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Boundedness conditions of Hausdorff

h-measure in metric spaces

Alina Bărbulescu

Abstract

The fractal dimensions are very important characteristics of the frac-
tal sets. A problem which arises in the study of the fractal sets is the
determination of their dimensions. The Hausdorff dimension of this type
of sets is difficult to be determined, even if the Box dimensions can be
computed. In this article we present some boundedness conditions on
the Hausdorff h-measure of a set, using their Box dimensions.

Subject Classification: 28A78.

1 Background

The calculus of the dimensions is fundamental in the study of fractals. The
Hausdorff measures and the h-measures, the box dimensions, the packing di-
mensions are widely used and in many articles the relations between them are
given ([5] - [8]).

In the papers [1] - [4] we gave some boundedness conditions for a class of
fractal sets, in Rn. This type of conditions is important in order to prove
theorems concerning the module and the capacities and the relations between
them ([10]).

In this paper we work in metric spaces and we give some boundedness
conditions of the Hausdorff h - measures.

Definition 1. Let (X, d) be a metric space.
If r0 > 0 is a given number, then, a continuous function h(r), defined on

[0, r0) , nondecreasing and such that lim
r→0

h(r) = 0 is called a measure function.
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If 0 < δ <∞, E is a subset of (X, d) and h is a measure function, then,
the Hausdorff h-measure of E is defined by:

Hh(E) = lim
δ→0

inf

{∑
i

h(|Ui|) : E ⊆
⋃
i

Ui : 0 < |Ui| < δ

}
.

where | | denotes the diameter of the set Ui.
Particularly, when h(r) = rs, 0 < s <∞, then the s-dimensional Hausdorff

measure of E, denoted by H s(E), is obtained.
The Hausdorff dimension of a nonempty set E ⊂ X is the number defined

by
dimH E = inf {s : Hs(E) = 0} = sup {s : Hs(E) = ∞} .

Remark. There are definitions where the covering of the set E is made with
balls. The relation between the new measure, denoted by H ′

h and Hh is:
Hh(E) ≤ H ′

h(E). Thus,

H ′
h(E) <∞ ⇒ Hh(E) <∞,

H ′
h(E) = 0 ⇒ Hh(E) = 0,

and
Hh(E) > 0 ⇒ H ′

h(E) > 0.

Definition 2. Let β be a positive number and E be a nonempty and
bounded subset of the metric space (X, d). Let Nβ(E) be the smallest number
of sets of diameter at most β that cover E. Then the upper and lower Box
dimension of E are defined by:

dimBE = lim
β→0

logNβ (E)
− log β

; dimBE = lim
β→0

logNβ (E)
− log β

.

If these limits are equal, the common value is called the Box dimension of E
and is denoted by dimB E.

Definition 3. Let ϕ1, ϕ2 > 0 be functions defined in a neighborhood of
0 ∈ Rn. We say that ϕ1 and ϕ2 are equivalent and we denote by: ϕ1 ∼ ϕ2,
for x→ 0, if there exist r > 0, Q > 0, satisfying:

1
Q
ϕ1(x) ≤ ϕ2(x) ≤ Qϕ1(x), (∀)x ∈ Rn, |x| < r,

where for x ∈ Rn, x = (x1, ..., xn), |x| =
∑n

i=1 x
2
i .

An analogous definition can be given for x → ∞. In this case, ϕ1 ∼ ϕ2

means that the previous inequalities are valid in all the space.
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Remark. In what follows, if U is a set in a metric space, particularly in
Rn, |U | means the diameter of U and if x ∈ Rn, |x| has the significance given
in the definition 3.

In the second part of the paper we shall use the following results:

Lemma 1. ([6]) If E is a set in R2, then

dimH E ≤ dimBE ≤ dimBE.

Remark. The previous lemma remains true in a nonempty compact metric
space.

2 Results

Theorem 1. Let (X, d) be a nonempty compact metric space, with dimH X =
s. Let h be a measure function such that there is m > 0, with h(t)

ts > m.
Suppose that there exist λ0, α > 0 such that for any set E ⊂ X , with
|E| < λ0, there is a mapping ϕ : E → X such that :

αd(x, y) ≤ |E|d(ϕ(x), ϕ(y)), (∀)x, y ∈ E.

Then Hh(X) > 0.

