LADDER FUNCTORS WITH AN
 APPLICATION TO REPRESENTATION-FINITE ARTINIAN RINGS

Wolfgang Rump

Introduction

Ladders were introduced by Igusa and Todorov for the investigation of representation-finite artinian algebras and algebras over an algebraically closed field [7]. They prove a radical layers theorem [7] which exhibits the graded structure of Auslander-Reiten sequences. In a second article [8] they obtain a characterization of the Auslander-Reiten quivers of representation-finite artinian algebras. Their construction of ladders starts with an irreducible morphism $f_{0}: A_{0} \rightarrow B_{0}$ in a module category \mathcal{A}. So f_{0} factors through a right almost split map $u: \vartheta B_{0} \rightarrow B_{0}$. Assume that $f_{0}=u g$ with a split monomorphism g. Then g can be written as $g=\binom{1}{0}$ with respect to a decomposition $\vartheta B_{0}=A_{0} \oplus B_{1}$. This gives a pullback

which completes the first step of a ladder. Under favorite circumstances, the ladder can be extended. In the given situation, Igusa and Todorov [7] solved

[^0]the extension problem by a careful examination of the bimodules of irreducible maps between objects.

Recently, Iyama [9] improved the construction as follows. Let \mathcal{A} be a category with left and right almost split sequences (see §1). He calls a morphism f_{0} in \mathcal{A} special if for each morphism $r: A_{0} \rightarrow B_{0}$ in $\operatorname{Rad}^{2} \mathcal{A}, f_{0}+r$ is isomorphic to f_{0} as a two-termed complex. Then it follows in a quite elementary way that each step f_{n} of the ladder, after splitting off trivial complexes $X \rightarrow 0$, admits a continuation f_{n+1} which is again special. Such ladders have been farreaching enough to get a solution of Igusa and Todorov's problem in dimension one. Namely, they yield a characterization of the Auslander-Reiten quivers of representation-finite orders over a complete discrete valuation domain [10].

In [19] we modify the theory of ladders in such a way that a functorial approach becomes possible. Apart from being functorial, this method has a two-fold advantage. Firstly, it applies to arbitrary morphisms $f_{0} \in \operatorname{Rad} \mathcal{A}$, and secondly, it provides a kind of ladders with the property that the commutative squares between two steps are pullbacks and pushouts. Therefore, our ladders establish a bridge between almost split sequences and arbitrary short exact sequences.

In the present article, the method will be applied to the artinian situation. This gives a quick proof of Igusa and Todorov's characterization of the Auslander-Reiten quivers belonging to representation-finite artinian algebras. More generally, every cotilting module ${ }_{\Lambda} U$ over a left artinian ring Λ defines a full subcategory lat (U) of Λ-mod, consisting of the Λ-modules $M \in \Lambda$ - \bmod finitely cogenerated by U. For example, the category of representations of a poset in the sense of Nazarova, Roĭter [11], and Gabriel [6], and (generalized) vector space categories [20], are of that type. For a ring R, let R-proj denote the category of finitely generated projective left R-modules. We prove that the categories lat (U) with finitely many indecomposable objects can be characterized by two properties: They are equivalent to R-proj for an artinian ring R; and they have left and right almost split sequences for all of their objects.

$1 \quad \tau$-Rings and strict τ-categories

An additive category \mathcal{A} is said to be a Krull-Schmidt category, if every object is a finite direct sum of objects with local endomorphism rings. Then the ideal $\operatorname{Rad} \mathcal{A}$ generated by the non-invertible morphisms between indecomposable
objects in \mathcal{A} is called the radical of \mathcal{A}. A morphism $f: A \rightarrow B$ in \mathcal{A} is said to be right (left) almost split [4] if $f \in \operatorname{Rad} \mathcal{A}$, and every morphism $C \rightarrow B$ in (resp. $A \rightarrow C$) in $\operatorname{Rad} \mathcal{A}$ factors through f. The class of indecomposable objects will be denoted by $\operatorname{Ind} \mathcal{A}$, and ind \mathcal{A} will be a fixed representative system of the isomorphism classes in $\operatorname{Ind} \mathcal{A}$. If ind \mathcal{A} is finite for a KrullSchmidt category \mathcal{A}, then $R:=\operatorname{End}(\bigoplus \operatorname{ind} \mathcal{A})^{\text {op }}$ is a semiperfect ring with $\mathcal{A} \approx R$-proj, the category of finitely generated projective left R-modules. Note that the functor $P \mapsto P^{*}:=\operatorname{Hom}_{R}(P, R)$ provides a natural duality

$$
\begin{equation*}
(R \text {-proj })^{\mathrm{op}} \approx R^{\mathrm{op}} \text {-proj } . \tag{1}
\end{equation*}
$$

We define a τ-ring as a semiperfect ring R such that, as a left or right R-module, $\operatorname{Rad} R$ satisfies the following conditions:

$$
\left.\begin{array}{l}
\operatorname{Rad} R \text { is finitely presented } \tag{2}\\
\operatorname{pd}(\operatorname{Rad} R) \leqslant 1 \\
\operatorname{Ext}_{R}(\operatorname{Rad} R, R) \text { is semisimple. }
\end{array}\right\}
$$

This means that every simple R-module S has a minimal projective resolution

$$
\begin{equation*}
0 \rightarrow P_{2} \xrightarrow{v} P_{1} \xrightarrow{u} P_{0} \rightarrow S \tag{3}
\end{equation*}
$$

in $\mathcal{A}:=R$-proj (resp. $\left.\mathcal{A}:=R^{\text {op }}{ }^{\mathbf{-}} \mathbf{p r o j}\right)$ such that $u, v \in \mathcal{A}$ have the following properties:

$$
\left.\begin{array}{l}
v=\operatorname{ker} u \tag{4}\\
u \text { is right almost split } \\
v \text { is left almost split. }
\end{array}\right\}
$$

A complex $P_{2} \xrightarrow{v} P_{1} \xrightarrow{u} P_{0}$ in a Krull-Schmidt category \mathcal{A} that satisfies (4) is said to be a right almost split sequence for P_{0}. In a dual way, left almost split sequences are defined. So the definition of a τ-ring just states that R-proj has left and right almost split sequences for each of its objects. Krull-Schmidt categories with this property are known as strict τ-categories [9]. Since a right almost split sequence for an object A is unique up to isomorphism, it will be denoted by

$$
\begin{equation*}
\tau A \xrightarrow{v_{A}} \vartheta A \xrightarrow{u_{A}} A . \tag{5}
\end{equation*}
$$

Similarly, a left almost split sequence for A is denoted by

$$
\begin{equation*}
A \xrightarrow{u^{A}} \vartheta^{-} A \xrightarrow{v^{A}} \tau^{-} A . \tag{6}
\end{equation*}
$$

More generally, for a morphism $f: A \rightarrow B$ in a Krull-Schmidt category \mathcal{A}, we call $k: K \rightarrow A$ a weak kernel if $f k=0$ and every morphism $k^{\prime}: K^{\prime} \rightarrow A$
with $f k^{\prime}=0$ factors through k. If, in addition, each $g: C \rightarrow K$ with $k g=0$ lies in $\operatorname{Rad} \mathcal{A}$, then k is unique up to isomorphism (see [16], Proposition 7), and we write wker $f:=k$. If a sequence (5) satisfies (4) except that ker u is replaced by wker u, we speak of a right τ-sequence for A. In a dual way, weak cokernels, wcok f, and left τ-sequences (6) are defined. A Krull-Schmidt category with left and right τ-sequences for each of its objects is said to be a τ-category [9].

