Division algebras with dimension $2^{t}, \mathbf{t} \in \mathbb{N}$

Cristina Flaut

Abstract

In this paper we find a field such that the algebras obtained by the Cayley-Dickson process are division algebras of dimension $2^{t}, \forall t \in \mathbb{N}$.

Subject Classification: 17D05; 17D99.

From Frobenius Theorem and from the remark given by Bott and Milnor in 1958, we know that for $n \in\{1,2,4\}$ we find the real division algebras over the real field \mathbb{R}. These are: $\mathbb{R}, \mathbb{C}, \mathbb{H}$ (the real quaternion algebra), \mathbb{O} (the real octonions algebra). They are unitary and alternative algebras. In 1978, Okubo gave an example of a division non alternative and non unitary real algebra with dimension 8, namely the real pseudo-octonions algebra.(See[7]). Here we find a field such that the algebras obtained by the Cayley-Dickson process are division algebras of dimension $2^{t}, \forall t \in \mathbb{N}$. First of all we describe shortly the Cayley-Dickson process.

Definition 1. Let U be an arbitrary algebra. The vector spaces morphism $\phi: U \rightarrow U$ is called an involution of the algebra U if $\phi(\phi(x))=x$ and $\phi(x y)=\phi(y) \phi(x), \forall x, y \in U$.

Let U be a arbitrary finite dimensional algebra with unity, $1 \neq 0$, with an involution $\quad \phi: U \rightarrow U, \phi(a)=\bar{a}$, where $a+\bar{a}$ and $a \bar{a}$ belong in $K \cdot 1$, for all a in U. Let $\alpha \in K$, be a non zero fixed element. Over the vector space $U \oplus U$, we define the multiplication:

$$
\begin{equation*}
\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(a_{1} b_{1}-\alpha \overline{b_{2}} a_{2}, a_{2} \overline{b_{1}}+b_{2} a_{1}\right) \tag{1}
\end{equation*}
$$

[^0]In this way we obtain an algebra structure over $U \oplus U$. We denote the obtained algebra by (U, α) and it is called the derivate algebra obtained from the algebra U by Cayley-Dickson process. It is proved easily that the algebra U is isomorphic with a subalgebra of the algebra (U, α), and $\operatorname{dim}(U, \alpha)=2 \operatorname{dim} U$. We denote $v=(0,1) \in U$ and we obtain that $v^{2}=-\alpha \cdot 1$, then $(U, \alpha)=U \oplus U v$. In the next, we denote the elements of the form $\alpha \cdot 1$ by α and each of these elements is in U.

Let $x=a_{1}+a_{2} v \in(U, \alpha)$. Denoting $\bar{x}=\bar{a}_{1}-a_{2} v$, we remark that $x+\bar{x}=a_{1}+\overline{a_{1}} \in K \cdot 1, x \bar{x}=a_{1} \overline{a_{1}}+\alpha a_{2} \overline{a_{2}} \in K \cdot 1$. The map:

$$
\psi:(U, \alpha) \rightarrow(U, \alpha) \quad \psi(x)=\bar{x}
$$

is an involution of the algebra (U, α), which extends the involution ϕ. If $x, y \in(U, \alpha)$, we have $\overline{x y}=\bar{y} \bar{x}$.

For $x \in U$ we denote $t(x)=x+\bar{x} \in K, n(x)=x \bar{x} \in K$, and we call them the trace, respectively the norm of the element x from U. If $z \in(U, \alpha)$, so that $z=x+y v$, then $z+\bar{z}=t(z) \cdot 1$ and $z \bar{z}=\bar{z} z=n(z) \cdot 1$, where $t(z)=t(x)$ and $n(z)=n(x)+\alpha n(y)$. From this, we have that $(z+\bar{z}) z=z^{2}+\bar{z} z=z^{2}+$ $n(z) \cdot 1$, therefore

$$
z^{2}-t(z) z+n(z)=0, \forall z \in(U, \alpha),
$$

so that each algebra obtained by the Cayley-Dickson process is a quadratic algebra. We remark that all algebras obtained by this process are flexible and power-associative algebras.