Proof. First, it will be proved that Hs(X) ≥ αs.
Suppose that 0 ≤ Hs(X) < αs. Then, given 0 < δ < min{λ0,

α
2 }, there

are the sets U1, ..., Uk, with |Ui| < δ, for i = 1, 2, ..., k and X ⊂ ⋃k
i=1 Ui such

that
k∑

i=1

|Ui|s < αs

and so
k∑

i=1

|Ui|t < αt,

for some t < s.
By the hypotheses of the theorem there are the mappings ϕi : Ui → X

such that
d(x, y) ≤ α−1|Ui|d(ϕ(x), ϕ(y)), (∀)x, y ∈ Ui ⇒

|ϕ−1
i (Uq)| = sup d(ϕ−1

i (x), ϕ−1
i (y)) < α−1|Ui||Uq| < 1

2
δ ⇒
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|ϕ−1
i (Uq)|t < α−t|Ui|t|Uq|t ⇒

k∑
i=1

k∑
q=1

|ϕ−1
i (Uq)|t < α−t(

k∑
i=1

|Ui|t)(
k∑

q=1

|Uq|t) < αt.

But X ⊂ ⋃k
i,q=1 |ϕ−1

i (Uq)|t. Therefore X has a covering by sets of dia-
meter less than 1

2δ, with the same bound on the t-th power of the diameters.
Repeating the argument, we see that there are coverings Vi of X , with dia-
meters at most 2−nδ, such that

∑ |Vi|t < αt. It follows that Ht(X) < αt and
dimH X = t < s, which is a contradiction.

So, Hs(X) ≥ αs > 0.
If {Ui}i∈N ⊂ X with |Ui| < δ such that X ⊂ ⋃∞

i=1, then:

∞∑
i=1

h(|Ui|) =
∞∑

i=1

{
h(|Ui|)
|Ui|s · |Ui|s

}
> m

∞∑
i=1

|Ui|s ⇒

Hh(X) ≥ αHs(X) ≥ m · αs > 0.

Proposition 1. Let (X, d) be a nonempty compact metric space, with
dimH X = s. Let h be a measure function such that there is M > 0, h(t)

ts < M .
Then Hh(X) ≤M ·Hs(X).

Proof. Let δ > 0 and {Ui}i∈N∗ be a covering of X with sets with |Ui| < δ,
(∀)i ∈ N∗.

∞∑
i=1

h(|Ui|) =
∞∑

i=1

{
h(|Ui|)
|Ui|s · |Ui|s

}
< M

∞∑
i=1

|Ui|s ⇒

Hh(X) ≤ M · Hs(X).

Remarks. 1. In the theorem 1 it was also proved that Hs(X) > 0.
2. The Theorem 1 and the Proposition 1 give boundedness conditions for

the Hausdorff h-measure of a compact metric space X , if h(t) ∼ ts.
Indeed, if h(t) ∼ ts, there is Q > 0, satisfying:

1
Q

· ts ≤ h(t) ≤ Q · ts, (∀)t > 0.

In the hypotheses of the mentioned theorems, for m = 1
Q and M = Q,

0 <
1
Q

· αs ≤ 1
Q

·Hs(X) ≤ Hh(X) ≤ Q · Hs(X).



Boundedness conditions 19

Theorem 2. Let (X, d) be a nonempty compact metric space, with dimH X =
s < ∞. Suppose that there exist a, r0 > 0 such that for any ball B in X of
radius r < r0 there is a mapping ψ : E → B such that:

ard(x, y) ≤ d(ψ(x), ψ(y)), (∀)x, y ∈ X.

Let h be a measure function such that there is M > 0, with h(t)
ts < M . Then

Hh(X) < Ms.
Proof. Following the proof of the theorem 4 [6], it results that

dimBX = dimBX = s

and Hs(X) <∞. Using the relation (5), it results that Hh(X) < Ms.

Examples.
1. Self-similar sets. For i = 1, ..., k, let ψi : Rn → Rn be contracting

similarity transformations, i.e.

d(ψi(x), ψi(y)) = cid(x, y),

where 0 < ci < 1 and d is the Euclidean metric. Then, there is a unique
nonempty compact set F ⊂ Rn that is self-similar ([8]), i.e.

F =
k⋃

i=1

ψi(F ).

If s = dimH(F ) and h is a measure function as in the Theorem 2, then
Hh(F ) <∞.

