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ON EQUATIONS IN BOUNDED LATTICES

Sergiu Rudeanu

Abstract

The following properties of Boolean equations are well known: every
system of equations is equivalent to a single equation of the form

f(x1, . . . , xn) = 1,

the consistency condition for such an equation, the method of successive
elimination of variables, and the formula for the general (reproductive)
solution using a particular solution. These features are shared by Post
equations and by equations in functionally complete algebras. In this
paper we extend the above results to bounded lattices endowed with a
supplementary binary operation (the Kronecker delta). As a by-product
we obtain a generalization of the concept of functionally complete alge-
bra, by dropping the finiteness assumption.

The following important properties of Boolean equations are well known
(see e.g. [12]): 1) every system of equations is equivalent to a single equation of
the form f(x1, . . . , xn) = 1; 2) the consistency condition for such an equation;
3) the solution by the method of successive elimination of variables, and 4) the
parametric formula for the set of solutions, using a particular solution. These
feature have beeen extended to Post equations by Carvallo [5]–[7], Serfati
[14]–[16], Beazer [1] and Bordat [2], [3], while Nipkow [8] proved that the
same properties hold in functionally complete algebras, and obtained further
generalizations [9]; see also [13]. In this mainly expository note we apply
Nipkow’s technique to obtain the same results in a bounded lattice endowed
with the Kronecker delta as a supplementary operation.

Recall that an algebra is a set A equipped with a family of finitary oper-
ations. By a polynomial over A is meant a function f : An −→ A, n ∈ NN ,
which has an expression built up from variables and the basic operations of A.
A function f : An −→ A , n ∈ NN , is said to be algebraic provided it can be
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obtained from a polynomial by replacing certain (possibly none) apparitions
of variables by constants of A. By a functionally complete (primal ) algebra
is meant a finite algebra A such that every function f : An −→ A , n ∈ N
N , is algebraic (a polynomial). Post [10] proved that a finite algebra A is
functionally complete if and only if there exist two distinct elements 0, 1 ∈ A

and two algebraic functions + and · on A such that for every x ∈ A,
(1) x + 0 = 0 + x = x ,

(2) x · 0 = 0 · x = 0 ,

(3) x · 1 = x ,
and for every a ∈ A, the Kronecker function δa : A −→ A defined by
(4) δa(x) = 1 if x = a , else 0 ,
is algebraic. The sufficiency of these conditions was rediscovered 50 years later
by Prešić [11]. See also [13], Propositions 13.2.1 and 1.2.3.

Nipkow [8] proved that the above properties 1) – 4) hold for equations in a
functionally complete algebra and gave applications to equations in the Post
algebra Cr = {0, 1, . . . , r − 1} and beyond lattice theory, to matrix rings. He
then extended the results to direct powers of primal algebras and to varieties
generated by primal algebras, with examples in certain 3–rings [9]. Büttner
[4] suggested a promising approach to solving arbitrary equations (i.e., not
necessarily expressed by algebraic functions) over a finite algebra. Namely,
the signature of the algebra is enriched so as to obtain a functionally complete
algebra, and the original equation becomes an algebraic equation which is
solved by unification theory techniques.

The present note may be viewed as an application of Nipkow’s technique
via Büttner’s idea. We start from the striking fact that the join and meet
operations of a bounded lattice satisfy conditions (1)–(3). The next point is
the remark that if we enrich the lattice structure by adding the Kronecker
delta , then every function defined on the new algebra is algebraic, although
the underlying set need not be finite. We thus obtain a generalization of the
concept of functionally complete algebra in which Nipkow’s technique works
and therefore we recapture properties 1) – 4) within this framework.

Given a bounded lattice (L;∧,∨, 0, 1), let
∧

i∈I xi and
∨

i∈I xi denote the
infimum and supremum of an arbitrary subset {xi | i ∈ I} of L, whenever
these elements exist. Further, let δ : L2 −→ L be defined by
(5) δ(x, y) = 1 if x = y , else 0 .

Bearing in mind the Post theorem mentioned above, we may be tempted
to introduce the family of unary Kronecker deltas (4), for a ∈ L, as new oper-
ations. However, since
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(6) δa(x) = δ(a, x) ,

(7) δ(x, y) =
∨

a∈L

δa(x) ∧ δa(y) ,

taking the binary Kronecker delta (5) as the new operation is likely to provide
a simpler approach. Therefore, in the following we will work in the algebra
(8) L = (L;∧,∨, δ, 0, 1) .

Proposition 1 For every n ∈ NN , every function f : Ln −→ L is algebraic.

Proof: It suffices to prove the identity

(9) f(x1, . . . , xn)

=
∨

(a1,...,an)∈Ln f(a1, . . . , an) ∧ δ(a1, x1) ∧ . . . δ(an, xn) .