Proposition 1 ([9], 2.3). Let R be a τ-ring, and let S be a simple R-module with $\operatorname{pd} S=2$. Then $\operatorname{Ext}_{R}^{i}(S, R)=0$ for $i<2$, and $\operatorname{Ext}_{R}^{2}(S, R)$ is simple.

Proof. For a minimal projective resolution (3) of S, consider the projective resolution

$$
0 \rightarrow P^{*} \xrightarrow{i^{*}} P_{1}^{*} \xrightarrow{v^{*}} P_{2}^{*} \rightarrow \operatorname{Ext}_{R}^{2}(S, R)
$$

of the semisimple R-module $\operatorname{Ext}_{R}^{2}(S, R)$. Then $u^{*}=i^{*} p^{*}$ for some p : $P \rightarrow P_{0}$, and $u=p i$. This gives a commutative diagram

with $C:=\operatorname{Ext}_{R}^{2}\left(\operatorname{Ext}_{R}^{2}(S, R), R\right)$, where the horizontal sequences are projective resolutions. Our assumption $v \neq 0$ implies that $c p \neq 0$. Hence e is epic, and so S is a direct summand of the semisimple R-module C. Since $\operatorname{Ext}_{R}(C, R)=0$, we infer that $\operatorname{Ext}_{R}(S, R)=0$. Moreover, $c p \neq 0$ implies that p is a split epimorphism. Hence u^{*} is monic, and $\operatorname{Ext}_{R}(S, R)=0$ shows that $u^{*}=\operatorname{ker} v^{*}$. Thus e is an isomorphism. Since the complex (3) is indecomposable, this completes the proof.

Proposition 1 shows that any right almost split sequence $P_{2} \rightarrow P_{1} \rightarrow P_{0}$ with P_{0} indecomposable and $P_{2} \neq 0$ is left almost split with P_{2} indecomposable.

2 Ladder functors

An additive category \mathcal{A} is said to be preabelian if every morphism in \mathcal{A} has a kernel and a cokernel. Kernels (cokernels) in \mathcal{A} will be depicted by \mapsto
(resp. \rightarrow). Monic and epic morphisms will be called regular. A sequence of morphisms

$$
A \stackrel{a}{\mapsto} B \stackrel{b}{\rightarrow} C
$$

in \mathcal{A} with $a=\operatorname{ker} b$ and $b=\operatorname{cok} a$ is said to be short exact. Since every commutative square

in \mathcal{A} corresponds to a complex

$$
\begin{equation*}
A \xrightarrow{\binom{a}{-b}} B \oplus C \xrightarrow{(c d)} D \tag{8}
\end{equation*}
$$

we call (7) a left (right) almost split square resp. a left (right) τ-square if the corresponding property holds for (8). We call (7) exact if (8) is a short exact sequence. An object $Q \in \mathcal{A}$ is said to be projective (injective) if the functor $\operatorname{Hom}_{\mathcal{A}}(Q,-)\left(\right.$ resp. $\left.\operatorname{Hom}_{\mathcal{A}}(-, Q)\right)$ preserves short exact sequences. The full subcategories of projective (injective) objects will be denoted by $\operatorname{Proj}(\mathcal{A})$ (resp. $\operatorname{Inj}(\mathcal{A}))$. We say that \mathcal{A} has strictly enough projectives (injectives) [14] if for each object $A \in \mathcal{A}$ there is a cokernel $P \rightarrow A$ with $P \in \operatorname{Proj}(\mathcal{A})$ (resp. a kernel $A \mapsto I$ with $I \in \operatorname{Inj}(\mathcal{A}))$.

Let \mathcal{A} be a Krull-Schmidt category. The morphisms in \mathcal{A} form an additive category $\operatorname{Mor}(\mathcal{A})$ with morphisms $\varphi: b \rightarrow c$ given by commutative squares (7). Let $[\mathcal{A}]$ be the ideal of morphisms $\varphi: b \rightarrow c$ in \mathcal{A} which are homotopic to zero, i. e. for which there exists a morphism $h: C \rightarrow B$ in \mathcal{A} with $a=$ $h b$ and $d=c h$. It is easy to see that $[\mathcal{A}]$ consists of the morphisms which factor through an object $1_{E}: E \rightarrow E$ in $\operatorname{Mor}(\mathcal{A})$. Every object of $\operatorname{Mor}(\mathcal{A})$ is isomorphic to $e \oplus 1_{E}$ for some $e \in \operatorname{Rad} \mathcal{A}$. Therefore, the homotopy category $\operatorname{Mor}(\mathcal{A}) /[\mathcal{A}]$ is equivalent to a full subcategory $\mathrm{M}(\mathcal{A})$, consisting of the objects $e \in \operatorname{Mor}(\mathcal{A}) /[\mathcal{A}]$ with $e \in \operatorname{Rad} \mathcal{A}$. There are two natural full embeddings ()$^{+}:$ $\mathcal{A} \hookrightarrow \mathrm{M}(\mathcal{A})$ and ()$^{-}: \mathcal{A} \hookrightarrow \mathrm{M}(\mathcal{A})$ which map an object $A \in \mathcal{A}$ to $A^{+}: 0 \rightarrow A$ and $A^{-}: A \rightarrow 0$, respectively. So we have two full subcategories \mathcal{A}^{+}and \mathcal{A}^{-} of $\mathrm{M}(\mathcal{A})$ which are equivalent to \mathcal{A} :

$$
\begin{equation*}
\mathcal{A}^{+} \hookrightarrow \mathrm{M}(\mathcal{A}) \hookleftarrow \mathcal{A}^{-} . \tag{9}
\end{equation*}
$$

By $\operatorname{Rad}^{+} \mathrm{M}(\mathcal{A})\left(\right.$ resp. $\left.\operatorname{Rad}^{-} \mathrm{M}(\mathcal{A})\right)$ we denote the ideal of morphisms $b \rightarrow c$ in $\mathrm{M}(\mathcal{A})$ given by a commutative square (7) with $d \in \operatorname{Rad} \mathcal{A}(\operatorname{resp} . a \in \operatorname{Rad} \mathcal{A})$.

Lemma 1. Let \mathcal{A} be a Krull-Schmidt category. A morphism $\varphi: b \rightarrow c$ in $\mathrm{M}(\mathcal{A})$ given by (7) is invertible if and only if (8) is a split short exact sequence.

