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LADDER FUNCTORS WITH AN

APPLICATION TO

REPRESENTATION-FINITE ARTINIAN

RINGS

Wolfgang Rump

Introduction

Ladders were introduced by Igusa and Todorov for the investigation of
representation-finite artinian algebras and algebras over an algebraically closed
field [7]. They prove a radical layers theorem [7] which exhibits the graded
structure of Auslander-Reiten sequences. In a second article [8] they obtain a
characterization of the Auslander-Reiten quivers of representation-finite artini-
an algebras. Their construction of ladders starts with an irreducible morphism
f0: A0 → B0 in a module category A. So f0 factors through a right almost split
map u: ϑB0 → B0. Assume that f0 = ug with a split monomorphism g. Then
g can be written as g =

(
1
0

)
with respect to a decomposition ϑB0 = A0 ⊕ B1.

This gives a pullback

A1 → A0

B1

↓
f1

→ B0

↓
f0

which completes the first step of a ladder. Under favorite circumstances, the
ladder can be extended. In the given situation, Igusa and Todorov [7] solved
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108 W. Rump

the extension problem by a careful examination of the bimodules of irreducible
maps between objects.

Recently, Iyama [9] improved the construction as follows. Let A be a cat-
egory with left and right almost split sequences (see §1). He calls a morphism
f0 in A special if for each morphism r: A0 → B0 in Rad2

A, f0 + r is isomor-
phic to f0 as a two-termed complex. Then it follows in a quite elementary way
that each step fn of the ladder, after splitting off trivial complexes X → 0,
admits a continuation fn+1 which is again special. Such ladders have been far-
reaching enough to get a solution of Igusa and Todorov’s problem in dimension
one. Namely, they yield a characterization of the Auslander-Reiten quivers of
representation-finite orders over a complete discrete valuation domain [10].

In [19] we modify the theory of ladders in such a way that a functorial
approach becomes possible. Apart from being functorial, this method has a
two-fold advantage. Firstly, it applies to arbitrary morphisms f0 ∈ Rad A, and
secondly, it provides a kind of ladders with the property that the commutative
squares between two steps are pullbacks and pushouts. Therefore, our ladders
establish a bridge between almost split sequences and arbitrary short exact
sequences.

In the present article, the method will be applied to the artinian situa-
tion. This gives a quick proof of Igusa and Todorov’s characterization of the
Auslander-Reiten quivers belonging to representation-finite artinian algebras.
More generally, every cotilting module ΛU over a left artinian ring Λ defines a
full subcategory lat(U) of Λ-mod, consisting of the Λ-modules M ∈ Λ-mod
finitely cogenerated by U . For example, the category of representations of a
poset in the sense of Nazarova, Rŏıter [11], and Gabriel [6], and (generalized)
vector space categories [20], are of that type. For a ring R, let R-proj denote
the category of finitely generated projective left R-modules. We prove that the
categories lat(U) with finitely many indecomposable objects can be charac-
terized by two properties: They are equivalent to R-proj for an artinian ring
R; and they have left and right almost split sequences for all of their objects.

1 τ-Rings and strict τ-categories

An additive category A is said to be a Krull-Schmidt category, if every object is
a finite direct sum of objects with local endomorphism rings. Then the ideal
Rad A generated by the non-invertible morphisms between indecomposable
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objects in A is called the radical of A. A morphism f : A → B in A is said
to be right (left) almost split [4] if f ∈ Rad A, and every morphism C → B
in (resp. A → C) in Rad A factors through f . The class of indecomposable
objects will be denoted by IndA, and ind A will be a fixed representative
system of the isomorphism classes in Ind A. If ind A is finite for a Krull-
Schmidt category A, then R := End(

⊕
ind A)op is a semiperfect ring with

A ≈ R-proj, the category of finitely generated projective left R-modules.
Note that the functor P 7→ P ∗ := HomR(P,R) provides a natural duality

(R-proj)op ≈ Rop-proj. (1)

We define a τ -ring as a semiperfect ring R such that, as a left or right
R-module, RadR satisfies the following conditions:

RadR is finitely presented
pd(RadR) 6 1
ExtR(RadR,R) is semisimple.



 (2)

This means that every simple R-module S has a minimal projective resolution

0→ P2
v
→ P1

u
→ P0 � S (3)

in A := R-proj (resp. A := Rop-proj) such that u, v ∈ A have the following
properties:

v = keru
u is right almost split
v is left almost split.



