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INDICATIVE PROPOSITIONS

Ioan Purdea and Nicolae Both

Abstract

Two new problems of bivalent propositional logic are proposed here:

firstly, to distinguish the sense of propositions, besides the logical value

and secondly, to analyze the ”ponderal” difference between two parts of

a proposition: subject-predicate.

1 Relational projections and extensions

Let r = (A1, A2, A3, R) be a ternary relation (see [3]). Starting with this,
we may define three binary relations (induced projections), namely r12 =
(A1, A2, R12), r23 = (A2, A3, R23) and r13 = (A1, A3, R13) defined by

(x1, x2) ∈ R12 ⇐⇒ there exists x3 ∈ A3 such that (x1, x2, x3) ∈ R

and its analogs.
Denote

r < x1, x2 >= {x3 ∈ A3 | (x1, x2, x3) ∈ R}

and analogously r < x2, x3 > and r < x1, x3 >, where (x1, x2, x3) ∈ A1×A2×
A3.

Proposition 1.1 xi rij xj ⇐⇒ r < xi, xj >6= ∅ , where i, j ∈ {1, 2, 3}, i < j.

This proposition follows by the above definitions.

To each of the binary relations rij , i, j ∈ {1, 2, 3}, i < j, we associate a

ternary ponderal extension
∼
r ij = (Ai, Aj , N,

∼

Rij) defined by

(x1, x2, n) ∈
∼

R12 ⇐⇒ (x1, x2) ∈ R12 and |r < x1, x2 > | = n

and its analogs.

Remark. The relational projections and extensions may be generalized to the
case of arbitrary n-ary relations.
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2 Logical interpretation

In the case of a bivalent propositional logic (P, v) (see [2]), we imagine a
generic proposition ”S is P” (S-subject, P -predicate).

For an algebraic formulation, we consider the set M of individuals and the
set Π of predicative letters such that for each P ∈ Π it is defined a function

P : M → P

which associates to every x ∈ M the proposition P(x) with the signification
”x has the property P”. Therefore, by the correspondence S 7→ x, P 7→ P,
the proposition ”S is P” receives the algebrized form P(x).

Since the function P : M → P may be extended by the bivalent valuation
v : P → V = {0, 1} to

v ◦ P : M → V ,

we must accept that for each x ∈ M , v(P(x)) ∈ {0, 1}, that is the proposition
P(x) is either false or true.

In this way, the following problem arises: does the proposition P(x) make
sense for every P ∈ Π and x ∈ M?

Example 2.1 Let P,Q be predicative letters with the significations:

P(x) = ”x is round ” ,

Q(x) = ”x is nervous ” .

For x =”square”, P(x) does make sense (and it is false), but Q(x) does not.

Starting with the above example, we seek for an algebraic definition for
the notion of ”sense”.

First consider that the proposition P(x) does make sense if there exists a
method to establish the truth-value v(P(x)) ∈ {0, 1}. But for this purpose,
we must suppose the existence of an ”individual receiver”, able to effect the
valuation. Consequently, we consider suitable the following algebraic defini-
tion:

Definition 2.2 Let r = (Π,M,R, R) be a ternary relation, where Π and M
have the above significations and R is the set of ”individual receivers”. The
proposition P(x) (P ∈ Π, x ∈ M) does make sense if P r12 x holds, where r12

is the first induced projection (see Section 1).

Proposition 2.3 P(x) does make sense if and only if

r < P, x >6= ∅ .

(see Proposition 1.1).
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Interpretation. The sense of a proposition consists of the existence of its
individual receivers.

Remark. As a proposition assumes a communication, the notion of sense
requires the existence of at least two individual receivers. This fact suggests
a starker definition of sense, namely:

Definition 2.4 The proposition P(x) does make a communicative sense if

|r < P, x > | ≥ 2 .

Suggestion 1. The notion of n-communicative sense may be defined by the
condition

|r < P, x > | = n .

