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Isomorphism of noncommutative group

algebras of torsion-free groups over a field

P. V. Danchev

Abstract

The isomorphism problem for group algebras over a field with ar-
bitrary characteristic of some special classes of torsion-free non-abelian
groups is explored. Specifically, the following are proved: Suppose F is a
field and G is a torsion-free group with centre C(G) such that FG ∼= FH
as F -algebras for any group H . Then it is shown that H is torsion-free
(provided that FG is without zero divisors), and if G is soluble we have
even more that C(G) ∼= C(H). The latter extends classical results due
to Higman(1940)-May(1969) when G is torsion-free abelian.

Moreover, if G is an R-group or a D-group, then the above F -
isomorphism yields that so is H .

Subject Classification: 20C05, 16S35, 16U60, 16W20, 20E, 20F.

I. Introduction and preliminaries. Throughout this article, let we assume
that F is an arbitrary field (of arbitrary characteristic) with multiplicative
group U(F ), and G is a multiplicatively written group, possibly non-abelian,
with centre C(G). Denote by FG the group algebra of G over F with centre
Z(FG), with unit group U(FG) and corresponding normed unit group V (FG),
and with a relative augmentation two-sided ideal I(FG; A) with respect to the
normal subgroup A � G. The further notions, notations and terminology are
as in ([4], [6], [7]) and ([1], [14]).

A classical long-standing conjecture, due to Kaplansky, also named Zero
Divisors Problem, is that FG is without zero divisors provided G is torsion-free
(for instance, see [14]).

Conjecture (KAPLANSKY). If G is torsion-free, then FG has no zero
divisors ( ⇐⇒ has no nilpotents).

Key Words: Group rings; Units; Centres, Torsion-free groups; Soluble groups; D-groups;
R-groups.
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The best principal results at this moment, concerning large major sorts
of groups for which the above question holds in the affirmative, are obtained
for the so-called soluble (= solvable in other terms) torsion-free groups (see,
for example, [3]; [8] and [13]) - in particular for all torsion-free abelian groups
(e.g. [9]) - as well as for the so-called up-groups (cf. [14]). These two group
classes are independent. However, it is well-known that all free groups and all
torsion-free (locally) nilpotent groups are right-ordered hence up-groups.

Another old-standing conjecture, due to A.I.Malcev, is that termed as Triv-
ial Units Problem, which asserts the following.

Conjecture (MALCEV). If G is torsion-free, then FG possesses only trivial
units, i.e.

U(FG) = G × U(F ).

The best known principal result in that aspect is due to Mihovski-Dimitrova
([11],[12]), argued for up-groups. It is still unknown whether or not this does
hold true for soluble torsion-free groups. Important special case is for torsion-
free abelian groups which is completely settled in [5] and [9], respectively.

Nevertheless, in the general situation, Mihovski has established in [10] a
remarkable weaker variant for the trivial central units. Actually, his result is
stronger than that formulated below and it gives a comprehensive satisfactory
description of C(U(FG)) = U(Z(FG)) too.

Theorem (MIHOVSKI). Let G be torsion-free so that FG is without zero
divisors. Then

C(U(FG)) = C(G) × U(F ).

We shall use in the sequel this decomposition freely, without further com-
ments.

Our goals at this stage are to derive that C(G) and F (G/C(G)) are struc-
tural invariants of FG, provided G is soluble torsion-free. This generalizes a
well-documented in ([5],[1],[9]) theorem of Higman-May when G is torsion-free
abelian. In particular, as a consequence, we apply here these affirmations to
metabelian (soluble of class two = nilpotent of class two) torsion-free groups.
Finally, we show that some group characteristic parameters for G, such as
being a D-group or an R-group, can be invariantly recovered from FG.

These main facts will be proceed by proving in the following paragraph.
They were announced in ([2], Section 2).

II. Central results. We start here with a well-known Isomorphism Problem
(see, for instance, [14]).
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Conjecture (ISOMORPHISM). If G is torsion-free, then FG ∼= FH are
F -isomorphic for any group H if and only if G ∼= H.

The apparent connection between the last two conjectures may be demon-
strated via the following simple, but a key technical tool (see e.g. [14], p.675,
Theorem 3.1). We give below a new confirmation of this fact.

Lemma. Given FG ∼= FH as F -algebras and V (FG) = G. Then G ∼= H.

