1, q, and there is an index t1 such that Xs1+1

i � ft1 .
Analogously, Xs

i | gj , ∀j = 1, q, and there is an index t2 such that Xs2+1
i � ft2 .

Replacing in the relation (6) we have the cases:

1) s1 > s2 + 1. We simplify by Xs2+1
i , and it results that Xi | rj , ∀j = 1, q.

Replacing in the relation (7) , we simplify and, since Xi � c, ∃ t3 such that
Xi � ht3 . We have Xs2+1

i | gj,∀j = 1, q, then gj are identically zero for all
j ∈ 1, ..., t, false.

2) s1 < s2 + 1. We simplify with Xs1
i , and we have Xi | fj , ∀j = 1, q, since

Xi � c, false.
3) s1 = s2 + 1. Replacing in the relation (7), and simplify with Xs2

i , then
we have that Xi | gj, ∀j = 1, q, since Xi � c, false.

Therefore the algebra Ui is a division algebra and, by Cayley-Dickson
process, dimUi = 2i, 1 ≤ i ≤ n.
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