 (4)

A complex P2
v
→ P1

u
→ P0 in a Krull-Schmidt category A that satisfies (4) is

said to be a right almost split sequence for P0. In a dual way, left almost split
sequences are defined. So the definition of a τ -ring just states that R-proj
has left and right almost split sequences for each of its objects. Krull-Schmidt
categories with this property are known as strict τ -categories [9]. Since a right
almost split sequence for an object A is unique up to isomorphism, it will be
denoted by

τA
vA

−→ ϑA
uA

−→ A. (5)

Similarly, a left almost split sequence for A is denoted by

A
uA

−→ ϑ−A
vA

−→ τ−A. (6)

More generally, for a morphism f : A→ B in a Krull-Schmidt category A,
we call k: K → A a weak kernel if fk = 0 and every morphism k′: K ′ → A
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with fk′ = 0 factors through k. If, in addition, each g: C → K with kg = 0
lies in Rad A, then k is unique up to isomorphism (see [16], Proposition 7),
and we write wker f := k. If a sequence (5) satisfies (4) except that keru
is replaced by wkeru, we speak of a right τ -sequence for A. In a dual way,
weak cokernels, wcok f , and left τ -sequences (6) are defined. A Krull-Schmidt
category with left and right τ -sequences for each of its objects is said to be a
τ -category [9].

Proposition 1 ([9], 2.3). Let R be a τ -ring, and let S be a simple R-module
with pdS = 2. Then Exti

R(S,R) = 0 for i < 2, and Ext2R(S,R) is simple.

Proof. For a minimal projective resolution (3) of S, consider the projective
resolution

0→ P ∗ i∗

−→ P ∗

1
v∗

−→ P ∗

2 � Ext2R(S,R)

of the semisimple R-module Ext2R(S,R). Then u∗ = i∗p∗ for some p: P → P0,
and u = pi. This gives a commutative diagram

0 → P2
v
→ P1

i
→ P � C

0 → P2

wwwwww
v
→ P1

wwwwww
u
→ P0

↓
p

c
� S

↓
e

with C := Ext2R(Ext2R(S,R), R), where the horizontal sequences are projective
resolutions. Our assumption v 6= 0 implies that cp 6= 0. Hence e is epic, and so
S is a direct summand of the semisimple R-module C. Since ExtR(C,R) = 0,
we infer that ExtR(S,R) = 0. Moreover, cp 6= 0 implies that p is a split
epimorphism. Hence u∗ is monic, and ExtR(S,R) = 0 shows that u∗ = ker v∗.
Thus e is an isomorphism. Since the complex (3) is indecomposable, this
completes the proof. �

Proposition 1 shows that any right almost split sequence P2 → P1 → P0

with P0 indecomposable and P2 6= 0 is left almost split with P2 indecompos-
able.

2 Ladder functors

An additive category A is said to be preabelian if every morphism in A has
a kernel and a cokernel. Kernels (cokernels) in A will be depicted by �
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(resp. �). Monic and epic morphisms will be called regular. A sequence of
morphisms

A
a

� B
b
� C

in A with a = ker b and b = cok a is said to be short exact. Since every
commutative square

A
a
→ B

C

↓
b

d
→ D

↓
c (7)

in A corresponds to a complex

A

(
a
−b

)
−→ B ⊕ C

(c d)
−→ D, (8)

we call (7) a left (right) almost split square resp. a left (right) τ -square if the
corresponding property holds for (8). We call (7) exact if (8) is a short exact
sequence. An object Q ∈ A is said to be projective (injective) if the functor
HomA(Q,−) (resp. HomA(−, Q)) preserves short exact sequences. The full
subcategories of projective (injective) objects will be denoted by Proj(A)
(resp. Inj(A)). We say that A has strictly enough projectives (injectives) [14]
if for each object A ∈ A there is a cokernel P � A with P ∈ Proj(A) (resp.
a kernel A � I with I ∈ Inj(A)).