Proof. Assume first that (8) is a split short exact sequence. Then there are morphisms $\binom{e}{g}: D \rightarrow B \oplus C$ and $(f-h): B \oplus C \rightarrow A$ with

$$
\left(\begin{array}{ll}
c & d
\end{array}\right)\binom{e}{g}=1, \quad(f-h)\binom{a}{-b}=1, \quad\binom{a}{-b}(f-h)+\binom{e}{g}(c c d)=\left(\begin{array}{l}
1 \tag{10}\\
1 \\
0
\end{array}\right) .
$$

This gives six equations in \mathcal{A}. Five of these equations, except $a h=e d$, imply that

is an inverse of φ. Conversely, let (11) be an inverse of φ. Then there are morphisms $e: D \rightarrow B$ and $h^{\prime}: C \rightarrow A$ with

$$
\begin{array}{ll}
1-a f=e c & 1-d g=c e \tag{12}\\
1-f a=h^{\prime} b & 1-g d=b h^{\prime}
\end{array}
$$

Since $b, c \in \operatorname{Rad} \mathcal{A}$, this implies that a and d are isomorphisms. Hence (8) is a split short exact sequence.

Remark. Without use of the Krull-Schmidt property, the proof can be completed as follows. Equations (12) remain valid if we replace h^{\prime} by $h:=$ $h^{\prime}-f\left(a h^{\prime}-e d\right)$. In fact,
$f\left(a h^{\prime}-e d\right) b=f a h^{\prime} b-f e d b=f a(1-f a)-f e c a=f(1-a f-e c) a=0$ and $b f\left(a h^{\prime}-e d\right)=b f a h^{\prime}-b f e d=b\left(1-h^{\prime} b\right) h^{\prime}-g c e d=b h^{\prime} g d-g(1-d g) d=0$.

Now (10) follows, since $a h-e d=a h^{\prime}-e d-a f\left(a h^{\prime}-e d\right)=(1-a f)\left(a h^{\prime}-e d\right)=$ $e c\left(a h^{\prime}-e d\right)=e c a h^{\prime}-e c e d=e d b h^{\prime}-e(1-d g) d=e d(1-g d)-e(1-d g) d=0$.

Let \mathcal{A} be a strict τ-category, and let $a: A_{1} \rightarrow A_{0}$ be an object in $\mathrm{M}(\mathcal{A})$. Any decomposition $A_{0}=C \oplus P$ defines a morphism $\pi_{C}: a \rightarrow \bar{a}$, given by a commutative square

In [19] we define a morphism

$$
\begin{equation*}
\lambda_{C, a}: L_{C} a \rightarrow a \tag{13}
\end{equation*}
$$

in $\mathrm{M}(\mathcal{A})$ with the following universal property:
$(U)\left\{\begin{array}{l}\pi_{C} \lambda_{C, a} \in \operatorname{Rad}^{+} \mathrm{M}(\mathcal{A}), \text { and for every } \varphi: x \rightarrow a \text { with } \pi_{C} \varphi \in \operatorname{Rad}^{+} \mathrm{M}(\mathcal{A}) \\ \text { there is a unique factorization } \varphi=\lambda_{C, a} \varphi^{\prime} .\end{array}\right.$
Let us repeat the construction of (13). For any decomposition $A_{1}=B \oplus U$, we can write a as a matrix $a=\left(\begin{array}{c}b r \\ s \\ q\end{array}\right): B \oplus U \rightarrow C \oplus P$. We choose U as a maximal direct summand of A_{1} such that $r \in \operatorname{Rad}^{2} \mathcal{A}$. Then we have a right almost split square

Thus $r=\left(\begin{array}{ll}f & b\end{array}\right)\binom{t}{t^{\prime}}$ with $t, t^{\prime} \in \operatorname{Rad} \mathcal{A}$. We modify $B \oplus U$ by $\left(\begin{array}{cc}1 & -t^{\prime} \\ 0 & 1\end{array}\right) \in$ Aut $(B \oplus U)$, replacing the matrix of a by $\left(\begin{array}{cc}b & r \\ s & q\end{array}\right)\left(\begin{array}{cc}1 & -t^{\prime} \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}b & f t \\ s & p\end{array}\right)$ with $p:=q-s t^{\prime}$. Then (13) is given by the commutative square

$$
\begin{gather*}
C^{\prime} \oplus U \tag{15}\\
\left(\begin{array}{cc}
b^{\prime} & t \\
s f^{\prime} & p
\end{array}\right) \left\lvert\, \begin{array}{ll}
\left(\begin{array}{ll}
f^{\prime} & 0 \\
0 & 1
\end{array}\right) \\
\downarrow & \\
B^{\prime} \oplus P & \\
& \\
& \\
& \left(\begin{array}{ll}
f & 0 \\
0 & 1
\end{array}\right) \\
\left.\left\lvert\, \begin{array}{ll}
b & f t \\
s & p
\end{array}\right.\right) \\
\downarrow & \oplus P .
\end{array}\right.
\end{gather*}
$$

Notice the symmetric structure of (15). We apply (13) in two particular cases. First, we choose P as the largest direct summand of A_{0} with $\tau P=0$. Then we simply write $\lambda_{a}: L a \rightarrow a$ instead of (13). Together with its dual, we obtain a pair of additive functors $L, L^{-}: \mathrm{M}(\mathcal{A}) \rightarrow \mathrm{M}(\mathcal{A})$ with natural transformations

$$
\begin{equation*}
L \xrightarrow{\lambda} 1 \xrightarrow{\lambda^{-}} L^{-} . \tag{16}
\end{equation*}
$$

In fact, let $\underline{\operatorname{Rad}} \mathcal{A}($ resp. $\overline{\operatorname{Rad}} \mathcal{A})$ be the ideal of morphisms $r+s \in \mathcal{A}$ such that $r \in \operatorname{Rad} \mathcal{A}$, and s factors through an object $Q \in \mathcal{A}$ with $\tau Q=0\left(\right.$ resp. $\tau^{-} Q=$ 0). By $\underline{\operatorname{Rad}}^{+} \mathrm{M}(\mathcal{A})$ (resp. $\overline{\operatorname{Rad}}^{-} \mathrm{M}(\mathcal{A})$) we denote the ideal of morphisms φ : $b \rightarrow c$ in $\mathrm{M}(\mathcal{A})$ given by (7) such that $d \in \operatorname{Rad} \mathcal{A}($ resp. $a \in \overline{\operatorname{Rad}} \mathcal{A})$. Then the universal property (U) specializes to
$\left(\mathrm{U}_{\lambda}\right)\left\{\begin{array}{l}\lambda_{a} \in \underline{\operatorname{Rad}}^{+} \mathrm{M}(\mathcal{A}) \text { for each object } a \in \mathrm{M}(\mathcal{A}), \text { and every morphism } x \rightarrow a \\ \text { in } \underline{\operatorname{Rad}^{+} \mathrm{M}}(\mathcal{A}) \text { factors through } \lambda_{a} \text { in a unique manner. }\end{array}\right.$
Therefore, a morphism $\varphi: a \rightarrow b$ in $\mathrm{M}(\mathcal{A})$ determines a commutative square
with a unique morphism $L \varphi$. This shows that L is a functor with a natural transformation $\lambda: L \rightarrow 1$.

By the symmetry of (15), the universal property of λ admits a certain converse. Namely, every morphism $\varphi: L a \rightarrow d$ in $\overline{\operatorname{Rad}}^{-} \mathrm{M}(\mathcal{A})$ factors uniquely through λ_{a} ([19], Proposition 4). In particular, every morphism $\psi: L a \rightarrow b$ satisfies $\lambda_{b}^{-} \psi \in \overline{\operatorname{Rad}}^{-} \mathrm{M}(\mathcal{A})$. Therefore, ψ induces a commutative square

with a unique ψ^{\prime}, and by symmetry, the correspondence $\psi \mapsto \psi^{\prime}$ is bijective. Consequently, (18) together with (17) and its dual shows that L is left adjoint to L^{-}. We call L, L^{\prime} the ladder functors of $\mathrm{M}(\mathcal{A})$.

