INDICATIVE PROPOSITIONS

Ioan Purdea and Nicolae Both

Abstract

Two new problems of bivalent propositional logic are proposed here: firstly, to distinguish the sense of propositions, besides the logical value and secondly, to analyze the "ponderal" difference between two parts of a proposition: subject-predicate.

1 Relational projections and extensions

Let $r=\left(A_{1}, A_{2}, A_{3}, R\right)$ be a ternary relation (see [3]). Starting with this, we may define three binary relations (induced projections), namely $r_{12}=$ $\left(A_{1}, A_{2}, R_{12}\right), r_{23}=\left(A_{2}, A_{3}, R_{23}\right)$ and $r_{13}=\left(A_{1}, A_{3}, R_{13}\right)$ defined by
$\left(x_{1}, x_{2}\right) \in R_{12} \Longleftrightarrow$ there exists $x_{3} \in A_{3}$ such that $\left(x_{1}, x_{2}, x_{3}\right) \in R$
and its analogs.
Denote

$$
r<x_{1}, x_{2}>=\left\{x_{3} \in A_{3} \mid\left(x_{1}, x_{2}, x_{3}\right) \in R\right\}
$$

and analogously $r<x_{2}, x_{3}>$ and $r<x_{1}, x_{3}>$, where $\left(x_{1}, x_{2}, x_{3}\right) \in A_{1} \times A_{2} \times$ A_{3}.

Proposition $1.1 x_{i} r_{i j} x_{j} \Longleftrightarrow r<x_{i}, x_{j}>\neq \emptyset$, where $i, j \in\{1,2,3\}, i<j$.
This proposition follows by the above definitions.
To each of the binary relations $r_{i j}, i, j \in\{1,2,3\}, i<j$, we associate a ternary ponderal extension $\tilde{r}_{i j}=\left(A_{i}, A_{j}, \mathbb{N}, \widetilde{R}_{i j}\right)$ defined by

$$
\left(x_{1}, x_{2}, n\right) \in \widetilde{R}_{12} \Longleftrightarrow\left(x_{1}, x_{2}\right) \in R_{12} \text { and }\left|r<x_{1}, x_{2}>\right|=n
$$

and its analogs.
Remark. The relational projections and extensions may be generalized to the case of arbitrary n-ary relations.

Received: October, 2001.

2 Logical interpretation

In the case of a bivalent propositional logic (\mathbf{P}, v) (see [2]), we imagine a generic proposition $" S$ is P " (S-subject, P-predicate).

For an algebraic formulation, we consider the set M of individuals and the set Π of predicative letters such that for each $\mathcal{P} \in \Pi$ it is defined a function

$$
\mathcal{P}: M \rightarrow \mathbf{P}
$$

which associates to every $x \in M$ the proposition $\mathcal{P}(x)$ with the signification " x has the property \mathcal{P} ". Therefore, by the correspondence $S \mapsto x, P \mapsto \mathcal{P}$, the proposition " S is P " receives the algebrized form $\mathcal{P}(x)$.

Since the function $\mathcal{P}: M \rightarrow \mathbf{P}$ may be extended by the bivalent valuation $v: \mathbf{P} \rightarrow V=\{0,1\}$ to

$$
v \circ \mathcal{P}: M \rightarrow V
$$

we must accept that for each $x \in M, v(\mathcal{P}(x)) \in\{0,1\}$, that is the proposition $\mathcal{P}(x)$ is either false or true.

In this way, the following problem arises: does the proposition $\mathcal{P}(x)$ make sense for every $\mathcal{P} \in \Pi$ and $x \in M$?

Example 2.1 Let \mathcal{P}, \mathcal{Q} be predicative letters with the significations:

$$
\begin{gathered}
\mathcal{P}(x)=" x \text { is round } " \\
\mathcal{Q}(x)=" x \text { is nervous } "
\end{gathered}
$$

For $x=$ "square", $\mathcal{P}(x)$ does make sense (and it is false), but $\mathcal{Q}(x)$ does not.
Starting with the above example, we seek for an algebraic definition for the notion of "sense".