If in the Cayley-Dickson process we take $U=K$, char $K \neq 2$ and the involution $\psi(x)=x$, we obtain at the step t an algebra of dimension 2^{t}.

At the step 0 , we obtaine the field K. This algebra has dimension 1 .
At the step 1 , we obtaine $\mathbb{K}(\alpha)=(K, \alpha), \alpha \neq 0$. This algebra has dimension 2. If the polynomial $X^{2}+\alpha$ is irreducible over K, then $\mathbb{K}(\alpha)$ is a field, otherwise $\mathbb{K}(\alpha)=K \oplus K$ and it is a non division algebra.

At the step 2 , we obtaine $\mathbb{H}(\alpha, \beta)=(\mathbb{K}(\alpha), \beta), \beta \neq 0$, the generalized quaternion algebra. This algebra has dimension 4. This is an associative algebra, but it is not a commutative algebra.

At the step 3 , we obtaine $\mathbb{O}(\alpha, \beta, \gamma)=(\mathbb{H}(\alpha, \beta), \gamma), \gamma \neq 0$, the generalized octonion algebra or the Cayley-Dickson algebra. This algebra has dimension 8. This algebra is alternative(i.e. $x^{2} y=x(x y)$ and $\left.y x^{2}=(y x) x\right)$ but it is a non associative and non commutative algebra.

At the step 3, we obtain the generalized sedenion algebra, which is a nonalternative algebra, but it is a flexible and power-associative algebra. This algebra has dimension 16 .

Definition 2. Let U be an arbitrary algebra over the field $K . U$ is called a division algebra if and only if $U \neq 0$ and the equations:

$$
a x=b, y a=b, \forall a, b \in U, a \neq 0
$$

have unique solutions in U.
From the beginning, we remark that if we started from a finite field, K, we don't obtained a division algebra, for any step of the Cayley-Dickson process. Indeed, we find the quaternion algebra. This algebra is always an associative and non commutative algebra. If this algebra is a division algebra it became a finite field. By Wedderburn's theorem, this field is a commutative field, false. Then we put the problem if we get the division algebra for all steps of the Cayley-Dickson process. If the field K is infinite, the answer is positive and we show that in the next.

Remark 3. If an algebra U is a finite dimensional algebra, then U is a division algebra if and only if from the relation $x y=0$ it results that x or y must be zero.

Let $X_{1}, X_{2}, \ldots, X_{t}$ be t algebraically independent elements over K. For $i \in\{1,2, \ldots, t\}$ we build the algebra U_{i} over the field $F=K\left(X_{1}, X_{2}, \ldots, X_{t}\right)$ putting $\alpha_{j}=X_{j}$ with $j=\overline{1, t}$. Let $U_{0}=F$ and the involution $\psi(x)=x$. We prove by induction on i that U_{i} is a division algebra for $i=\overline{1, t}$.

Case 1.

For $j=1$ we have $U_{1}=U_{0} \oplus U_{0}$ with $\alpha_{1}=X_{1}, v_{1}=(0,1) \in U_{1}$, $x=a+b v_{1}, y=c+d v_{1}, \bar{x}=a-b v_{1}$ and the multiplication

$$
x y=a c-\alpha_{1} d b+(b c+d a) v_{1} .
$$

If x, y are nonzero elements in U_{1} such that $x y=0$ we have

$$
\begin{equation*}
a c-X_{1} d b=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
b c+d a=0 . \tag{3}
\end{equation*}
$$

Since a, b, c, d are in F, from the relations (2) and (3), we have that a, b, c, d are non identically zero elements. Indeed, since $x \neq 0$ and $y \neq 0$ we have the possibilities:
i) $a=c=0$ and $b, d \neq 0 \Rightarrow b=d=0$, false.
ii) $a=d=0$ and $b, c \neq 0 \Rightarrow b=c=0$, false.
iii) $b=c=0$ and $a, d \neq 0 \Rightarrow a=d=0$, false.
iv) $b=d=0$ and $a, c \neq 0 \Rightarrow a=c=0$, false.