Let A be a Krull-Schmidt category. The morphisms in A form an additive
category Mor(A) with morphisms ϕ: b → c given by commutative squares
(7). Let [A] be the ideal of morphisms ϕ: b → c in A which are homotopic
to zero, i. e. for which there exists a morphism h: C → B in A with a =
hb and d = ch. It is easy to see that [A] consists of the morphisms which
factor through an object 1E : E → E in Mor(A). Every object of Mor(A) is
isomorphic to e⊕ 1E for some e ∈ Rad A. Therefore, the homotopy category
Mor(A)/[A] is equivalent to a full subcategory M(A), consisting of the objects
e ∈ Mor(A)/[A] with e ∈ Rad A. There are two natural full embeddings ( )+:
A ↪→ M(A) and ( )−: A ↪→ M(A) which map an object A ∈ A to A+: 0→ A
and A−: A → 0, respectively. So we have two full subcategories A+ and A−

of M(A) which are equivalent to A:

A
+ ↪→ M(A)←↩ A−. (9)

By Rad+
M(A) (resp. Rad−

M(A)) we denote the ideal of morphisms b→ c in
M(A) given by a commutative square (7) with d ∈ Rad A (resp. a ∈ Rad A).
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Lemma 1. Let A be a Krull-Schmidt category. A morphism ϕ: b→ c in M(A)
given by (7) is invertible if and only if (8) is a split short exact sequence.

Proof. Assume first that (8) is a split short exact sequence. Then there
are morphisms

(
e
g

)
: D → B ⊕ C and (f − h): B ⊕ C → A with

(c d)
(

e
g

)
= 1, (f −h)

(
a
−b

)
= 1,

(
a
−b

)
(f −h) +

(
e
g

)
(c d) =

(
1 0
0 1

)
. (10)

This gives six equations in A. Five of these equations, except ah = ed, imply
that

B
f
→ A

D

↓
c

g
→ C

↓
b (11)

is an inverse of ϕ. Conversely, let (11) be an inverse of ϕ. Then there are
morphisms e: D → B and h′: C → A with

1− af = ec 1− dg = ce
1− fa = h′b 1− gd = bh′.

(12)

Since b, c ∈ Rad A, this implies that a and d are isomorphisms. Hence (8) is a
split short exact sequence. �

Remark. Without use of the Krull-Schmidt property, the proof can be com-
pleted as follows. Equations (12) remain valid if we replace h′ by h :=
h′ − f(ah′ − ed). In fact,

f(ah′ − ed)b = fah′b− fedb = fa(1− fa)− feca = f(1− af − ec)a = 0 and
bf(ah′ − ed) = bfah′ − bfed = b(1− h′b)h′ − gced = bh′gd− g(1− dg)d = 0.

Now (10) follows, since ah−ed = ah′−ed−af(ah′−ed) = (1−af)(ah′−ed) =
ec(ah′−ed) = ecah′−eced = edbh′−e(1−dg)d = ed(1−gd)−e(1−dg)d = 0. �

Let A be a strict τ -category, and let a: A1 → A0 be an object in M(A).
Any decomposition A0 = C ⊕ P defines a morphism πC : a → a, given by a
commutative square

A1
1
→ A1

C ⊕ P

↓
a

(1 0)
→ C.

↓
a
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In [19] we define a morphism

λC,a : LCa→ a (13)

in M(A) with the following universal property:

(U)

{
πCλC,a ∈ Rad+

M(A), and for every ϕ: x → a with πCϕ ∈ Rad+
M(A)

there is a unique factorization ϕ = λC,aϕ
′.

Let us repeat the construction of (13). For any decomposition A1 = B ⊕ U ,
we can write a as a matrix a =

(
b r
s q

)
: B ⊕ U → C ⊕ P . We choose U as a

maximal direct summand of A1 such that r ∈ Rad2
A. Then we have a right

almost split square

C ′
f ′
→ B

B′

↓
b′

f
→ C.

↓
b (14)

Thus r = (f b)
(

t
t′

)
with t, t′ ∈ Rad A. We modify B ⊕ U by

(
1 −t′

0 1

)
∈

Aut(B ⊕ U), replacing the matrix of a by
(

b r

s q

) (
1 −t′

0 1

)
=

(
b ft

s p

)
with

p := q − st′. Then (13) is given by the commutative square

C ′ ⊕ U

(
f ′ 0
0 1

)

→ B ⊕ U

B′ ⊕ P

(
b′ t

sf ′ p

)

↓
(

f 0
0 1

)

→ C ⊕ P .