Another special case of (13) arises when we set $P=0$. Then we obtain a pair of functors $\widehat{L}, \widehat{L}^{-}: \mathrm{M}(\mathcal{A}) \rightarrow \mathrm{M}(\mathcal{A})$ with natural transformations

$$
\begin{equation*}
\widehat{L} \xrightarrow{\widehat{\lambda}} 1 \xrightarrow{\widehat{\lambda}^{-}} \widehat{L}^{-} \tag{19}
\end{equation*}
$$

such that $\widehat{\lambda}_{a}:=\lambda_{A_{0}, a}$ for any object $a: A_{1} \rightarrow A_{0}$. Here the universal property (U) specializes to
$\left(\mathrm{U}_{\widehat{\lambda}}\right)\left\{\begin{array}{l}\hat{\lambda}_{a} \in \operatorname{Rad}^{+} \mathrm{M}(\mathcal{A}), \text { and every morphism } x \rightarrow a \text { in } \operatorname{Rad}^{+} \mathrm{M}(\mathcal{A}) \text { factors } \\ \text { uniquely through } \widehat{\lambda}_{a} .\end{array}\right.$
The usefulness of L, L^{-}has been shown in [19]. An application of $\widehat{L}, \widehat{L}^{-}$ will be given in the next section.

Let $\varphi: b \rightarrow c$ be a morphism (7) in $\mathrm{M}(\mathcal{A})$. We call φ a pullback (pushout) morphism if (7) is a pullback (pushout). If (7) is an exact square, we call φ
an exact morphism. Note that these concepts are invariant under homotopy. In fact, a homotopy $h: C \rightarrow B$ in (7) amounts to an isomorphic change of the complex (8):

By [19], Propositions 3 and 4, and Corollary 3 of Proposition 5, we have
Proposition 2. Let \mathcal{A} be a strict τ-category. Then λ_{a} is exact, and $\widehat{\lambda}_{a}$ is a pullback morphism for any object $a \in \mathrm{M}(\mathcal{A})$. Moreover, L preserves exact morphisms.

For a full subcategory \mathcal{C} of an additive category \mathcal{A}, a morphism $f: A \rightarrow B$ in \mathcal{A} is said to be \mathcal{C}-epic (\mathcal{C}-monic) if every morphism $C \rightarrow B$ (resp. $A \rightarrow C$) with $C \in \mathcal{C}$ factors through f. In [19], Proposition 2, we characterize pullback morphisms in $\mathrm{M}(\mathcal{A})$ as \mathcal{A}^{-}-epic monomorphisms. By [C$]$ we denote the ideal of \mathcal{A} generated by the morphisms 1_{C} with $C \in \mathcal{C}$.

Let \mathcal{A} be a strict τ-category. We define $\operatorname{Proj}_{\tau}(\mathcal{A})\left(\right.$ resp. $\left.\mathbf{I n j}_{\tau}(\mathcal{A})\right)$ as the full subcategory of objects $Q \in \mathcal{A}$ with $\tau Q=0$ (resp. $\tau^{-} Q=0$). By Proposition 1 we have the inclusions

$$
\begin{equation*}
\operatorname{Proj}(\mathcal{A}) \subset \operatorname{Proj}_{\tau}(\mathcal{A}) ; \quad \operatorname{Inj}(\mathcal{A}) \subset \operatorname{Inj}_{\tau}(\mathcal{A}) . \tag{21}
\end{equation*}
$$

By the universal properties $\left(\mathrm{U}_{\lambda}\right)$ and $\left(\mathrm{U}_{\widehat{\lambda}}\right)$ there are unique natural transformations κ, κ^{-}which make the following triangles commutative:

More generally, there are natural transformations $\lambda^{n}: L^{n} \rightarrow 1$ and $\widehat{\lambda}^{n}: \widehat{L}^{n} \rightarrow 1$ for each $n \in \mathbb{N}$ with components

$$
\begin{equation*}
\lambda_{a}^{n}:=\lambda_{a} \lambda_{L a} \cdots \lambda_{L^{n-1} a} ; \quad \hat{\lambda}_{a}^{n}:=\widehat{\lambda}_{a} \widehat{\lambda}_{\widehat{L} a} \cdots \hat{\lambda}_{\hat{L}^{n-1} a} . \tag{23}
\end{equation*}
$$

As in (22) we find a unique natural transformation $\kappa^{n}: \widehat{L}^{n} \rightarrow L^{n}$ with $\lambda^{n} \kappa^{n}=$ $\widehat{\lambda}^{n}$ for any given n.

Proposition 3. Let \mathcal{A} be a strict τ-category. For each object $a \in \mathrm{M}(\mathcal{A})$, and $n \in \mathbb{N}$, the morphism $\kappa_{a}^{n}: \widehat{L}^{n} a \rightarrow L^{n} a$ is \mathcal{A}^{+}-epic modulo $\left[\operatorname{Proj}_{\tau}(\mathcal{A})^{+}\right]$.

Proof. Let A be an object in \mathcal{A}. Then every morphism $\varphi: A^{+} \rightarrow L^{n} a$ in $\mathrm{M}(\mathcal{A})$ satisfies $\lambda_{a}^{n} \varphi=\rho+\sigma$ with $\rho \in\left(\operatorname{Rad}^{+} \mathrm{M}(\mathcal{A})\right)^{n}$ and $\sigma \in\left[\operatorname{Proj}_{\tau}(\mathcal{A})^{+}\right]$. Hence $\left(\mathrm{U}_{\widehat{\lambda}}\right)$ gives $\rho=\widehat{\lambda}_{a}^{n} \rho^{\prime}$ for some $\rho^{\prime}: A^{+} \rightarrow \widehat{L}^{n} a$. Since λ_{a}^{n} is $\operatorname{Proj}_{\tau}(\mathcal{A})^{+}-$ epic by $\left(\mathrm{U}_{\lambda}\right)$, we get $\sigma=\lambda_{a}^{n} \sigma^{\prime}$ for some $\sigma^{\prime} \in\left[\operatorname{Proj}_{\tau}(\mathcal{A})^{+}\right]$. Therefore, $\lambda_{a}^{n}(\varphi-$ $\left.\kappa_{a}^{n} \rho^{\prime}-\sigma^{\prime}\right)=0$, and thus $\varphi=\kappa_{a}^{n} \rho^{\prime}+\sigma^{\prime}$.