These have the form:

$$
\begin{gathered}
a=f\left(X_{1}, \ldots, X_{t}\right), \quad b=g\left(X_{1}, \ldots, X_{t}\right), \\
c=h\left(X_{1}, \ldots, X_{t}\right), d=r\left(X_{1}, \ldots, X_{t}\right), f, g, h, r \in F
\end{gathered}
$$

Since we can multiply the relations (2) and (3) with the great common divisor of denominators of f, g, h, r, we may suppose that f, g, h, r are in $K\left[X_{1}, \ldots, X_{t}\right]$. Replacing the elements a, b, c, d in the relation (2), we have: $x_{1} \mid f$ or $x_{1} \mid h$.

That means $X_{1} \mid a c$. It results $X_{1} \mid a$ or $X_{1} \mid c$ or $X_{1} \mid a$ and $X_{1} \mid c$.
If $X_{1} \mid a$ and $X_{1} \mid c$ let i_{1}, i_{2} be the greatest powers such that $a=X_{1}^{i_{1}} f_{1}$, $c=X_{1}^{i_{1}} h_{2}, f_{1}, h_{1} \in K\left[X_{1}, \ldots, X_{t}\right]$. We replace in the relation (2), and we have:

$$
X_{1}^{i_{1}+i_{2}} f_{1} h_{1}-X_{1} d b=0
$$

Since $i_{1}+i_{2} \geq 2$, we obtain that $X_{1} \mid d b$. We have the possibilities:
i) $X_{1} \mid d$ and $X_{1} \nmid b$. It results that there is a great power i_{3} such that $d=X_{1}^{i_{3}} r_{1}, r_{1} \in K\left[X_{1}, \ldots, X_{t}\right]$. We replace in the relations (2) and (3) and we obtain:

$$
\begin{gather*}
X_{1}^{i_{1}+i_{2}} f_{1} h_{1}-X_{1}^{i_{3}+1} r_{1} b=0 \tag{2.1}\\
b X_{1}^{i_{2}} h_{1}+X_{1}^{i_{1}+i_{3}} f_{1} r_{1}=0 \tag{3.1}
\end{gather*}
$$

a) If $i_{2}<i_{1}+i_{3}$ then $X_{1} \mid b h_{1}$. Since $X_{1} \nmid b$, we obtain $X_{1} \mid h_{1}$. It results h_{1} identically zero, so that $c=0$, false.
b) $i_{2}=i_{1}+i_{3}$. From the relation (2.1), we have:

$$
X_{1}^{2 i_{1}+i_{3}} f_{1} h_{1}-X_{1}^{i_{3}+1} r_{1} b=0
$$

It results that $X_{1} \mid r_{1} b$. Since $X_{1} \nmid b$, we have r_{1} identically zero, then $d=0$, false.
c) $i_{2}>i_{1}+i_{3}$. It result $X_{1} \mid f_{1} r_{1}$, then f_{1} or r_{1} are identically zero, false.
ii) $X_{1} \nmid d$ and $X_{1} \mid b$. Let i_{4} be the greatest power such that $b=X_{1}^{i_{4}} g_{1}$, $g_{1} \in K\left[X_{1}, \ldots, X_{t}\right]$. We replace in the relations (2) and (3) and we obtain:

$$
\begin{gather*}
X_{1}^{i_{1}+i_{2}} f_{1} h_{1}-X_{1}^{i_{4}+1} d g_{1}=0 \tag{2.2}\\
X_{1}^{i_{2}+i_{4}} g_{1} h_{1}+X_{1}^{i_{1}} d f_{1}=0 \tag{3.2}
\end{gather*}
$$