↓

(
b ft

s p

)

(15)

Notice the symmetric structure of (15). We apply (13) in two particular cases.
First, we choose P as the largest direct summand of A0 with τP = 0. Then we
simply write λa: La→ a instead of (13). Together with its dual, we obtain a
pair of additive functors L,L−: M(A)→ M(A) with natural transformations

L
λ
→ 1

λ−

→ L−. (16)

In fact, let Rad A (resp. Rad A) be the ideal of morphisms r+s ∈ A such that
r ∈ Rad A, and s factors through an object Q ∈ A with τQ = 0 (resp. τ−Q =
0). By Rad+

M(A) (resp. Rad−
M(A)) we denote the ideal of morphisms ϕ:

b→ c in M(A) given by (7) such that d ∈ Rad A (resp. a ∈ Rad A). Then the
universal property (U) specializes to
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(Uλ)

{
λa ∈ Rad+

M(A) for each object a ∈ M(A), and every morphism x → a
in Rad+

M(A) factors through λa in a unique manner.

Therefore, a morphism ϕ: a→ b in M(A) determines a commutative square

La
λa
→ a

Lb

↓
Lϕ

λb
→ b

↓
ϕ (17)

with a unique morphism Lϕ. This shows that L is a functor with a natural
transformation λ: L→ 1.

By the symmetry of (15), the universal property of λ admits a certain
converse. Namely, every morphism ϕ: La→ d in Rad−

M(A) factors uniquely
through λa ([19], Proposition 4). In particular, every morphism ψ: La → b
satisfies λ−b ψ ∈ Rad−

M(A). Therefore, ψ induces a commutative square

La
λa
→ a

b

↓
ψ

λ−b→ L−b

↓
ψ′ (18)

with a unique ψ′, and by symmetry, the correspondence ψ 7→ ψ′ is bijective.
Consequently, (18) together with (17) and its dual shows that L is left adjoint
to L−. We call L,L′ the ladder functors of M(A).

Another special case of (13) arises when we set P = 0. Then we obtain a

pair of functors L̂, L̂−: M(A)→ M(A) with natural transformations

L̂
λ̂
→ 1

λ̂−

→ L̂− (19)

such that λ̂a := λA0,a for any object a: A1 → A0. Here the universal property
(U) specializes to

(U
λ̂
)

{
λ̂a ∈ Rad+

M(A), and every morphism x → a in Rad+
M(A) factors

uniquely through λ̂a.

The usefulness of L,L− has been shown in [19]. An application of L̂, L̂−

will be given in the next section.

Let ϕ: b → c be a morphism (7) in M(A). We call ϕ a pullback (pushout)
morphism if (7) is a pullback (pushout). If (7) is an exact square, we call ϕ
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an exact morphism. Note that these concepts are invariant under homotopy.
In fact, a homotopy h: C → B in (7) amounts to an isomorphic change of the
complex (8):

A

(
a
−b

)
→ B ⊕ C

(c d)
→ D

A

wwwwww (
a−hb
−b

)
→ B ⊕ C

↓

(
1 h
0 1

)

(c d-ch)
→ D.

wwwwww (20)

By [19], Propositions 3 and 4, and Corollary 3 of Proposition 5, we have

Proposition 2. Let A be a strict τ -category. Then λa is exact, and λ̂a is
a pullback morphism for any object a ∈ M(A). Moreover, L preserves exact
morphisms.

For a full subcategory C of an additive category A, a morphism f : A→ B in
A is said to be C-epic (C-monic) if every morphism C → B (resp. A → C)
with C ∈ C factors through f . In [19], Proposition 2, we characterize pullback
morphisms in M(A) as A−-epic monomorphisms. By [C] we denote the ideal
of A generated by the morphisms 1C with C ∈ C.

Let A be a strict τ -category. We define Projτ (A) (resp. Injτ (A)) as
the full subcategory of objects Q ∈ A with τQ = 0 (resp. τ−Q = 0). By
Proposition 1 we have the inclusions

Proj(A) ⊂ Projτ (A); Inj(A) ⊂ Injτ (A). (21)

By the universal properties (Uλ) and (U
λ̂
) there are unique natural transforma-

tions κ, κ− which make the following triangles commutative:

L
λ
→ 1

λ−
→ L−

λ̂ λ̂−

L̂

↑
κ

→

L̂−.