3 Artinian τ-rings

Let R be a τ-ring with $\mathcal{A}:=R$-proj. We define Fix L (resp. Fix $L^{-}, \operatorname{Fix} \widehat{L}$, Fix \widehat{L}^{-}) as the full subcategory of objects $a \in \mathrm{M}(\mathcal{A})$ for which λ_{a} (resp. λ_{a}^{-}, $\left.\widehat{\lambda}_{a}, \widehat{\lambda}_{a}^{-}\right)$is an isomorphism. (Note that a morphism $\varphi: b \rightarrow c$ in $\mathrm{M}(\mathcal{A})$ given by (7) is invertible if and only if a and d are invertible in \mathcal{A}.) By the definitions, a : $A_{1} \rightarrow A_{0}$ belongs to Fix L (resp. Fix \widehat{L}) if and only if $\tau A_{0}=0\left(\right.$ resp. $\left.A_{0}=0\right)$.

The category $\mathrm{M}(\mathcal{A})$ is closely related to the categories $R-\bmod$ and $\bmod -R$ of finitely presented left resp. right R-modules. There are two additive functors

$$
\begin{equation*}
R-\bmod \stackrel{\mathrm{Cok}}{\rightleftarrows} \mathrm{M}(\mathcal{A}) \xrightarrow{\mathrm{Cok}^{-}}(\bmod -R)^{\mathrm{op}} \tag{24}
\end{equation*}
$$

given by the cokernel of $a: A_{1} \rightarrow A_{0}$ in $R-\bmod$ and $\operatorname{Cok}^{-} a:=\operatorname{Cok}\left(a^{*}\right)$.
Proposition 4. For a τ-ring R with $\mathcal{A}:=R$-proj, the functors (24) induce equivalences

$$
\begin{equation*}
R-\bmod \approx \mathrm{M}(\mathcal{A}) /\left[\mathcal{A}^{-}\right] ; \quad(\bmod -R)^{\mathrm{op}} \approx \mathrm{M}(\mathcal{A}) /\left[\mathcal{A}^{+}\right] \tag{25}
\end{equation*}
$$

In particular, an object $a \in \mathrm{M}(\mathcal{A})$ satisfies $\operatorname{Cok} a=0$ if and only if $a \in \mathcal{A}^{-}$.
Proof. Since the functors (24) are full and dense, we only have to show that a morphism $\varphi: b \rightarrow c$ given by (7) belongs to $\left[\mathcal{A}^{-}\right]$if and only if there exists a morphism h : $C \rightarrow B$ in \mathcal{A} with $d=c h$. If such an h exists, φ admits a factorization

The converse is trivial.
Since $\widehat{\lambda}_{a}: \widehat{L} a \rightarrow a$ is a pullback morphism for every object $a \in \mathrm{M}(\mathcal{A})$, and the embedding R-proj $\hookrightarrow R$-mod preserves pullbacks, there is a natural embedding $\operatorname{Cok}(\widehat{L} a) \hookrightarrow \operatorname{Cok} a$. More precisely, we have (cf. [9], Theorem 4.1)

Proposition 5. Let R be a τ-ring. For any object $a \in \mathrm{M}(R$-proj),

$$
\begin{equation*}
\operatorname{Cok}(\widehat{L} a)=\operatorname{Rad}(\operatorname{Cok} a) \tag{26}
\end{equation*}
$$

Proof. Put $\mathcal{A}:=R$-proj, and assume that $\widehat{\lambda}_{a}$ is given by a commutative square

Then $f_{0} \in \operatorname{Rad} \mathcal{A}$ implies that $\operatorname{Cok}(\widehat{L} a) \subset \operatorname{Rad}(\operatorname{Cok} a)$. Conversely, let $p: P \rightarrow$ $\operatorname{Rad} A_{0}$ be a projective cover in R-mod. Consider the natural epimorphisms $c: A_{0} \rightarrow \operatorname{Cok} a$ and $d: B_{0} \rightarrow \operatorname{Cok}(\widehat{L} a)$, and the inclusion $i: \operatorname{Cok}(\widehat{L} a) \hookrightarrow \operatorname{Cok} a$. Then p induces a morphism $\varphi: P^{+} \rightarrow a$ in $\operatorname{Rad}^{+} \mathrm{M}(\mathcal{A})$. By ($\left.\mathrm{U}_{\hat{\lambda}}\right)$ there is a morphism $\varphi^{\prime}: P^{+} \rightarrow \widehat{L} a$ with $\varphi=\widehat{\lambda}_{a} \varphi^{\prime}$. This gives morphisms $g: P \rightarrow B_{0}$ and $h: P \rightarrow A_{1}$ with $p-f_{0} g=a h$. Hence $\operatorname{Rad}(\operatorname{Cok} a)=c p(P)=c f_{0} g(P)=$ $i d g(P) \subset \operatorname{Cok}(\widehat{L} a)$.

Corollary. $A \tau$-ring R with $\mathcal{A}:=R$-proj is artinian if and only if there is an $n \in \mathbb{N}$ with $\widehat{L}^{n} \mathcal{A}^{+} \subset \mathcal{A}^{-}$. For such an n, every object $a \in \mathrm{M}(\mathcal{A})$ satisfies $\widehat{L}^{n} a \in \mathcal{A}^{-}$and $L^{n} a \in \operatorname{Fix} L$.

Proof. Note that R is artinian if and only if $\operatorname{Rad}^{n} R=0$ for some $n \in \mathbb{N}$. So the first statement follows by Propositions 4 and 5. Furthermore, $\widehat{L}^{n} a \in$ \mathcal{A}^{-}holds for each object $a \in \mathcal{A}$. By Proposition $3, \kappa_{a}^{n}$ is \mathcal{A}^{+}-epic modulo $\left[\operatorname{Proj}_{\tau}(\mathcal{A})^{+}\right]$. Therefore, $\widehat{L}^{n} a \in \mathcal{A}^{-}$implies that

$$
\operatorname{Hom}_{\mathrm{M}(\mathcal{A})}\left(\mathcal{A}^{+}, L^{n} a\right) \subset\left[\operatorname{Pro}_{\tau}(\mathcal{A})^{+}\right],
$$

whence $L^{n} a \in \operatorname{Fix} L$.

Proposition 6. For an artinian τ-ring R, the category R-proj is preabelian and has strictly enough projectives and injectives.

Proof. A morphism $f \in \mathcal{A}:=R$-proj can be regarded as an object $f \in$ $\operatorname{Mor}(\mathcal{A})$. So f is isomorphic to some $1_{C} \oplus a$ with $a \in \operatorname{Rad} \mathcal{A}$. Therefore, a
(co-)kernel of a gives a (co-)kernel of f. By the above Corollary, there is an $n \in \mathbb{N}$ with $\widehat{L}^{n} \mathcal{A}^{+} \subset \mathcal{A}^{-}$. In particular, $\widehat{L}^{n} a=K^{-}$for some object $K \in \mathcal{A}$. Since $\widehat{\lambda}_{a}^{n}: \widehat{L}^{n} a \rightarrow a$ is a pullback morphism by Proposition 2 , this gives a kernel of $a \in \mathcal{A}$. Now let A be an object in \mathcal{A}. By the above Corollary, $L^{n} A^{+} \in \operatorname{Fix} L$. Since $\lambda_{A^{+}}^{n}: L^{n} A^{+} \rightarrow A^{+}$is exact by Proposition 2 , we get a short exact sequence $B \stackrel{i}{\mapsto} P \rightarrow A$ with $i=L^{n} A^{+}$. To show that P is projective, consider a short exact sequence $X \xrightarrow{x} Y \xrightarrow{y} Z$ in \mathcal{A} and a morphism $f: P \rightarrow Z$. We may assume without loss of generality that $x \in \operatorname{Rad} \mathcal{A}$. Then y determines an exact morphism $\varphi: x \rightarrow Z^{+}$, and we have to show that $f^{+}: P^{+} \rightarrow Z^{+}$ factors through φ. By $\left(\mathrm{U}_{\lambda}\right)$ we have $f^{+}=\lambda_{Z^{+}}^{n} \psi$ for some $\psi: P^{+} \rightarrow L^{n} Z^{+}$. So it remains to be shown that ψ factors through $L^{n} \varphi$. Proposition 2 implies that $L^{n} \varphi$ is exact. By [16], Corollary of Proposition 8, every cokernel $D \rightarrow Q$ with $\tau Q=0$ splits. Since $L^{n} Z^{+} \in \operatorname{Fix} L$, Lemma 1 shows that $L^{n} \varphi$ is an isomorphism. Hence P is projective. The rest follows by duality.