a) If $i_{1}<i_{4}+i_{2}$ then $X_{1} \mid d f_{1}$, therefore f_{1} is identically zero, false.
b) $i_{1}=i_{4}+i_{2}$. Then we have $X_{1}^{2 i_{2}+i_{4}} f_{1} h_{1}-X_{1}^{i_{4}+1} d g_{1}=0$, therefore $X_{1} \mid d g_{1}$, so that g_{1} is identically zero, false.
c) $i_{1}>i_{4}+i_{2}$, then $X_{1} \mid g_{1} h_{1}$, false.
iii) $X_{1} \mid d$ and $X_{1} \mid b$. We replace in the relations (2) and (3) and we have:

$$
\begin{gather*}
X_{1}^{i_{1}+i_{2}} f_{1} h_{1}-X_{1}^{i_{3}+i_{4}+1} r_{1} g_{1}=0 \tag{2.3}\\
X_{1}^{i_{2}+i_{4}} g_{1} h_{1}+X_{1}^{i_{1}+i_{3}} r_{1} f_{1}=0 \tag{3.3}
\end{gather*}
$$

a) $i_{1}+i_{3}<i_{4}+i_{2}$. Then $X_{1} \mid r_{1} f_{1}$, false.
b) $i_{1}+i_{3}>i_{4}+i_{2}$. Then $X_{1} \mid g_{1} h_{1}$, false.
c) $i_{1}+i_{3}=i_{4}+i_{2}$. We have:
$\left.c_{1}\right) i_{1}+i_{2}>i_{3}+i_{4}+1$, then $X_{1} \mid r_{1} g_{1}$, false.
$\left.c_{2}\right) i_{1}+i_{2}<i_{3}+i_{4}+1$, then $X_{1} \mid f_{1} h_{1}$, false.
$\left.c_{3}\right) i_{1}+i_{2}=i_{3}+i_{4}+1$. Since $i_{1}+i_{3}=i_{4}+i_{2}$, we add this last two relations and we have $i_{1}+2 i_{2}+i_{4}=2 i_{3}+i_{1}+i_{4}+1$, false.

Then we have $X_{1} \mid a$ or $X_{1} \mid c$. We suppose that $X_{1} \mid a$ or $X_{1} \nmid c$. From the relation (3), we have $X_{1} \mid b$, therefore $X_{1} \mid g$. Let s_{1}, s_{2} be the greatest numbers such that $X_{1}^{s_{1}}\left|f, X_{2}^{s_{2}}\right| g$ and $X_{1}^{s_{1}+1} \nmid f, X_{1}^{s_{2}+1} \nmid g$. Then $f=X_{1}^{s_{1}} f_{1}$ and $g=X_{1}^{s_{2}} g_{1}$ with $f_{1}, g_{1} \in K\left[X_{1}, \ldots, X_{t}\right]$. Replacing in the relation (2), we obtain:

$$
\begin{equation*}
X_{1}^{s_{1}} f_{1} c-X_{1}^{s_{2}+1} d g_{1}=0 \tag{2.4}
\end{equation*}
$$

We have the cases:

1) $s_{1}>s_{2}+1$. We have $X_{1} \mid d g_{1}$ then $X_{1} \mid r, r=X_{1} r_{1}, r_{1 \in K\left[X_{1}, \ldots, X_{t}\right]}$. We replace in the relation (3) and we obtain:

$$
\begin{equation*}
X_{1}^{s_{2}} g_{1} c+X_{1}^{s_{1}+1} r_{1} f_{1}=0 \tag{3.4}
\end{equation*}
$$

Then $X_{1} \mid g_{1} c$ therefore $X_{1} \mid g_{1}$, so that g_{1} is identically zero, that means $b=0$, false.
2) $s_{1}<s_{2}+1$. From the relation (2.4), we have $X_{1} \mid f_{1} c$, it results that $X_{1} \mid f_{1}$, then f_{1} is identically zero therefore $a=0$, false.
3) $s_{1}=s_{2}+1$. From the relation (3.4), we obtain $X_{1} \mid g_{1} c$ then g_{1} is identically zero, therefore $b=0$, false.