Proof. Suppose φ : FH → FG is a F -isomorphism. It is well-known that it
can be chosen to preserve the augmentation, so the restriction φ : V (FH) →
V (FG) = G is a group isomorphism. Clearly φ(H) ⊆ G = φ(V (FH)) since
H ⊆ V (FH). What suffices to detect is that φ(H) = G. In fact, take
g ∈ G whence there is

∑
h∈H αhh ∈ V (FH) with φ(

∑
h∈H αhh) = g. But

φ(
∑

h∈H αhh) =
∑

h∈H φ(αhh) =
∑

h∈H αhφ(h) with all group coefficients
φ(h) ∈ φ(H) ⊆ G. Thereby, g = φ(h) for some h ∈ H belonging to the sum,
and we are done.

Thus, by what we have stated above, the isomorphism problem holds for
up-groups (for more details see [11, 12]).

It seems to the author that the above posed general isomorphism question
is very difficult, so he feels that of some interest and importance is the following
mild modification which is also left-open yet.

Problem. Let G be torsion-free. Then whether FH ∼= FG as F -algebras for
some group H implies C(H) ∼= C(G).

We claim that this problem has an affirmative answer under the additional
hypothesis that so does the Kaplansky problem. This will be showed below.
First of all, we need some preliminary technicalities.

Proposition 1. If (G is torsion-free such that) FG is without zero divisors
and FG ∼= FH as F -algebras for a group H, then H is torsion-free.

Proof. It is no harm in assuming that FG = FH , where H ⊆ V (FG) is a
normalized group basis for FG. If we tolerate hm = 1 for some m = order(h) ∈
IN and 1 �= h ∈ H , it is plainly checked that 1 − hm = 0 ⇐⇒ (1 − h)(1 +
hm−1+hm−2+ ...+h) = 0 where evidently 1+hm−1+hm−2+ ...+h �= 0. Thus
FG contains a non-trivial zero divisor, which is a contradiction. Henceforth,
H must be torsion-free and everything is proved.

Remark. In non-commutative rings the formula xn − yn = (x − y).(xn−1 +
xn−2y + · · · + xyn−2 + yn−1) does not hold in general when x �= 1 and y �= 1,
for each natural number n. When either x = 1 or y = 1, it is true.
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Corollary 1. If FG has not zero divisors, then G is torsion-free.

Remark. When G is abelian, the converse is valid as well (see [9], p. 141,
Lemma 1). We also indicate that our foregoing proof of Proposition 1 is dif-
ferent from that of May and that it may be directly obtained from Proposition
3 listed below.

We now come to our central assertion.

Theorem 1 (Isomorphism). Supposing (that G is torsion-free so) that FG
possesses no zero divisors, the F -isomorphism FG ∼= FH for any group H
implies C(G) ∼= C(H).

Proof. We observe that Proposition 1 ensures that H is torsion-free (it
is not necessary but however this is an immediate consequence). Without
loss of generality, we may presume that FG = FH . Thus, since both FG
and FH are with no zero divisors, the Mihovski’s attainment guarantees that
C(U(FG)) = C(G) × U(F ) = C(H) × U(F ) = C(U(FH)), and consequently
C(G) ∼= C(H), as wanted. The proof is completed after all.

Corollary 2. Let G be soluble torsion-free. Then FG ∼= FH as F -algebras
for some group H implies that C(G) ∼= C(H).

Proof. Combining the above quoted facts, all central units in FG are trivial
because FG does not have zero divisors ([3], [8] and [13]). Hence the claim.

Corollary 3 (HIGMAN [5]-MAY [9, p.142]). Let G be a torsion-free
abelian group and FG ∼= FH as F -algebras for a group H. Then G ∼= H.

Proof. Since each abelian group G is soluble and C(G) = G as well as
C(H) = H being obviously abelian, Theorem 1 is applicable to finish the
proof.

Remark. Certainly, FG ∼= FH gives Z(FG) ∼= Z(FH), but Z(FG) ⊃
F (C(G)) and similarly Z(FH) ⊃ F (C(H)). Therefore, the result of Higman-
May is not directly applicable. However, Z(FG) ∼= Z(FH) will imply that
F (C(G)) ∼= F (C(H)) as it was shown above.

Next, we shall summarize below certain group-theoretic facts much needed
for our good presentation, namely:

(1) [7, p.89] - A group G is metabelian if and only if G/C(G) is abelian.
(2) [7, p.411-413] - For every nilpotent torsion-free group G, every two

elements a, b ∈ G and every two positive integers k and l, the equality akbl =
blak implies ab = ba.