↓
κ−

→
(22)

More generally, there are natural transformations λn: Ln → 1 and λ̂n: L̂n → 1
for each n ∈ N with components

λn
a := λaλLa · · ·λLn−1a ; λ̂n

a := λ̂aλ̂L̂a
· · · λ̂

L̂n−1a
. (23)

As in (22) we find a unique natural transformation κn: L̂n → Ln with λnκn =

λ̂n for any given n.
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Proposition 3. Let A be a strict τ -category. For each object a ∈ M(A), and

n ∈ N, the morphism κn
a : L̂na→ Lna is A+-epic modulo [Projτ (A)+].

Proof. Let A be an object in A. Then every morphism ϕ: A+ → Lna in
M(A) satisfies λn

aϕ = ρ + σ with ρ ∈ (Rad+
M(A))n and σ ∈ [Projτ (A)+].

Hence (U
λ̂
) gives ρ = λ̂n

aρ
′ for some ρ′: A+ → L̂na. Since λn

a is Projτ (A)+-
epic by (Uλ), we get σ = λn

aσ
′ for some σ′ ∈ [Projτ (A)+]. Therefore, λn

a(ϕ−
κn

aρ
′ − σ′) = 0, and thus ϕ = κn

aρ
′ + σ′. �

3 Artinian τ-rings

Let R be a τ -ring with A := R-proj. We define FixL (resp. FixL−, Fix L̂,

Fix L̂−) as the full subcategory of objects a ∈ M(A) for which λa (resp. λ−a ,

λ̂a, λ̂−a ) is an isomorphism. (Note that a morphism ϕ: b→ c in M(A) given by
(7) is invertible if and only if a and d are invertible in A.) By the definitions, a:

A1 → A0 belongs to FixL (resp. Fix L̂) if and only if τA0 = 0 (resp. A0 = 0).

The category M(A) is closely related to the categories R-mod and mod-R
of finitely presented left resp. right R-modules. There are two additive func-
tors

R-mod
Cok
←− M(A)

Cok−

−→ (mod-R)op (24)

given by the cokernel of a: A1 → A0 in R-mod and Cok−a := Cok(a∗).

Proposition 4. For a τ -ring R with A := R-proj, the functors (24) induce
equivalences

R-mod ≈ M(A)/[A−]; (mod-R)op ≈ M(A)/[A+]. (25)

In particular, an object a ∈ M(A) satisfies Cok a = 0 if and only if a ∈ A−.

Proof. Since the functors (24) are full and dense, we only have to show
that a morphism ϕ: b → c given by (7) belongs to [A−] if and only if there
exists a morphism h: C → B in A with d = ch. If such an h exists, ϕ admits
a factorization

A
1
→ A

a−hb
→ B

C

↓
b

→ 0
↓

→ D.

↓
c
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The converse is trivial. �

Since λ̂a: L̂a → a is a pullback morphism for every object a ∈ M(A),
and the embedding R-proj ↪→ R-mod preserves pullbacks, there is a natural
embedding Cok(L̂a) ↪→ Cok a. More precisely, we have (cf. [9], Theorem 4.1)

Proposition 5. Let R be a τ -ring. For any object a ∈ M(R-proj),

Cok(L̂a) = Rad(Cok a). (26)

Proof. Put A := R-proj, and assume that λ̂a is given by a commutative
square

B1
f1
→ A1

B0

↓
L̂a

f0
→ A0.

↓
a

Then f0 ∈ Rad A implies that Cok(L̂a) ⊂ Rad(Cok a). Conversely, let p: P �

RadA0 be a projective cover in R-mod. Consider the natural epimorphisms
c: A0 � Cok a and d: B0 � Cok(L̂a), and the inclusion i: Cok(L̂a) ↪→ Cok a.
Then p induces a morphism ϕ: P+ → a in Rad+

M(A). By (U
λ̂
) there is a

morphism ϕ′: P+ → L̂a with ϕ = λ̂aϕ
′. This gives morphisms g: P → B0

and h: P → A1 with p− f0g = ah. Hence Rad(Cok a) = cp(P ) = cf0g(P ) =

idg(P ) ⊂ Cok(L̂a). �

Corollary. A τ -ring R with A := R-proj is artinian if and only if there is
an n ∈ N with L̂nA+ ⊂ A−. For such an n, every object a ∈ M(A) satisfies

L̂na ∈ A− and Lna ∈ FixL.