We obtain that U_{1} is a division algebra.
Case 2.
For $j=2$ we have $U_{2}=U_{1} \oplus U_{1}$ with $\alpha_{2}=X_{2}, v_{2}=(0,1) \in U_{2}$, $x=a+b v_{2}, y=c+d v_{2}, \bar{x}=\bar{a}-b v_{2}$ and the multiplication

$$
x y=a c-\alpha_{2} \bar{d} b+(b \bar{c}+d a) v_{2} .
$$

If x, y are nonzero elements in U_{2} such that $x y=0$ we have

$$
\begin{equation*}
a c-X_{2} \bar{d} b=0 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
b \bar{c}+d a=0 . \tag{5}
\end{equation*}
$$

Like in Case 1 , is obviously that a, b, c, d are nonzero elements. Let $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be a basis in U_{2} over F. Then, we can write:

$$
\begin{aligned}
& a=\sum_{j=1}^{4} f_{j}\left(X_{1}, \ldots, X_{t}\right) u_{j}, \quad b=\sum_{j=1}^{4} g_{j}\left(X_{1}, \ldots, X_{t}\right) u_{j}, \\
& c=\sum_{j=1}^{4} h_{j}\left(X_{1}, \ldots, X_{t}\right) u_{j}, d=\sum_{j=1}^{4} r_{j}\left(X_{1}, \ldots, X_{t}\right) u_{j},
\end{aligned}
$$

where the elements $f_{j}\left(X_{1}, \ldots, X_{t}\right), g_{j}\left(X_{1}, \ldots, X_{t}\right), h_{j}\left(X_{1}, \ldots, X_{t}\right), r_{j}\left(X_{1}, \ldots, X_{t}\right)$ belong in F. We remark that $f_{j}\left(X_{1}, \ldots, X_{t}\right), g_{j}\left(X_{1}, \ldots, X_{t}\right), h_{j}\left(X_{1}, \ldots, X_{t}\right)$, $r_{j}\left(X_{1}, \ldots, X_{t}\right)$ can be chosen in $K\left[X_{1}, \ldots, X_{t}\right]$. We replace the elements a, b, c, d in the relation (4) and we obtain $X_{2} \mid a c$.

Since U_{1} is a division algebra, like in the Case 1, we have $X_{2} \mid a$ or $X_{2} \mid c$. We suppose that $X_{2} \mid a$ and $X_{2} \nmid c$. It results that $X_{2} \mid f_{j}, \forall j=\overline{1,4}$, therefore $f_{j}=X_{2} f_{j}^{\prime}$. Since $X_{2} \mid a$ and $X_{2} \nmid c$, from the relation (5), we have $X_{2} \mid b$, then $X_{2} \mid g_{j}, \forall j=\overline{1,4}$, and $g_{j}=X_{2} g_{j}^{\prime}$. Let s_{1} be the greatest power of X_{2} such that $X_{2}^{s_{1}} \mid f_{j}, \forall j=\overline{1,4}$, and s_{2} be the greatest power of X_{2} such that $X_{2}^{s_{1}} \mid g_{j}, \forall j=\overline{1,4}$. Therefore we have $X_{2}^{s} \mid f_{j}, \forall j=\overline{1,4}$, and there is an index $t_{1} \in\{1,2,3,4\}$ such that, $X_{2}^{s_{1}+1} \nmid f_{t_{1}}$. In the same way, we have $X_{2}^{s} \mid g_{j}, \forall j=\overline{1,4}$, and there is an index $t_{2} \in\{1,2,3,4\}$ such that, $X_{2}^{s_{2}+1} \nmid f_{t_{2}}$. We replace in the relation (4) and we have the cases:

