A BOUND OF THE DEGREE OF SOME RATIONAL SURFACES IN P ${ }^{4 *}$

Cristian Voica

Abstract

In this paper we find a bound of the degree of rational surfaces embedded in \mathbf{P}^{4} with a linear system of type $$
\left|\mathcal{L}-p x_{0}-x_{1}-\ldots-x_{r}\right|
$$

We determine all the possible (families of) rational surfaces embedded in \mathbf{P}^{4} with a linear system as above, for the particular case $p=2$.

1 Introduction

A few years ago, Ellingsrud and Peskine ([EP]) proved that there are only finitely many families of surfaces embedded in \mathbf{P}^{4}, not of general type. Then, in particular, it is theoretically possible to find all the rational surfaces embedded in \mathbf{P}^{4}.

A natural point of view of the classification is to determine all the surfaces with a given degree. For the moment, there have been classified the (families of) rational surfaces in \mathbf{P}^{4} with degree ≤ 10; all these surfaces can be represented as blow-ups of the plane $\mathbf{P}^{\mathbf{2}}$.

The starting point of this paper is to give another point of view in the classification: our idea is to determine all the surfaces with a given type for the linear system of hyperplane sections. In [V] we give a complete classification of rational surfaces $S \subset \mathbf{P}^{4}$ embedded with a linear system of type

$$
\left|f^{*} \mathcal{L}-E_{1}-\ldots-E_{r}\right|
$$

where \mathcal{L} is an ample linear system on a minimal rational surface, f is a birational morphism and $E_{1}, E_{2}, \ldots, E_{r}$ are the exceptional curves of f. In

[^0]the present paper we continue this classification: we prove that there are at most five (families of) rational surfaces in \mathbf{P}^{4} embedded with a linear system of type
$$
\left|f^{*} \mathcal{L}-2 E_{0}-E_{1}-\ldots-E_{r}\right|,
$$
where $f: S \rightarrow S_{\text {min }}$ is a birational morphism and \mathcal{L} is an ample linear system on $S_{\text {min }}$.

A second important problem in the classification of rational surfaces in \mathbf{P}^{4} is to determine an explicit bound of their degree. An actual bound is 66 , but all the known (families of) rational surfaces in \mathbf{P}^{4} have degree ≤ 12. In this direction, we prove that every rational surface embedded in $\mathbf{P}^{\mathbf{4}}$ with a linear system of type

$$
\left|f^{*}(\mathcal{L})-p E_{0}-E_{1}-\ldots-E_{r}\right|
$$

where f is a birational morphism on a minimal rational surface, have degree ≤ 14.

2 Preliminaries and notations

In this paper, surface means a projective, smooth, irreducible, non-degenerate rational surface $S \subset \mathbf{P}^{4}$.

We will use standard notations, as, for instance, those in $([\mathrm{H}])$. For a surface S we denote by $d=d(S)$ and $\pi=\pi(S)$ the degree and the sectional genus, respectively. Recall that

$$
d=\left(H^{2}\right) \text { and } 2 \pi-2=d+(H . K)
$$

where H and K are a hyperplane section and the canonical divisor of S, respectively.

Every rational surface is a blow-up of $\mathbf{P}^{\mathbf{2}}$ or of one of the Hirzebruch surfaces $\mathbf{F}_{\mathbf{n}}$, for $n \neq 1$ (see, e.g., $[\mathrm{H}]$).

The numerical invariants of a surface $S \subset \mathbf{P}^{\mathbf{4}}$ verify double point formula:

$$
d^{2}-10 . d+12 \chi\left(O_{S}\right)=5(H . K)+2\left(K^{2}\right)
$$

(see, e.g., $[\mathrm{H}]$) For a rational surface, double point formula becomes:

$$
d^{2}-10 d+12=5(H . K)+2\left(K^{2}\right)
$$

We will use the following result:
PROPOSITION 1 (Voica, [V]). Let S be a rational surface in $\mathbf{P}^{\mathbf{4}}$. If $d \geq 13$, then $\pi \leq \frac{d^{2}}{8}$; if $d \geq 9$, then $\pi \leq \frac{d(d-3)}{6}$; if $d \geq 7$, then $\pi \leq 1+\frac{d(d-3)}{6}$; if $d=6$, then $\pi \leq 3$; in any case, $\pi \leq 1+\frac{d(d-1)}{4}$.