Proof. Note that R is artinian if and only if RadnR = 0 for some n ∈ N.
So the first statement follows by Propositions 4 and 5. Furthermore, L̂na ∈
A− holds for each object a ∈ A. By Proposition 3, κn

a is A+-epic modulo

[Projτ (A)+]. Therefore, L̂na ∈ A− implies that

HomM(A)(A
+, Lna) ⊂ [Projτ (A)+],

whence Lna ∈ FixL. �

Proposition 6. For an artinian τ -ring R, the category R-proj is preabelian
and has strictly enough projectives and injectives.
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Proof. A morphism f ∈ A := R-proj can be regarded as an object f ∈
Mor(A). So f is isomorphic to some 1C ⊕ a with a ∈ Rad A. Therefore, a
(co-)kernel of a gives a (co-)kernel of f . By the above Corollary, there is an

n ∈ N with L̂nA+ ⊂ A−. In particular, L̂na = K− for some object K ∈ A.
Since λ̂n

a : L̂na→ a is a pullback morphism by Proposition 2, this gives a kernel
of a ∈ A. Now let A be an object in A. By the above Corollary, LnA+ ∈ FixL.
Since λn

A+ : LnA+ → A+ is exact by Proposition 2, we get a short exact

sequence B
i

� P � A with i = LnA+. To show that P is projective, consider

a short exact sequence X
x
� Y

y
� Z in A and a morphism f : P → Z. We

may assume without loss of generality that x ∈ Rad A. Then y determines
an exact morphism ϕ: x → Z+, and we have to show that f+: P+ → Z+

factors through ϕ. By (Uλ) we have f+ = λn
Z+ψ for some ψ: P+ → LnZ+.

So it remains to be shown that ψ factors through Lnϕ. Proposition 2 implies
that Lnϕ is exact. By [16], Corollary of Proposition 8, every cokernel D � Q
with τQ = 0 splits. Since LnZ+ ∈ FixL, Lemma 1 shows that Lnϕ is an
isomorphism. Hence P is projective. The rest follows by duality. �

Remark. A preabelian category with strictly enough projectives and injec-
tives is also called a strict PI-category [14]. Such categories form an important
class of almost abelian categories (see [14], §5).

As a consequence, we get the following extension of Igusa and Todorov’s
theorem ([8], Theorem 3.4).

Corollary. For a ring R with A := R-proj, the following are equivalent:
(a) R is an artinian τ -ring such that uP is not epic for each P ∈ IndA with

τP = 0.

(b) There exists an artinian ring Λ with Λ-mod ≈ A.

Proof. (a)⇒ (b): Define Q :=
⊕

(Proj(A)∩ ind A) and Λ := EndA(Q)op.
Then Λ is artinian, and Proj(A) ≈ Λ-proj. So it suffices to prove that A

is abelian, i. e. that every regular morphism r: A → B in A is invertible
(see [14], Proposition 12). In MorA we have a decomposition r ∼= 1C ⊕ a
with a ∈ Rad A. By the Corollary of Proposition 5, there is an n ∈ N with
Lna ∈ FixL. Now (a) implies that Lna is not epic, unless Lna ∈ A−. Since a
is epic, we get Lna ∈ A−. As a is monic, the exactness of λn

a gives Lna = 0,
whence a = 0.

(b) ⇒ (a): By Auslander’s general existence theorem ([3], Theorem 3.9),
there is an almost split sequence E: A � B � C in the category Λ-Mod of
all Λ-modules for each non-projective C ∈ Ind(Λ-mod). Since A is finitely
generated by [13], Corollary (4.4), E is an almost split sequence in Λ-mod.
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By [21], Theorem 4, Λ-mod has a finitely generated injective cogenerator.
Therefore, the dual argument implies that R is a τ -ring. By Harada and Sai’s
lemma ([12], 2.2), RadR is nilpotent. Hence R is artinian. Since A ≈ Λ-mod,
this proves (a). �

More generally, we get a characterization of arbitrary artinian τ -rings. Let
Λ and Γ be left and right coherent rings, respectively (see [1], §19). By [17],
Proposition 10, this means that Λ-mod and mod-Γ are abelian categories. A
bimodule ΛUΓ is said to be cotilting (cf. [5]) if ΛU and UΓ are finitely presented
with Λ = End(UΓ) and Γ = End(ΛU)op such that for each M ∈ Λ-mod and
N ∈mod-Γ,

ExtΛ(U,U) = ExtΓ(U,U) = Ext2Λ(M,U) = Ext2Γ(N,U) = 0. (27)

Since Γ is determined by ΛU , the module ΛU is said to be a cotilting module.
By lat(U) we denote the full subcategory of Λ-mod consisting of the modules
M ∈ Λ-mod which are finitely cogenerated by ΛU (i. e. which admit an
embedding M ↪→ Un for some n ∈ N). Then lat(U) is equivalent to the
category of right Γ-modules N ∈mod-Γ which are finitely cogenerated by UΓ

(see Appendix).