1) $s_{1}>s_{2}+1$. We simplify with $X_{2}^{s_{2}+1}$, and we have that $X_{2} \mid r_{j}, \forall j=\overline{1,4}$. Replacing in the relation (5), we simplify and, since $X_{2} \nmid c \exists t_{3}$ such that $X_{2} \nmid h_{t_{3}}$. We have $X_{2}^{s_{2+1}} \mid g_{j}, \forall j=\overline{1,4}$, then g_{j} are identically zero for all $j \in\{1,2,3,4\}$, false.
2) $s_{1}<s_{2}+1$. We simplify by $X_{2}^{s_{1}}$, and we have $X_{2} \mid f_{j}, \forall j=\overline{1,4}$, since $X_{2} \nmid c$, false.
3) $s_{1}=s_{2}+1$. Replacing in the relation (5), we simplify with $X_{2}^{s_{2}}$, and we obtain that $X_{2} \mid g_{j}, \forall j=\overline{1,4}$, since $X_{2} \nmid c$, false.

Therefore U_{2} is a division algebra.

Case i.

By the induction step, we suppose that U_{i-1} is a division algebra. We have $U_{i}=U_{i-1} \oplus U_{i-1}$, with $\alpha_{i}=X_{i}, v_{i}=(0,1) \in U_{i}, x=a+b v_{i}, y=c+d v_{i}$, $\bar{x}=\bar{a}-b v_{i}$ and the multiplication

$$
x y=a c-\alpha_{i} \bar{d} b+(b \bar{c}+d a) v_{i} .
$$

If x, y are nonzero elements in U_{i} such that $x y=0$, we have that

$$
\begin{equation*}
a c-X_{i} \bar{d} b=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
b \bar{c}+d a=0 . \tag{7}
\end{equation*}
$$

But a, b, c, d are nonzero elements, since $x \neq 0$ and $y \neq 0$.
Let $\left\{u_{1}, u_{2}, \ldots, u_{q}\right\}$ be a basis in U_{i-1} over $F, q=2^{i-1}$. Then we can write:

$$
\begin{aligned}
& a=\sum_{j=1}^{q} f_{j}\left(X_{1}, \ldots, X_{t}\right) u_{j}, \quad b=\sum_{j=1}^{q} g_{j}\left(X_{1}, \ldots, X_{t}\right) u_{j}, \\
& c=\sum_{j=1}^{q} h_{j}\left(X_{1}, \ldots, X_{t}\right) u_{j}, d=\sum_{j=1}^{q} r_{j}\left(X_{1}, \ldots, X_{t}\right) u_{j},
\end{aligned}
$$

where the elements $f_{j}\left(X_{1}, \ldots, X_{t}\right), g_{j}\left(X_{1}, \ldots, X_{t}\right), h_{j}\left(X_{1}, \ldots, X_{t}\right), r_{j}\left(X_{1}, \ldots, X_{t}\right)$ belong to F. We remark that $f_{j}\left(X_{1}, \ldots, X_{t}\right), g_{j}\left(X_{1}, \ldots, X_{t}\right), h_{j}\left(X_{1}, \ldots, X_{t}\right)$, $r_{j}\left(X_{1}, \ldots, X_{t}\right) \in K\left[X_{1}, \ldots, X_{t}\right]$. Replacing the elements a, b, c, d in the relation (6), we obtain $X_{i} \mid a c$