That is why, using these two assertions, we get
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Claim 1. If G is nilpotent torsion-free, then G/C(G) is torsion-free.

Proof. Indeed, take x = gC(G) for g ∈ G. If there is s ∈ IN such that
xs = C(G) we elementarily have gs ∈ C(G) and thus gsa = ags for every
a ∈ G. Furthermore (2) insures that ga = ag and so g ∈ C(G). Therefore, x
is the identity element and the proof is complete.

After this, we concentrate on

Proposition 2. Assume that G is torsion-free such that FG has no zero
divisors (in particular G is soluble torsion-free). Then FG ∼= FH as F -
algebras for some group H assures that

(a) F (G/C(G)) ∼= F (H/C(H));
(b) G/C(G) ∼= H/C(H) and H is metabelian, provided G is metabelian.

Proof. We may without harm of generality assume that FG = FH . Thus, as
we have verified above, C(G)×U(F ) = C(H)×U(F ). Furthermore, F (C(G)×
U(F )) = F (C(G)) = F (C(H)) = F (C(H)×U(F )), and hence I(FG; C(G)) =
FG.I(F (C(G)); C(G)) = FH.I(F (C(H)); C(H)) = I(FH ; C(H)). Finally,
we infer at once that F (G/C(G)) ∼= FG/I(FG; C(G)) = FH/I(FH ; C(H)) ∼=
F (H/C(H)), as desired.

Now, we are ready to attack the second point. Since G is metabelian, (1)
and (a) give that H/C(H) is abelian, i.e. H is metabelian. On the other
hand, the torsion-freeness of G/C(G) follows in virtue of the group Claim 1.
Finally, by what we have already shown above in (a) along with Corollary 3,
G/C(G) ∼= H/C(H). This ends the proof.

Remark. Letting FG ∼= FH. Since the metabelian groups are soluble, in ac-
cordance with Corollary 2 we also have that C(G) ∼= C(H). But the metabelian
torsion-free groups are known to be up-groups (see [14]), so G ∼= H as it has
been extracted in ([11, 12]) and mentioned above as well. Thus the foregoing
deduced two isomorphism relationships pertaining to the centres of metabelian
groups, namely C(G) ∼= C(H) and G/C(G) ∼= H/C(H), are already simple
consequences, although we have exploited different methods for their confirma-
tion (compare also with Theorem (Isomorphism) in [2]).

We indicate that if G is free and FG ∼= FH as F -algebras, then G/G′ ∼=
H/H ′ where G′ is the commutant (= commutator subgroup) of G. This is so
since FG ∼= FH forces that F (G/G′) ∼= F (H/H ′) (e.g. [14]), and moreover
G/G′ is abelian torsion-free, hence Corollary 3 works.

We continue with some properties of the group basis which can be retrieved
from the group algebra. First and foremost, we need some conventions. The
following two definitions are well-known, but they are included here only for
the sake of completeness, even for the readers having no a full information
(e.g. cf. [7], pp.410 and 403).
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Definition 1. The group G is said to be an R-group if for every g ∈ G and
natural n the equation xn = g has at most (= precisely) one solution in G,
i.e., in other words, for each two elements g, h ∈ G and positive integer n we
have gn = hn ⇐⇒ g = h.

Evidently, every R-group is torsion-free and all abelian groups without
torsion are R-groups. More generally, Malcev and Chernikov have proved that
every nilpotent torsion-free group is an R-group (see [7], p.413). Moreover,
each free group is an R-group.

Definition 2. The group G is called a D-group (= a divisible group) if for
every g ∈ G and n ≥ 0 the equation xn = g has at least one solution in G.

As we have concluded above in Proposition 2, if G is metabelian torsion-
free and FH ∼= FG as F -algebras then H is metabelian, too. Even more,
H ∼= G. In Proposition 1 it has been proved an analogous assertion for a
torsion-free group but provided extraordinary that FG has no zero divisors
(i.e. that the Kaplansky Conjecture holds positively).

We shall establish below statements of this type in virtue of another tech-
nique such that to be a priori unknown that either G and H are isomorphic
or that FG does not possess zero divisors. So, we are ready to process the
following.

Proposition 3 (Structure). Suppose there exists an F -isomorphism FG ∼=
FH for groups G and H. If G is one of the following:

(c) torsion-free;
(d) free;
(e) finitely generated torsion-free;
(f) an R-group;
(g) a torsion-free D-group,
then so does H .

Because of big technical difficulties, we shall give a proof of this attainment
elsewhere (perhaps in a subsequent appropriate paper).
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