2. Dynamical repeller. If f is a C1+η conformal mapping on a Riemann
manifold with mixing repeller J ([5]), s = dimHJ and h is a measure function
such that there is M > 0, with h(t)

ts < M , then Hh(J) <∞.
In ([5]) it was proved that in the previous hypotheses, 0 < Hs(J) < ∞.

Using the Theorem 2, it results Hh(J) <∞.

Theorem 3. Let (X, d) be a nonempty metric space, E ⊂ X, E �= ∅,
compact and h be a measure function such that H ′

h(E) < ∞. Let F be the
family of the closed sets in the topology induced by the metric. Suppose that
there is ϕ : F → R+ such that ϕ is subadditive and ϕ satisfies the conditions:

a. ϕ(F ) ≥ 0, (∀)F ⊂ F.
b. If F ⊃ E, then ϕ(F ) ≥ b > 0, where b is a constant.
c. There is a constant, k �= 0, such that ϕ(F ) ≤ kh(|F |).
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Then, H ′
h(E) ≥ b/k.

Proof. Let δ > 0. If {Ui} is a sequence of open discs that cover E, with
|Ui| < δ, it will be proved that ΣUih(Ui) ≥ b

k .
Since E is a compact set,

(∃)n ∈ N∗ : E =
n⋃

i=1

Ui.

We can take closed discs, U
′
i , U

′
i ⊃ Ui, with the radius δ

′
i

2 close enough to
|Ui|
2 , such that

h(|U ′
i |) < (1 + ε)h(|Ui|),

where ε > 0 is small enough.
Then,

h(|U ′
i |) ≥

1
k
ϕ(|U ′

i |) ⇒
n∑

i=1

h(|Ui|) ≥ 1
1 + ε

n∑
i=1

h(|U ′
i |) ≥

1
k(1 + ε)

n∑
i=1

ϕ(|U ′
i |) ≥

≥ 1
k(1 + ε)

ϕ(
n⋃

i=1

U
′
i ) ≥

b

k(1 + ε)
.

Thus, H ′
h(E) ≥ b

k .

Remark. The previous theorem remains true if F is replaced by the set
G of the open sets.

The Theorem 3 is a generalization of the sufficiency of the Theorem 1 [9].

Theorem 4. Let (X, d) be a nonempty metric space, E ⊂ X, E �= ∅,
compact and h be a measure function such that H ′

h(E) < ∞ and h(t) ∼
P (t)eT (t), t ≥ 0, where P and T are the polynomials:

P (t) =
p∑

j=1

ajt
j , p ≥ 1, a1 �= 0, T (t) =

m∑
j=0

bjt
j ,

with positive coefficients. Then H ′
h(E) > 0.

The result remains true if p ≥ 2, a1 = 0 and δ > 0.

Proof. Let us define the function:

ϕ : F → R+, ϕ(F ) = |F |, (∀)F ∈ F.
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It will be proved that the function ϕ satisfies the conditions of the Theorem
3.

Since h(t) ∼ P (t)eT (t), t ≥ 0, there is Q > 0 such that:

1
Q

· h(t) ≤ P (t)eT (t) ≤ Q · h(t), (∀)t > 0.

We obtain easily the results:
a. |F | ≥ 0, (∀)F ∈ F.
b. If F ⊃ E, then ϕ(F ) = |F | ≥ |E|.
So, b from the previous theorem is |E| > 0.
c.

ϕ(F )
h(|F |) =

|F |
h(|F |) =

|F |
P (|F |)eT (|F |) · P (|F |)eT (|F |)

h(|F |) ≤

≤ Q · |F |
P (|F |)eT (|F |) <

Q

eb0 · a2
= k.

Using the previous theorem we deduce that:

H ′
h(E) ≥ |E| · eb0 · a2

Q
> 0.

Remark. Another function that could be used to prove the Theorem 4 is:

ψ : F → R+, ψ(F ) = |F
⋂
E|, (∀)F ∈ F.

a. |F | ≥ 0, (∀)F ∈ F.
b. If F ⊃ E, then ψ(F ) = ψ(E) = |E| > 0.
c.

ψ(F )
h(|F |) =

|F ⋂
E|

h(|F |) =
|F ⋂

E|
P (|F |)eT (|F |) · P (|F |)eT (|F |)

h(|F |) ≤

≤ Q · |F |
P (|F |)eT (|F |) <

Q

eb0 · a2
= k.

So, ψ satisfies the hypotheses of the Theorem 4.
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