Like in the Case 1., since U_{i-1} is a division algebra, we have $X_{i} \mid a$ or $X_{i} \mid c$. We suppose that $X_{i} \mid a$ or $X_{i} \nmid c$. It results that $X_{i} \mid f_{j}, \forall j=\overline{1, q}$, and $f_{j}=X_{i} f_{j}^{\prime}$. Since $X_{i} \mid a$ or $X_{i} \nmid c$, by the relation (7), we have $X_{i} \mid g_{j}, \forall j=$ $\overline{1, q}$, and $g_{j}=X_{i} g_{j}^{\prime}$. Let s_{1} be the greatest power of X_{i} such that $X_{i}^{s_{1}} \mid f_{j}$, $\forall j=\overline{1, q}$, and s_{2} be the greatest power of X_{i} such that $X_{i}^{s_{2}} \mid g_{j}, \forall j=\overline{1, q}$. Then we have $X_{i}^{s} \mid f_{j}, \forall j=\overline{1, q}$, and there is an index t_{1} such that $X_{i}^{s_{1}+1} \nmid f_{t_{1}}$. Analogously, $X_{i}^{s} \mid g_{j}, \forall j=\overline{1, q}$, and there is an index t_{2} such that $X_{i}^{s_{2}+1} \nmid f_{t_{2}}$. Replacing in the relation (6) we have the cases:

1) $s_{1}>s_{2}+1$. We simplify by $X_{i}^{s_{2}+1}$, and it results that $X_{i} \mid r_{j}, \forall j=\overline{1, q}$. Replacing in the relation (7), we simplify and, since $X_{i} \nmid c, \exists t_{3}$ such that $X_{i} \nmid h_{t_{3}}$. We have $X_{i}^{s_{2+1}} \mid g_{j}, \forall j=\overline{1, q}$, then g_{j} are identically zero for all $j \in 1, \ldots, t$, false.
2) $s_{1}<s_{2}+1$. We simplify with $X_{i}^{s_{1}}$, and we have $X_{i} \mid f_{j}, \forall j=\overline{1, q}$, since $X_{i} \nmid c$, false.
3) $s_{1}=s_{2}+1$. Replacing in the relation (7), and simplify with $X_{i}^{s_{2}}$, then we have that $X_{i} \mid g_{j}, \forall j=\overline{1, q}$, since $X_{i} \nmid c$, false.

Therefore the algebra U_{i} is a division algebra and, by Cayley-Dickson process, $\operatorname{dim} U_{i}=2^{i}, 1 \leq i \leq n$.

References

[1] Allison, B. N., Faulkner, J. R., A Cayley-Dickson process for a class of structurable algebras, Trans. Amer. Math. Soc., 283, (1984), 185-210.
[2] Brown, R. B., On generalized Cayley-Dickson algebras, Pacific J.of Math.,20, (1967), 415-422.
[3] Elduque, A., Pérez, J. M., Composition algebras with associative bilinear form, Comm. in Algebra 24, (1996), 1091-1116.
[4] Kostrikin, A. I., Shafarevich, I.R. (Eds), Algebra I, Springer-Verlag, 1990.
[5] Kostrikin, A. I., Shafarevich, I.R. (Eds), Algebra VI, Springer-Verlag, 1995.
[6] Myung, H.C. Malcev-Admissible Algebras, Birkhäuser, 1986.
[7] Okubo, S., Myung, H. C., Some new classes of division algebras, J. of Algebra, 67 (1980), 479-490.
[8] Okubo, S., Osborne, J.M., Algebras with nondegenerate associative symmetric bilinear forms permitting composition, I, Comm. in Algebra 9, (1981), 1233-1261.
[9] Osborn, J. M., Quadratic Division Algebras, Trans. Amer. Math. Soc., 115 (1962), 202-221.
[10] Schafer, R. D., An Introduction to Nonassociative Algebras, Academic Press, NewYork, 1966.
"Ovidius" University of Constanta
Department of Mathematics and Informatics,
900527 Constanta, Bd. Mamaia 124
Romania
e-mail: cflaut@univ-ovidius.ro

[^0]: Key Words: Division algebra; Cayley-Dickson process.
 *This paper was supported by the grant A CNCSIS 1075/2005