Remark. A preabelian category with strictly enough projectives and injectives is also called a strict PI-category [14]. Such categories form an important class of almost abelian categories (see [14], §5).

As a consequence, we get the following extension of Igusa and Todorov's theorem ([8], Theorem 3.4).

Corollary. For a ring R with $\mathcal{A}:=R$-proj, the following are equivalent:
(a) R is an artinian τ-ring such that u_{P} is not epic for each $P \in \operatorname{Ind} \mathcal{A}$ with $\tau P=0$.
(b) There exists an artinian ring Λ with $\Lambda-\bmod \approx \mathcal{A}$.

Proof. (a) \Rightarrow (b): Define $Q:=\bigoplus(\operatorname{Proj}(\mathcal{A}) \cap \operatorname{ind} \mathcal{A})$ and $\Lambda:=\operatorname{End}_{\mathcal{A}}(Q)^{\mathrm{op}}$. Then Λ is artinian, and $\operatorname{Proj}(\mathcal{A}) \approx \Lambda$-proj. So it suffices to prove that \mathcal{A} is abelian, i. e. that every regular morphism $r: A \rightarrow B$ in \mathcal{A} is invertible (see [14], Proposition 12). In Mor \mathcal{A} we have a decomposition $r \cong 1_{C} \oplus a$ with $a \in \operatorname{Rad} \mathcal{A}$. By the Corollary of Proposition 5, there is an $n \in \mathbb{N}$ with $L^{n} a \in \operatorname{Fix} L$. Now (a) implies that $L^{n} a$ is not epic, unless $L^{n} a \in \mathcal{A}^{-}$. Since a is epic, we get $L^{n} a \in \mathcal{A}^{-}$. As a is monic, the exactness of λ_{a}^{n} gives $L^{n} a=0$, whence $a=0$.
(b) \Rightarrow (a): By Auslander's general existence theorem ([3], Theorem 3.9), there is an almost split sequence $\mathbb{E}: A \hookrightarrow B \rightarrow C$ in the category Λ-Mod of all Λ-modules for each non-projective $C \in \operatorname{Ind}(\Lambda$-mod). Since A is finitely generated by [13], Corollary (4.4), \mathbb{E} is an almost split sequence in Λ-mod.

By [21], Theorem 4, Λ - mod has a finitely generated injective cogenerator. Therefore, the dual argument implies that R is a τ-ring. By Harada and Sai's lemma ([12], 2.2), $\operatorname{Rad} R$ is nilpotent. Hence R is artinian. Since $\mathcal{A} \approx \Lambda$-mod, this proves (a).

More generally, we get a characterization of arbitrary artinian τ-rings. Let Λ and Γ be left and right coherent rings, respectively (see [1], §19). By [17], Proposition 10, this means that $\Lambda-\bmod$ and $\bmod -\Gamma$ are abelian categories. A bimodule ${ }_{\Lambda} U_{\Gamma}$ is said to be cotilting (cf. [5]) if ${ }_{\Lambda} U$ and U_{Γ} are finitely presented with $\Lambda=\operatorname{End}\left(U_{\Gamma}\right)$ and $\Gamma=\operatorname{End}\left({ }_{\Lambda} U\right)^{\mathrm{op}}$ such that for each $M \in \Lambda-\bmod$ and $N \in \bmod -\Gamma$,

$$
\begin{equation*}
\operatorname{Ext}_{\Lambda}(U, U)=\operatorname{Ext}_{\Gamma}(U, U)=\operatorname{Ext}_{\Lambda}^{2}(M, U)=\operatorname{Ext}_{\Gamma}^{2}(N, U)=0 \tag{27}
\end{equation*}
$$

Since Γ is determined by ${ }_{\Lambda} U$, the module ${ }_{\Lambda} U$ is said to be a cotilting module. By lat (U) we denote the full subcategory of Λ-mod consisting of the modules $M \in \Lambda$ - mod which are finitely cogenerated by ${ }_{\Lambda} U$ (i. e. which admit an embedding $M \hookrightarrow U^{n}$ for some $\left.n \in \mathbb{N}\right)$. Then $\operatorname{lat}(U)$ is equivalent to the category of right Γ-modules $N \in \bmod -\Gamma$ which are finitely cogenerated by U_{Γ} (see Appendix).

Theorem 1. For every artinian τ-ring R there exists a cotilting bimodule ${ }_{\Lambda} U_{\Gamma}$ over artinian rings Λ, Γ such that $R-\mathbf{p r o j} \approx \operatorname{lat}(U)$. Conversely, if ${ }_{\Lambda} U$ is a cotilting module over a left artinian ring Λ with $\operatorname{ind}(\operatorname{lat}(U))$ finite, then Λ and $\Gamma:=\operatorname{End}_{\Lambda}(U)^{\mathrm{op}}$ are artinian, and up to Morita equivalence, there is a unique artinian τ-ring R with R-proj $\approx \operatorname{lat}(U)$.

Proof. Let R be an artinian τ-ring with $\mathcal{A}:=R$-proj. We set $P:=$ $\bigoplus(\operatorname{Proj}(\mathcal{A}) \cap \operatorname{ind} \mathcal{A})$ and $I:=\bigoplus(\operatorname{Inj}(\mathcal{A}) \cap \operatorname{ind} \mathcal{A})$. Then $\Lambda:=\operatorname{End}_{\mathcal{A}}(P)^{\mathrm{op}}$ and $\Gamma:=\operatorname{End}_{\mathcal{A}}(I)^{\mathrm{op}}$ are artinian. By Proposition 6 and the cotilting theorem ([14], Theorem 6; see Appendix), ${ }_{\Lambda} U_{\Gamma}:=\operatorname{Hom}_{\mathcal{A}}(P, I)$ is a cotilting bimodule with $\mathcal{A} \approx \operatorname{lat}(U)$.