First consider that the proposition $\mathcal{P}(x)$ does make sense if there exists a method to establish the truth-value $v(\mathcal{P}(x)) \in\{0,1\}$. But for this purpose, we must suppose the existence of an "individual receiver", able to effect the valuation. Consequently, we consider suitable the following algebraic definition:

Definition 2.2 Let $r=(\Pi, M, \mathcal{R}, R)$ be a ternary relation, where Π and M have the above significations and \mathcal{R} is the set of "individual receivers". The proposition $\mathcal{P}(x)(\mathcal{P} \in \Pi, x \in M)$ does make sense if $\mathcal{P} r_{12} x$ holds, where r_{12} is the first induced projection (see Section 1).

Proposition 2.3 $\mathcal{P}(x)$ does make sense if and only if

$$
r<\mathcal{P}, x>\neq \emptyset .
$$

(see Proposition 1.1).

Interpretation. The sense of a proposition consists of the existence of its individual receivers.

Remark. As a proposition assumes a communication, the notion of sense requires the existence of at least two individual receivers. This fact suggests a starker definition of sense, namely:

Definition 2.4 The proposition $\mathcal{P}(x)$ does make a communicative sense if

$$
|r<\mathcal{P}, x>| \geq 2 .
$$

Suggestion 1. The notion of n-communicative sense may be defined by the condition

$$
|r<\mathcal{P}, x>|=n .
$$

This definition is connected with the notion of ponderal extension (see Section 1).

We formulate now the following definition:
Definition 2.5 For a $\mathcal{P} \in \Pi$ and an $x \in M$, the contextual universe of \mathcal{P} and of x is

$$
{\stackrel{\circ}{x_{\mathcal{P}}}}=\{x \in M \mid \mathcal{P}(x) \text { does make sense }\}
$$

and

$$
\stackrel{\circ}{\mathcal{P}}_{x}=\{\mathcal{P} \in \Pi \mid \mathcal{P}(x) \text { does make sense }\}
$$

respectively.

Proposition 2.6

$$
x \in \stackrel{\circ}{x}_{\mathcal{P}} \Longleftrightarrow \mathcal{P} \in \stackrel{\circ}{\mathcal{P}}_{x} .
$$

This fact follows by the following equalities:

$$
\left.\stackrel{\circ}{x}_{\mathcal{P}}=r_{12}<\mathcal{P}\right\rangle, \quad \stackrel{\circ}{\mathcal{P}}_{x}=\stackrel{-1}{r}_{12}<x>.
$$

Suggestion 2. We may imagine a three-valent logic, starting with the valuation

$$
w: \mathbf{P} \rightarrow W=\{0,1 / 2,1\}
$$

where

$$
\mathbf{P}=\{\mathcal{P}(x) \mid \mathcal{P} \in \Pi, x \in M\}
$$

such that

$$
\begin{cases}w(\mathcal{P}(x)) \in V=\{0,1\}, & \text { if } \mathcal{P}(x) \text { does make sense } \\ w(\mathcal{P}(x))=1 / 2, & \text { otherwise }\end{cases}
$$

3 Ponderal propositions

Each of the propositions $\mathcal{P}(x)$ determines the two contextual universes $\stackrel{\circ}{x} \mathcal{P}^{\text {and }}$ $\stackrel{\circ}{\mathcal{P}}_{x}$. These universes contain essential information, namely when the truthvalue of the proposition $\mathcal{P}(x)$ depends only on one of the components.

Example 3.1 Given a Cramer system $\left(S_{n}\right)$ of order n over \mathbb{R}, the proposition $\mathcal{P}(x)$ with the signification " x is a solution of $\left(S_{n}\right)$ " has the contextual universe

$$
\stackrel{\circ}{x}_{\mathcal{P}}=\mathbb{R}^{n} .
$$

As $\left(S_{n}\right)$ has a unique solution, to solve the system $\left(S_{n}\right)$ consists of determining the (unique) solution $x_{0} \in \mathbb{R}^{n}$, that is, to answer the question: "what is the solution of $\left(S_{n}\right)$?", with the proposition " x_{0} is the solution of $\left(S_{n}\right)$ ".

Notice that the question is not if "there exists a solution", but "what is the solution?". So we are in a situation to put the accent on the subject $\left(x_{0}\right)$.