This definition is connected with the notion of ponderal extension (see
Section 1).

We formulate now the following definition:

Definition 2.5 For a P ∈ Π and an x ∈ M , the contextual universe of P and
of x is

◦
xP = {x ∈ M | P(x) does make sense }

and
◦

Px = {P ∈ Π | P(x) does make sense }

respectively.

Proposition 2.6

x ∈
◦
xP ⇐⇒ P ∈

◦

Px .

This fact follows by the following equalities:

◦
xP = r12 < P > ,

◦

Px =
−1
r 12 < x > .

Suggestion 2. We may imagine a three-valent logic, starting with the valuation

w : P → W = {0, 1/2, 1} ,

where
P = {P(x) | P ∈ Π, x ∈ M} ,

such that
{

w(P(x)) ∈ V = {0, 1} , if P(x) does make sense

w(P(x)) = 1/2 , otherwise
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3 Ponderal propositions

Each of the propositions P(x) determines the two contextual universes
◦
xP and

◦

Px. These universes contain essential information, namely when the truth-
value of the proposition P(x) depends only on one of the components.

Example 3.1 Given a Cramer system (Sn) of order n over R, the proposition
P(x) with the signification ”x is a solution of (Sn)” has the contextual universe

◦
xP = R

n .

As (Sn) has a unique solution, to solve the system (Sn) consists of determining
the (unique) solution x0 ∈ R

n, that is, to answer the question: ”what is the
solution of (Sn)?”, with the proposition ”x0 is the solution of (Sn)”.

Notice that the question is not if ”there exists a solution”, but ”what is
the solution?”. So we are in a situation to put the accent on the subject (x0).

Associate to the ”global” proposition P(x), where P ∈
◦

Px ⊆ Π, x ∈
◦
xP =

M , the following two ponderal propositions:

(x̂) ∃!x ∈
◦
xP : P(x) ,

(P̂) ∃!P ∈
◦

Px : P(x) .

where the symbol ∃! denotes existence and uniqueness.
Denote by P(x̂) and P̂(x) the two ponderal propositions respectively,

namely:
P(x̂) = subject-ponderal

P̂(x) = predicate-ponderal .

Example 3.2 The ”global” proposition P(x) with the signification ”x is a
perfect square” has the contextual universes:

◦
xP = Z ,

◦

Px = {all the numerical predicates} .

Although the global P(4) is true (4 is a perfect square), both of the ponderals

(P(4̂) and P̂(4)) are false.
The example suggests the necessity to restrict the contextual universes. So

take the restricted domains:

◦̂
xP = {2, 3, 4} ⊆

◦
xP = Z ,
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◦̂

Px = {P1,P2,P3} ⊆
◦

Px

with the significations:

P1(x) = ”x is a prime”

P2(x) = ”x is a perfect square”

P3(x) = ”x is an odd number” .

On these restricted domains, both of the ponderal propositions (P(4̂) and

P̂(4)) are true.

Theorem 3.3 Given the global P(x) and the corresponding ponderal proposi-

tions P(x̂) and P̂(x), if one of the ponderals is true, then the global is also
true.

Proof. An equivalent formulation of the subject-ponderal is:

(x̂) P(x) ∧ ∀y(y ∈
◦
xP ∧ y 6= x ⊃ P(y)) .

Denote Φ(x) = ∀y(y ∈
◦
xP ∧ y 6= x ⊃ P(y)), as the variable y is bounded. So

the definition (x̂) may be formulated by

(x̂) P(x) ∧ Φ(x) .

Therefore, the first part of the theorem follows by the predicative identity:

P(x) ∧ Φ(x) ⊃ P(x) .

Starting with the definition (P̂), the second part of the theorem follows in a
similar way.

Theorem 3.4 If the global P(x) is true, then there exist the restricted do-

mains
◦̂
xP ⊆

◦
xP and

◦̂

Px ⊆
◦

Px, on which the ponderals P(x̂) and P̂(x) are
true.
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