3 The main result

Let S be a rational surface in $\mathbf{P}^{\mathbf{4}}$.
Suppose that S is a blow-up of \mathbf{P}^{2} such that the linear system of the hyperplane sections of S is of type

$$
|H|=\left|f^{*}(m L)-p E_{0}-E_{1}-\ldots-E_{r}\right|,
$$

where $m>0$ and $E_{0}, E_{1}, \ldots, E_{r}$ are the exceptional curves of the blow-up f. In this case, the numerical invariants of S are:

$$
d=\left(H^{2}\right)=m^{2}-p^{2}-r,(H . K)=-3 m+p+r,\left(K^{2}\right)=8-r
$$

and double point formula becomes:

$$
d^{2}-10 \cdot d-4=-15 m+5 p+2 r
$$

We denote:

$$
\alpha=d+r=m^{2}-p^{2} \text { and } \beta=3 m-p .
$$

Using this notation we obtain that

$$
\begin{equation*}
d^{2}-7 d-4=3 \alpha-5 \beta \tag{1}
\end{equation*}
$$

and

$$
2 \pi-2=3 \alpha-5 \beta
$$

For $d \geq 13$ we have

$$
m^{2}-p^{2}=d+r \geq 14
$$

and

$$
m>p, m \geq 4 \text { and } \beta \geq 2 m+1 \geq 9
$$

Observe that

$$
\alpha=-8 m^{2}+6 m \beta-\beta^{2} .
$$

From double point formula (1) we obtain that

$$
24 m^{2}-18 m \cdot \beta+d^{2}-7 d-4+3 \beta^{2}+5 \beta=0 .
$$

We consider this equality as a quadratic equation in m; then

$$
\begin{equation*}
\Delta=9 \beta^{2}-120 \beta-24 d^{2}+168 d+96 \geq 0 \tag{2}
\end{equation*}
$$

We write the above inequality (2) as

$$
(3 \beta-20)^{2} \geq 6(2 d-7)^{2}+10
$$

and we obtain that

$$
\beta>\frac{2 \sqrt{6}}{3} d
$$

Because

$$
8 \pi \leq d^{2} \text { for } d \geq 13
$$

we deduce

$$
d^{2}-7 d-4=3(\alpha-\beta)-2 \beta \leq 6\left(\frac{d^{2}}{8}-1\right)-2 \beta
$$

and then

$$
\begin{equation*}
d^{2}-4 d\left(7-\frac{4 \sqrt{6}}{3}\right)+2<0 . \tag{3}
\end{equation*}
$$

Using (3) we see that

$$
d \leq 14
$$

Suppose now that S is a blow-up of a minimal Hirzebruch rational surface $\mathbf{F}_{\mathbf{n}}, \mathbf{n} \neq \mathbf{1}$. We denote by C anf F the unique section with negative selfintersection on $\mathbf{F}_{\mathbf{n}}$ and a fiber, respectively. Let

$$
|H|=\left|f^{*}(a C+b F)-p E_{0}-E_{1}-\ldots-E_{r}\right|
$$

be the linear system of hyperplane sections on S. Recall that

$$
\left(C^{2}\right)=-n,(F . C)=1,\left(F^{2}\right)=0, a>0 \text { and } b>a n
$$

(see, e.g., $[\mathrm{H}]$). Then the numerical invariants of S are:

$$
\begin{gathered}
d=-n a^{2}+2 a b-p^{2}-r,(\text { H.K })=a n-2 a-2 b+p+r, \\
\left(K^{2}\right)=7-r, \pi=-n a^{2}+2 a b-2 a-2 b-p^{2}+p .
\end{gathered}
$$

Denote

$$
\alpha=2 b-n a, \beta=2 a ;
$$

using this notation, we obtain that

$$
d=\frac{\alpha . \beta}{2}-p^{2}-r,(H . K)=-\alpha-\beta+p+r, 4 \pi=(\alpha-2)(\beta-2)+2 p-2 p^{2}
$$

From double point formula we have:

$$
2 d^{2}-14 d-4=3 \alpha \beta-10(\alpha+\beta)+10 p-6 p^{2} .
$$

First of all, observe that $\alpha \geq 2$ and $\beta \geq 2$: in the contrary case, the sectional genus can not be a positive integer. For $d \geq 13$ we have

$$
9(\alpha-2)(\beta-2)-12(\alpha+\beta-4) \leq 36 \pi-48 \sqrt{\pi}+9 p^{2}-9 p
$$

and we can use Proposition (1) to obtain that

$$
6 d^{2}-42 d+80+18 p^{2}-30 p \leq \frac{9 d^{2}}{2}+9 p^{2}-9 p-24 \sqrt{\frac{d^{2}}{2}+p^{2}-p}
$$

From the above inequality we have

$$
\begin{equation*}
3 d^{2}-d(84-24 \sqrt{2})+160+36 p^{2}-60 p \leq 0 . \tag{4}
\end{equation*}
$$

If $p=1$, in $[\mathrm{V}]$ we prove that $d \leq 5$; for $p \geq 2$ we have

$$
18 p^{2}-30 p+80 \geq 92
$$

and we use (4) to obtain that $d \leq 14$.
All these considerations prove
PROPOSITION 2 . Let $S \subset \mathbf{P}^{\mathbf{4}}$ be a rational surface such that the hyperplane section of S is of type

$$
\left|f^{*}(\mathcal{L})-p E_{0}-E_{1}-\ldots-E_{r}\right|
$$

where $f: S \rightarrow S_{\text {min }}$ is a blow-up morphism and $E_{0}, E_{1}, \ldots, E_{r}$ are the exceptional curves of f.

Then $\operatorname{deg}(S) \leq 14$.