Conversely, let ${ }_{\Lambda} U_{\Gamma}$ be a cotilting bimodule with Λ left artinian such that $\operatorname{ind} \mathcal{A}$ is finite for $\mathcal{A}:=\operatorname{lat}(U)$. We set $R:=\operatorname{End}_{\mathcal{A}}(\bigoplus \operatorname{ind} \mathcal{A})^{\text {op }}$. Then R - $\operatorname{proj} \approx \mathcal{A}$. Consider \mathcal{A} as a full subcategory of Λ - mod. Then $\operatorname{Proj}(\mathcal{A})=$ Λ-proj by [15], Lemma 4. Let $C \in \operatorname{Ind} \mathcal{A}$ be non-projective. Then there is a cokernel $c: C^{\prime \prime} \rightarrow C^{\prime}$ and a morphism $f: C \rightarrow C^{\prime}$ in \mathcal{A} such that f does not factor through c. By [14], Proposition $12, \mathcal{A}$ is an almost abelian category (see Appendix). Therefore, the pullback of c and f yields a non-split short exact sequence $A \stackrel{a}{\longrightarrow} B \xrightarrow{b} C$ in \mathcal{A}. Consequently, there is an indecomposable direct summand D of A such that the projection $a^{\prime}: A \rightarrow D$ does not factor
through a. So the pushout of a and a^{\prime} yields a non-split short exact sequence $D \stackrel{d}{\hookrightarrow} E \stackrel{e}{\rightarrow} C$ in \mathcal{A}. By the lemma of Harada and Sai (see [12], 2.2), Rad R is nilpotent. Hence there exists a morphism $g: D \rightarrow D^{\prime}$ in Ind \mathcal{A} that does not factor through d such that for each non-invertible $h: D^{\prime} \rightarrow D^{\prime \prime}$ in $\operatorname{Ind} \mathcal{A}$, the composition $h g$ factors through d. So the pushout of d and g yields a left almost split sequence $D^{\prime} \hookrightarrow E^{\prime} \rightarrow C$. For $P \in \operatorname{Proj}(\mathcal{A})$, the right almost split sequence in \mathcal{A} is given by $0 \rightarrow(\operatorname{Rad} \Lambda) P \rightarrow P$. If we regard \mathcal{A} as a full subcategory of $(\bmod -\Gamma)^{\text {op }}$, the preceding arguments can be dualized. Therefore, [18], Lemma 8 , implies that \mathcal{A} is a strict τ-category. Hence R is an artinian τ-ring. Since the rings Λ, Γ are of the form $e R e$ for some idempotent $e \in R$, they are artinian as well. Finally, R-proj $\approx \mathcal{A}$ implies that R is unique up to Morita equivalence.

Appendix: The general cotilting theorem

In this appendix we give a brief explanation and a short proof of the cotilting theorem ([14], Theorem 6). Let Λ (resp. Γ) be a left (resp. right) coherent ring. Then Λ - mod and mod- Γ are abelian categories (see [17], Proposition 10). Every bimodule ${ }_{\Lambda} U_{\Gamma}$ with ${ }_{\Lambda} U$ and U_{Γ} finitely presented gives rise to an adjoint pair of additive functors

$$
\begin{equation*}
\Lambda-\bmod \underset{F}{\stackrel{E}{\rightleftarrows}}(\bmod -\Gamma)^{\mathrm{op}} \tag{28}
\end{equation*}
$$

with $E:=\operatorname{Hom}_{\Lambda}(-, U)$ and $F:=\operatorname{Hom}_{\Gamma}(-, U)$. Conversely, we have the following version of Watt's theorem.

Lemma 2. Every adjoint pair (28) is of the form $E \cong \operatorname{Hom}_{\Lambda}(-, U)$ and $F \cong$ $\operatorname{Hom}_{\Gamma}(-, U)$ with a bimodule ${ }_{\Lambda} U_{\Gamma}$ such that ${ }_{\Lambda} U$ and U_{Γ} are finitely presented.

Proof. Define $U_{\Gamma}:=E\left({ }_{\Lambda} \Lambda\right)$. Then the right operation of Λ on ${ }_{\Lambda} \Lambda$ makes U into a (Λ, Γ)-bimodule. For $M \in \Lambda$-mod, consider a presentation $\Lambda^{m} \xrightarrow{a}$ $\Lambda^{n} \rightarrow M$. Since E is a left adjoint, $E M=\operatorname{Cok}(E a)$ in $(\bmod -\Gamma)^{\mathrm{op}}$. Thus $E M=\operatorname{Ker}_{\operatorname{Hom}_{\Lambda}}(a, U)$ in $\bmod -\Gamma$, i. e. $E \cong \operatorname{Hom}_{\Lambda}(-, U)$. Hence $F N=$ $\operatorname{Hom}_{\Lambda}(\Lambda, F N) \cong \operatorname{Hom}_{\Gamma}(N, E \Lambda) \cong \operatorname{Hom}_{\Gamma}(N, U)$ for all $N \in \bmod -\Gamma$. In particular, ${ }_{\Lambda} U=\operatorname{Hom}_{\Gamma}(\Gamma, U) \cong F \Gamma$ is finitely presented.

For a given bimodule ${ }_{\Lambda} U_{\Gamma}$ we simply write ()* for both functors $\operatorname{Hom}_{\Lambda}(-, U)$ and $\operatorname{Hom}_{\Gamma}(-, U)$. Then the unit η and the counit ε of the adjunction are given
by

$$
\begin{equation*}
\eta_{M}: M \rightarrow M^{* *} ; \quad \varepsilon_{N}: N \rightarrow N^{* *} \tag{29}
\end{equation*}
$$

for $M \in \Lambda-\bmod$ and $N \in \bmod -\Gamma$.
A pair

$$
\begin{equation*}
\mathcal{C} \underset{F}{\stackrel{E}{\rightleftarrows}} \mathcal{B} \tag{30}
\end{equation*}
$$

of additive functors with $E \dashv F$ is said to be a pre-equivalence [15] if the unit is epic, and the counit is monic. Then (30) induces an equivalence $\operatorname{Im} F \approx \operatorname{Im} E$, and the category $\mathcal{A}:=\operatorname{Im} F$ is almost abelian. This means that \mathcal{A} is preabelian, and cokernels (resp. kernels) are stable under pullback (pushout) [14]. Furthermore, the full subcategory $\overline{\operatorname{Im} E}$ (resp. $\overline{\operatorname{Im} F}$) of subobjects (quotient objects) of objects in $\operatorname{Im} E$ (resp. $\operatorname{Im} F$) is abelian. If $\overline{\operatorname{Im} E}=\mathcal{B}$ and $\overline{\operatorname{Im} F}=\mathcal{C}$, we call (30) a tilting. In this case, up to isomorphism, the adjunction (30) is intrinsicly determined by the almost abelian category \mathcal{A}. In other words, tiltings and almost abelian categories are essentially the same thing (see [15], Theorem 1). In the particular case (28) we have the following characterization.

Theorem 2. An adjoint pair (28) is a tilting if and only if the corresponding bimodule ${ }_{\Lambda} U_{\Gamma}$ is cotilting. When these equivalent conditions hold, lat (U) is the corresponding almost abelian category.