But for every (x1, . . . , xn) ∈ Ln, the right side of (9) exists and equals

f(x1, . . . , xn) ∧ δ(x1, x1) ∧ · · · ∧ δ(xn, xn) = f(x1, . . . , xn) .

�

Proposition 2 Every system of equations of the form

(10.1) gi(x1, . . . , xn) = hi(x1, . . . , xn) (i ∈ I) ,

(10.2) gj(x1, . . . , xn) ≤ hj(x1, . . . , xn) (j ∈ J) ,

(10.3) gk(x1, . . . , xn) 6= hk(x1, . . . , xn) (k ∈ K) ,
where I ∪ J ∪K is a finite non-empty set, is equivalent to a single equation of

the form

(11) f(x1, . . . , xn) = 1 .

Proof: Each equation (10.1) can be written in the form

δ(gi(x1, . . . , xn), hi(x1, . . . , xn)) = 1

and a similar result holds for each inequality (10.2), because it can be written
in the form gj = gj ∧ hj . Further, each non-equation (10.3) can be written in
the form

δ(δ(gk(x1, . . . , xn), hk(x1, . . . , xn)), 0) = 1 .

Finally, a system of the form

fr(x1, . . . , xn) = 1 (r ∈ I ∪ J ∪ K)



104 S. Rudeanu

is equivalent to the single equation
∧

r∈I∪J∪K

fr(x1, . . . , xn) = 1 .

�

Proposition 3 Equation (11) is consistent if and only if

(12)

∨

(a1,...,an)∈Ln

δ(f(a1, . . . , an), 1) = 1 .

Proof: The left side of (12) exists and equals 1 if and only if there is
(a1, . . . , an) ∈ Ln such that f(a1, . . . , an) = 1. �

The next proposition may be regarded as the basis for the method of suc-
cessive elimination of variables.

Proposition 4 A) Equation (11) is consistent if and only if the equation in

n − 1 unknowns

(13)

∨

a∈L

δ(f(x1, . . . , xn−1, a), 1) = 1

is consistent.

B) When this is the case, a vector (a1, . . . , an) ∈ Ln is a solution of (11) if

and only if (a1, . . . , an−1) satisfies (13), while an is a solution of the equation

(14) f(a1, . . . , an−1, x) = 1 .

Proof: Remark that it suffices to prove B).
Suppose (a1, . . . , an) is a solution of equation (11). Then an satisfies equa-

tion (14), therefore

(15)

∨

a∈L

δ(f(a1, . . . , an−1, a), 1) = 1

by Proposition 3 applied with n := 1. Condition (15) shows that (a1, . . . , an−1)
is a solution of equation (13).

Conversely, suppose (a1, . . . , an−1) satisfies equation (13). Then (15) holds,
therefore equation (14) is consistent, again by Proposition 3 with n := 1 . For
every solution an of equation (14) we have f(a1, . . . , an−1, an) = 1. �

Now recall a very general definition which applies in particular to equation
(11). Consider a vector (ϕ1, . . . , ϕn), where ϕi : Ln −→ L (i = 1, . . . , n).
Formulas
(16) xi = ϕi(p1, . . . , pn) (i = 1, . . . , n)
define the reproductive general solution of equation (11) provided

(17)
f(ϕ1(p1, . . . , pn), . . . , ϕn(p1, . . . , pn)) = 1 (∀p1, . . . , pn ∈ L)
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and every solution (x1, . . . , xn) of equation (11) satisfies

(18) xi = ϕi(x1, . . . , xn) (i = 1, . . . , n) .

Proposition 5 Suppose (a1, . . . , an) is a solution of equation (11). Then

formulas

(19) xi = piδ(f(p1, . . . , pn), 1) ∨ aiδ(δ(f(p1, . . . , pn), 1), 0)

(i = 1, . . . , n)

define the reproductive general solution of equation (11).

Proof: Denote the right sides of formulas (19) by ϕi. Take (p1, . . . , pn)
∈ L. If f(p1, . . . , pn) = 1 then

ϕi(p1, . . . , pn) = pi (i = 1, . . . , n) ,

i.e., relations (18) hold, and

f(ϕ1(p1, . . . , pn), . . . , ϕn(p1, . . . , pn)) = f(p1, . . . , pn) = 1 .

Otherwise
ϕi(p1, . . . , pn) = ai (i = (1, . . . , n) ,

hence

f(ϕ1(p1, . . . , pn), . . . , ϕn(p1, . . . , pn)) = f(a1, . . . , an) = 1 .

�

Conclusions The technique used in this note is borrowed from [8], but the
framework of a bounded lattice provides simpler proofs and results, including
“functional completeness” without the finiteness assumption.

As a matter of fact, this framework can easily be implemented on a quite
arbitrary set of cardinality ≥ 3. For such a set can be made into a flat
lattice, that is, a bounded lattice in which the elements 6= 0, 1 are pairwise
uncomparable.
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