4 A class of rational surfaces in P^{4}

Let S be a rational surface in \mathbf{P}^{4}, let $f: S \rightarrow S_{\text {min }}$ be a birational morphism and let $E_{0}, E_{1}, \ldots, E_{r}$ be the exceptional curves of f. The aim of this section is to classify all the surfaces as above if the hyperplane section of S is of type

$$
\left|f^{*}(\mathcal{L})-2 E_{0}-E_{1}-\ldots-E_{r}\right| .
$$

From Proposition 2 we know that $\operatorname{deg}(S) \leq 14$.
First of all, suppose that $S_{\text {min }}=\mathbf{P}^{\mathbf{2}}$ and let $\mathcal{L}=m L$. The numerical invariants of S are:

$$
d=m^{2}-4-r,(H . K)=-3 m+r+2, \pi=\frac{m(m-3)}{2} .
$$

Using this relation, double point formula becomes:

$$
r^{2}-r\left(2 m^{2}-15\right)+\left(m^{4}-18 m^{2}+15 m+42\right)=0 .
$$

Consider this equality as a equation; we obtain that there exists an integer k such that

$$
k^{2}=12 m^{2}-60 m+57
$$

or, equivalently, that

$$
k^{2}=3(2 m-5)^{2}-18
$$

Observe that 3 must divide k and denote $k=3 y$ and $2 m-5=x$. Then

$$
\begin{equation*}
3 x^{2}-y^{2}=2 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
m=\frac{3 x+5}{2}, r=\frac{2 m^{2}-15 \pm 3 y}{2}, d=\frac{7 \mp 3 y}{2} . \tag{6}
\end{equation*}
$$

Since $\mathbf{Z}[\sqrt{3}]$ is an Euclidean ring, we know (see, e.g., $[\mathrm{AI}]$) that the solutions (x, y) of equation (5) verify:

$$
\begin{equation*}
|y|+|x| \sqrt{3}=(1+\sqrt{3})(2+\sqrt{3})^{n} \tag{7}
\end{equation*}
$$

for a natural number n. Since

$$
m>\sqrt{d+5} \text { and } 3 \leq d \leq 14
$$

we obtain that

$$
1 \leq x \text { and } 1 \leq y \leq 7
$$

Then the acceptable solutions of (5) are:

$$
x=1, y=1 \text { or } x=3, y=5 \text {. }
$$

The numerical invariants of the corresponding surfaces are

$$
d=5, \pi=2, m=4, r=7
$$

and, respectively,

$$
d=11, \pi=14, m=7, r=34
$$

Suppose now that $S_{\text {min }}=\mathbf{F}_{\mathbf{n}}, n \neq 1$ and let $\mathcal{L}=a C+b F$. With the notations

$$
\alpha=2 b-n a, \beta=2 a
$$

used also in the above section, the numerical invariants of S are:

$$
d=\frac{\alpha \beta}{2}-4-r,(H . K)=-\alpha-\beta+2+r
$$

and

$$
4 \pi=(\alpha-2)(\beta-2)-4
$$

From double point formula we obtain

$$
2 d^{2}-14 d=3 \alpha \beta-10(\alpha+\beta)
$$

or, equivalently,

$$
6 d^{2}-42 d+100=(3 \alpha-10)(3 \beta-10)
$$

It will be sufficient to assign to d all the values from 3 to 14 , to compute the possible values of α, β and π and to use Proposition 1 in order to decide if it is possible that the corresponding surface exists. Note that $\alpha \geq 3, \beta \geq 4$ and that $3 \alpha-10$ and $3 \beta-10$ are $\equiv 2(\bmod 3)$. In addition, we have $2 \alpha>n \beta$ and $n \neq 1$. The numerical invariants of the corresponding surfaces are:

$$
\begin{gathered}
d=6, \pi=3, r=8 \\
d=10, \pi=11, r=26
\end{gathered}
$$

and

$$
d=11, \pi=14, r=33
$$

The above considerations prove:
PROPOSITION 3 . There are at most five (families of) rational surfaces $S \subset \mathbf{P}^{4}$ embedded with a linear system of type

$$
\left|f^{*}(\mathcal{L})-2 E_{0}-E_{1}-\ldots-E_{r}\right| .
$$

Remark. We do not know if some one of the found (families of) surfaces exists; we can not decide the inexistence using only the inequalities between the sectional genus and the degree of a rational surface proved in [V].

REFERENCES

[AI] T.Albu, I.Ion, Capitole de teoria algebrică a numerelor, Ed. Academiei, Bucureşti, 1984.
[EP] G.Ellingsrud, C.Peskine, Sur les surfaces lisses de $\mathbf{P}^{\mathbf{4}}$, Invent. Math. 95(1989),1-12.
[H] R.Hartshorne, Algebraic Geometry, Springer Grad. Texts Math. 52(1977).
[V] C.Voica, A class of rational surfaces in \mathbf{P}^{4}, Preprint IMAR 16(2000).

Faculty of Mathematics,
Bucharest University,
RO-70109 Bucharest,
Romania
e-mail: voica@gta.math.unibuc.ro

[^0]: Received: October, 2001.
 *Partially supported by Grant C-12 and D-7 CNCSIS