Theorem 1. For every artinian τ -ring R there exists a cotilting bimodule

ΛUΓ over artinian rings Λ,Γ such that R-proj ≈ lat(U). Conversely, if ΛU
is a cotilting module over a left artinian ring Λ with ind(lat(U)) finite, then
Λ and Γ := EndΛ(U)op are artinian, and up to Morita equivalence, there is a
unique artinian τ -ring R with R-proj ≈ lat(U).

Proof. Let R be an artinian τ -ring with A := R-proj. We set P :=⊕
(Proj(A) ∩ ind A) and I :=

⊕
(Inj(A) ∩ ind A). Then Λ := EndA(P )op

and Γ := EndA(I)op are artinian. By Proposition 6 and the cotilting theorem
([14], Theorem 6; see Appendix), ΛUΓ := HomA(P, I) is a cotilting bimodule
with A ≈ lat(U).

Conversely, let ΛUΓ be a cotilting bimodule with Λ left artinian such
that ind A is finite for A := lat(U). We set R := EndA(

⊕
ind A)op. Then

R-proj ≈ A. Consider A as a full subcategory of Λ-mod. Then Proj(A) =
Λ-proj by [15], Lemma 4. Let C ∈ IndA be non-projective. Then there is
a cokernel c: C ′′ � C ′ and a morphism f : C → C ′ in A such that f does
not factor through c. By [14], Proposition 12, A is an almost abelian category
(see Appendix). Therefore, the pullback of c and f yields a non-split short

exact sequence A
a

� B
b
� C in A. Consequently, there is an indecomposable

direct summand D of A such that the projection a′: A � D does not factor
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through a. So the pushout of a and a′ yields a non-split short exact sequence

D
d

� E
e
� C in A. By the lemma of Harada and Sai (see [12], 2.2), RadR

is nilpotent. Hence there exists a morphism g: D → D′ in IndA that does
not factor through d such that for each non-invertible h: D′ → D′′ in Ind A,
the composition hg factors through d. So the pushout of d and g yields a left
almost split sequence D′ � E′ � C. For P ∈ Proj(A), the right almost split
sequence in A is given by 0 → (Rad Λ)P → P . If we regard A as a full sub-
category of (mod-Γ)op, the preceding arguments can be dualized. Therefore,
[18], Lemma 8, implies that A is a strict τ -category. Hence R is an artinian
τ -ring. Since the rings Λ,Γ are of the form eRe for some idempotent e ∈ R,
they are artinian as well. Finally, R-proj ≈ A implies that R is unique up to
Morita equivalence. �

Appendix: The general cotilting theorem

In this appendix we give a brief explanation and a short proof of the cotilt-
ing theorem ([14], Theorem 6). Let Λ (resp. Γ) be a left (resp. right) coher-
ent ring. Then Λ-mod and mod-Γ are abelian categories (see [17], Proposi-
tion 10). Every bimodule ΛUΓ with ΛU and UΓ finitely presented gives rise to
an adjoint pair of additive functors

Λ-mod
E

�
F

(mod-Γ)op (28)

with E := HomΛ(−, U) and F := HomΓ(−, U). Conversely, we have the
following version of Watt’s theorem.

Lemma 2. Every adjoint pair (28) is of the form E ∼= HomΛ(−, U) and F ∼=
HomΓ(−, U) with a bimodule ΛUΓ such that ΛU and UΓ are finitely presented.