Proof. Let $\operatorname{Cog}_{\Lambda} U$ denote the class of finitely generated submodules of some $\left({ }_{\Lambda} U\right)^{n}$. We show first that the conditions (27) can be replaced by

$$
\begin{equation*}
\operatorname{Ext}_{\Lambda}(M, U)=\operatorname{Ext}_{\Gamma}(N, U)=0 \text { for } M \in \operatorname{Cog}_{\Lambda} U \text { and } N \in \operatorname{Cog}_{\Gamma} U \tag{31}
\end{equation*}
$$

Assume (31). For any $M \in \Lambda$ - mod, there is a short exact sequence $M^{\prime} \hookrightarrow$ $\Lambda^{n} \rightarrow M$ with $M^{\prime} \in \Lambda$-mod. Since an epimorphism $\Gamma^{m} \rightarrow U$ gives an embedding $\Lambda=\operatorname{Hom}_{\Gamma}(U, U) \hookrightarrow \operatorname{Hom}_{\Gamma}\left(\Gamma^{m}, U\right)=U^{m}$, we have $\Lambda^{n} \in \operatorname{Cog}_{\Lambda} U$. Hence $\operatorname{Ext}_{\Lambda}^{2}(M, U)=\operatorname{Ext}_{\Lambda}^{1}\left(M^{\prime}, U\right)=0$. By duality, this proves (27). Conversely, let $M \hookrightarrow U^{n} \rightarrow C$ be a short exact sequence in Λ-mod. Then

$$
\operatorname{Ext}_{\Lambda}^{1}\left(U^{n}, U\right) \rightarrow \operatorname{Ext}_{\Lambda}^{1}(M, U) \rightarrow \operatorname{Ext}_{\Lambda}^{2}(C, U)
$$

is exact. Hence (27) implies (31).
Now let (28) be a tilting with corresponding bimodule ${ }_{\Lambda} U_{\Gamma}$. Then ${ }_{\Lambda} \Lambda \in$ $\overline{\operatorname{Im} F}$ implies that there is an epimorphism $N^{*} \rightarrow{ }_{\Lambda} \Lambda$. Since N^{*} is reflexive, i. e. $\eta_{N^{*}}$ is invertible, we infer that Λ is reflexive. Hence $\operatorname{End}\left(U_{\Gamma}\right)=\Lambda$, and
similarly, $\operatorname{End}\left({ }_{\Lambda} U\right)=\Gamma$. Any embedding $M \hookrightarrow U^{n}$ in $\Lambda-\bmod$ gives rise to a commutative diagram

Since η_{U} is an isomorphism, η_{M} is monic. On the other hand, an epimorphism $\Gamma^{m} \rightarrow N$ yields $N^{*} \hookrightarrow U^{m}$, i. e. $N^{*} \in \operatorname{Cog}_{\Lambda} U$. Therefore, $\operatorname{Cog}_{\Lambda} U$ consists of the reflexive modules in Λ-mod. So for a given $M \in \operatorname{Cog}_{\Lambda} U$, the modules in a short exact sequence $K \stackrel{i}{\longrightarrow} \Lambda^{k} \xrightarrow{p} M$ are reflexive. Applying ()* gives $M^{*} \stackrel{p^{*}}{\longrightarrow}$ $U^{k} \xrightarrow{i^{*}} K^{*}$ with $p^{*}=\operatorname{ker} i^{*}$. As a submodule of $K^{*}, \operatorname{Cok} p^{*}$ is reflexive. Hence $\left(\operatorname{cok} p^{*}\right)^{*} \cong \operatorname{ker} p=i$, and thus $i^{*}=\operatorname{cok} p^{*}$. This proves that $\operatorname{Ext}_{\Lambda}(M, U)=0$.

Conversely, let ${ }_{\Lambda} U_{\Gamma}$ be cotilting, and $M \in \Lambda$-mod. Then a presentation $\Lambda^{m} \rightarrow \Lambda^{n} \xrightarrow{p} M$ leads to a short exact sequence $M^{*} \stackrel{p^{*}}{\mapsto} U^{n} \rightarrow C$ and an embedding $C \hookrightarrow U^{m}$. By (31) it follows that $p^{* *}: \Lambda^{n} \rightarrow M \xrightarrow{\eta_{M}} M^{* *}$ is epic. Hence η_{M} is epic. Since Λ and Γ are reflexive, and every object in Λ-mod (resp. $\bmod -\Gamma$) is a factor module of a free module, (28) is a tilting.

References

[1] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer New York - Heidelberg - Berlin 1974.
[2] M. Auslander, Representation Theory of Artin Algebras II, Commun. in Algebra 1 (1974), 269-310.
[3] M. Auslander, Functors and Morphisms determined by Objects, in: Representation Theory of Algebras, Proc. Conf. Representation Theory, Philadelphia 1976 (Marcel Dekker 1978), pp. 1-244.
[4] M. Auslander, S. O. Smalø, Almost Split Sequences in Subcategories, J. Algebra 69 (1981), 426-454.
[5] R. R. Colby, A generalization of Morita duality and the tilting theorem, Comm. in Alg. 17 (1989), 1709-1722.
[6] P. Gabriel, Représentations indécomposables des ensembles ordonnés, Sém. Dubreil 1972-73, Paris, exposé 13, p. 1-10.
[7] K. Igusa, G. Todoro, Radical Layers of Representable Functors, J. Algebra 89 (1984), 105-147.
[8] K. Igusa, G. Todorov, A Characterization of Finite Auslander-Reiten Quivers, J. Algebra 89 (1984), 148-177.
[9] O. Iyama, τ-categories I: Radical Layers Theorem, Algebras and Representation Theory, to appear.
[10] O. Iyama, τ-categories III: Auslander Orders and Auslander-Reiten quivers, Algebras and Representation Theory, to appear.
[11] L. A. Nazarova, A. V. Roĭter, Representations of partially ordered sets, Zapiski Nauchn. Sem. LOMI 28 (1972), 5-31 = J. Soviet Math. 3 (1975), 585-606.
[12] C. M. Ringel, Report on the Brauer-Thrall conjectures: Roĭter's theorem and the theorem of Nazarova and Roŭter (On algorithms for solving vector space problems, $I)$, Proc. of the Workshop on present trends in the representation theory and the second international conference on representations of algebras, Carleton Math. Lect. Notes 25 (1980).
[13] C. M. Ringel, H. Tachkawa, QF-3 rings, J. Reine Angew. Math. 272 (1975), 49-72.
[14] W. Rump, Almost Abelian Categories, 63pp., Cahiers de topologie et géométrie différentielle catégoriques, to appear.
[15] W. Rump, *-Modules, Tilting, and Almost Abelian Categories, 333pp., Commun. in Algebra, to appear.
[16] W. Rump, Derived orders and Auslander-Reiten quivers, 17pp., An. St. Univ. Ovidius Constantza, to appear.
[17] W. Rump, Differentiation for orders and artinian rings, Preprint.
[18] W. Rump, Lattice-finite rings, Preprint.
[19] W. Rump, The category of lattices over a lattice-finite ring, Preprint.
[20] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Gordon and Breach, Amsterdam 1992.
[21] W. Zimmermann, Auslander-Reiten sequences over artin rings, J. Algebra 119 (1988), 366-392.

Mathematisch-Geographische Fakultät, Katholische Universität Eichstätt, Ostenstrasse 26-28,
D-85071 Eichstätt,
Germany
e-mail: wolfgang.rump@ku-eichstaett.de

[^0]: Key Words: Ladder, τ-category, artin ring.
 Mathematical Reviews subject classification: 16G70, 16G10.
 Received: September, 2001.