Associate to the "global" proposition $\mathcal{P}(x)$, where $\mathcal{P} \in \stackrel{\circ}{\mathcal{P}}_{x} \subseteq \Pi, x \in \stackrel{\circ}{x}_{\mathcal{P}}=$ M, the following two ponderal propositions:

$$
\begin{aligned}
& (\widehat{x}) \quad \exists!x \in \stackrel{\circ}{x}_{\mathcal{P}}: \mathcal{P}(x), \\
& (\widehat{\mathcal{P}}) \quad \exists!\mathcal{P} \in \stackrel{\circ}{\mathcal{P}}_{x}: \mathcal{P}(x) .
\end{aligned}
$$

where the symbol \exists ! denotes existence and uniqueness.
Denote by $\mathcal{P}(\widehat{x})$ and $\widehat{\mathcal{P}}(x)$ the two ponderal propositions respectively, namely:

$$
\begin{gathered}
\mathcal{P}(\widehat{x})=\text { subject-ponderal } \\
\widehat{\mathcal{P}}(x)=\text { predicate-ponderal } .
\end{gathered}
$$

Example 3.2 The "global" proposition $\mathcal{P}(x)$ with the signification " x is a perfect square" has the contextual universes:

$$
{\stackrel{\circ}{{ }_{P}^{P}}}=\mathbb{Z},
$$

$$
\stackrel{\circ}{\mathcal{P}}_{x}=\{\text { all the numerical predicates }\} .
$$

Although the global $\mathcal{P}(4)$ is true (4 is a perfect square), both of the ponderals ($\mathcal{P}(\widehat{4})$ and $\widehat{\mathcal{P}}(4))$ are false.

The example suggests the necessity to restrict the contextual universes. So take the restricted domains:

$$
\widehat{\hat{x}_{\mathcal{P}}}=\{2,3,4\} \subseteq \stackrel{\circ}{x}_{\mathcal{P}}=\mathbb{Z},
$$

$$
\widehat{\stackrel{\circ}{\mathcal{P}}_{x}}=\left\{\mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{P}_{3}\right\} \subseteq \stackrel{\circ}{\mathcal{P}}_{x}
$$

with the significations:

$$
\begin{gathered}
\mathcal{P}_{1}(x)=" x \text { is a prime" } \\
\mathcal{P}_{2}(x)=" x \text { is a perfect square" } \\
\mathcal{P}_{3}(x)=" x \text { is an odd number". }
\end{gathered}
$$

On these restricted domains, both of the ponderal propositions ($\mathcal{P}(\widehat{4})$ and $\widehat{\mathcal{P}}(4))$ are true.
Theorem 3.3 Given the global $\mathcal{P}(x)$ and the corresponding ponderal propositions $\mathcal{P}(\widehat{x})$ and $\widehat{\mathcal{P}}(x)$, if one of the ponderals is true, then the global is also true.

Proof. An equivalent formulation of the subject-ponderal is:

$$
(\widehat{x}) \quad \mathcal{P}(x) \wedge \forall y\left(y \in \stackrel{\circ}{\mathcal{P}}_{\mathcal{P}} \wedge y \neq x \supset \overline{\mathcal{P}(y)}\right) .
$$

Denote $\Phi(x)=\forall y\left(y \in \stackrel{\circ}{x}_{\mathcal{P}} \wedge y \neq x \supset \overline{\mathcal{P}(y)}\right)$, as the variable y is bounded. So the definition (\widehat{x}) may be formulated by

$$
(\widehat{x}) \quad \mathcal{P}(x) \wedge \Phi(x) .
$$

Therefore, the first part of the theorem follows by the predicative identity:

$$
\mathcal{P}(x) \wedge \Phi(x) \supset \mathcal{P}(x) .
$$

Starting with the definition $(\widehat{\mathcal{P}})$, the second part of the theorem follows in a similar way.
Theorem 3.4 If the global $\mathcal{P}(x)$ is true, then there exist the restricted domains $\widehat{\stackrel{\circ}{x}_{\mathcal{P}}} \subseteq \stackrel{\circ}{x}_{\mathcal{P}}$ and $\widehat{\stackrel{\rightharpoonup}{\mathcal{P}}}_{x} \subseteq \stackrel{\circ}{\mathcal{P}}_{x}$, on which the ponderals $\mathcal{P}(\widehat{x})$ and $\widehat{\mathcal{P}}(x)$ are true.

References

[1] Both, N., Algebra logicii cu aplicaţii, Ed. Dacia, Cluj, 1984.
[2] Both, N., Capitole speciale de logică matematică, Cluj, 1994.
[3] Purdea, I., Pic, Gh., Tratat de algebră modernă, vol. I, Ed. Academiei, Bucureşti, 1977.

Department of Mathematics
and Computer Science,
"Babes-Bolyai" University,
Cluj-Napoca,
Romania