Proof. Define UΓ := E(ΛΛ). Then the right operation of Λ on ΛΛ makes

U into a (Λ,Γ)-bimodule. For M ∈ Λ-mod, consider a presentation Λm a
→

Λn � M . Since E is a left adjoint, EM = Cok(Ea) in (mod-Γ)op. Thus
EM = KerHomΛ(a, U) in mod-Γ, i. e. E ∼= HomΛ(−, U). Hence FN =
HomΛ(Λ, FN) ∼= HomΓ(N,EΛ) ∼= HomΓ(N,U) for all N ∈ mod-Γ. In par-
ticular, ΛU = HomΓ(Γ, U) ∼= FΓ is finitely presented. �

For a given bimodule ΛUΓ we simply write ( )∗ for both functors HomΛ(−, U)
and HomΓ(−, U). Then the unit η and the counit ε of the adjunction are given



Ladder functors with an application to representation-finite artinian rings 121

by

ηM : M →M∗∗; εN : N → N∗∗ (29)

for M ∈ Λ-mod and N ∈mod-Γ.

A pair

C
E

�
F

B (30)

of additive functors with E a F is said to be a pre-equivalence [15] if the unit is
epic, and the counit is monic. Then (30) induces an equivalence ImF ≈ ImE,
and the category A := ImF is almost abelian. This means that A is pre-
abelian, and cokernels (resp. kernels) are stable under pullback (pushout)
[14]. Furthermore, the full subcategory ImE (resp. ImF ) of subobjects (quo-
tient objects) of objects in ImE (resp. ImF ) is abelian. If ImE = B and
ImF = C, we call (30) a tilting. In this case, up to isomorphism, the ad-
junction (30) is intrinsicly determined by the almost abelian category A. In
other words, tiltings and almost abelian categories are essentially the same
thing (see [15], Theorem 1). In the particular case (28) we have the following
characterization.

Theorem 2. An adjoint pair (28) is a tilting if and only if the corresponding
bimodule ΛUΓ is cotilting. When these equivalent conditions hold, lat(U) is
the corresponding almost abelian category.

Proof. Let CogΛU denote the class of finitely generated submodules of
some (ΛU)n. We show first that the conditions (27) can be replaced by

ExtΛ(M,U) = ExtΓ(N,U) = 0 for M ∈ CogΛU and N ∈ CogΓU. (31)

Assume (31). For any M ∈ Λ-mod, there is a short exact sequence M ′ ↪→
Λn � M with M ′ ∈ Λ-mod. Since an epimorphism Γm � U gives an
embedding Λ = HomΓ(U,U) ↪→ HomΓ(Γm, U) = Um, we have Λn ∈ CogΛU .
Hence Ext2Λ(M,U) = Ext1Λ(M ′, U) = 0. By duality, this proves (27). Conver-
sely, let M ↪→ Un � C be a short exact sequence in Λ-mod. Then

Ext1Λ(Un, U)→ Ext1Λ(M,U)→ Ext2Λ(C,U)

is exact. Hence (27) implies (31).

Now let (28) be a tilting with corresponding bimodule ΛUΓ. Then ΛΛ ∈
ImF implies that there is an epimorphism N ∗ � ΛΛ. Since N∗ is reflexive,
i. e. ηN∗ is invertible, we infer that Λ is reflexive. Hence End(UΓ) = Λ, and
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similarly, End(ΛU) = Γ. Any embedding M ↪→ Un in Λ-mod gives rise to a
commutative diagram

M ⊂ → Un

M∗∗

↓↓
ηM

→ (Un)∗∗.

↓↓
ηU

Since ηU is an isomorphism, ηM is monic. On the other hand, an epimorphism
Γm � N yields N∗ ↪→ Um, i. e. N∗ ∈ CogΛU . Therefore, CogΛU consists of
the reflexive modules in Λ-mod. So for a given M ∈ CogΛU , the modules in a

short exact sequence K
i

� Λk
p
� M are reflexive. Applying ( )∗ gives M∗

p∗

�

Uk i∗

→ K∗ with p∗ = ker i∗. As a submodule of K∗, Cok p∗ is reflexive. Hence
(cok p∗)∗ ∼= ker p = i, and thus i∗ = cok p∗. This proves that ExtΛ(M,U) = 0.

Conversely, let ΛUΓ be cotilting, and M ∈ Λ-mod. Then a presentation

Λm → Λn
p
� M leads to a short exact sequence M ∗

p∗

� Un � C and an

embedding C ↪→ Um. By (31) it follows that p∗∗: Λn � M
ηM

→ M∗∗ is epic.
Hence ηM is epic. Since Λ and Γ are reflexive, and every object in Λ-mod
(resp. mod-Γ) is a factor module of a free module, (28) is a tilting. �
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