GRÖBNER BASIS AND DEPTH OF REES ALGEBRAS

Dorin Popescu

Introduction

Let $B=K\left[X_{1}, \ldots, X_{n}\right]$ be a polynomial ring over a field K and $A=B / J$ a quotient ring of B by a homogeneous ideal J. Let m denote the maximal graded ideal of A. Then the Rees algebra $R=A[m t]$ may be considered a standard graded K-algebra and has a presentation $B\left[Y_{1}, \ldots, Y_{n}\right] / I_{J}$. For instance, if $J=0$ then $R \cong K\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right] /(H)$, where $H:=$ $\left\{X_{i} Y_{j}-X_{j} Y_{i} \mid 1 \leq i<j \leq n\right\}$.

The generators of I_{J} can be easily described as follows. For any homogeneous form $f=\sum_{1 \leq i_{1} \leq \ldots \leq i_{d} \leq n} a_{i_{1} \ldots i_{d}} X_{i_{1}} \ldots X_{i_{d}} \in B$ of degree d we set
$f^{(k)}=\sum_{1 \leq i_{1} \leq \ldots \leq i_{d} \leq n} a_{i_{1} \ldots i_{d}} X_{i_{1}} \ldots X_{i_{d-k}} Y_{i_{d-k+1}} \ldots Y_{i_{d}}$ for $k=0, \ldots, \bar{d}$. For any subset $L \subset B$ of homogeneous polynomials in B we set
$L^{\prime}:=\left\{f^{(k)} \mid f \in L, k=0, \ldots, \operatorname{deg} f\right\}$. If L is a minimal system of generators of J, then $L^{\prime} \cup H$ is a minimal system of generators of I_{J} (see Proposition 1.1) and if L is a Gröbner basis of J for the reverse lexicographic order induced by $X_{1}>\ldots>X_{n}>Y_{1}>\ldots>Y_{n}$ then $L^{\prime} \cup H$ is a Gröbner basis of I_{J} (see Theorem 1.3). This procedure is described in [HPT1]. However it is not included in the new version [HPT2] even it has its own value (it is used in [HOP]). Our Section 1 is an attempt to give a printed presentation.

The purpose of [HPT2] is to compare the homological properties of A and R. In particular the Castelnuovo-Mumford regularity of R, reg R, is \leq reg $A+1$ (see also [E]). Unfortunately, depth R could be $>$ depth $A+1$ as shows an example of Goto [G], but if A is a polynomial algebra in one variable over a standard graded K-algebra then it holds depth $R \leq \operatorname{depth} A+1$ (see [HPT2]). The proof from [HPT2] uses a description of the local cohomology of R in

[^0]terms of the local cohomology of A. Our Section 2 contains a direct proof of the above inequality which does not use the local cohomology. This is part of the joint work with J.Herzog and N.V.Trung which was not inclosed in [HPT1], [HPT2].

1. Gröbner basis of Rees algebras

Let A be a standard graded K-algebra with maximal graded ideal $m=$ $\left(x_{1}, \ldots, x_{n}\right), A=B / J$ where $B=K\left[X_{1}, \ldots, X_{n}\right]$ is a polynomial ring over a field K and J is a homogeneous ideal of B. Then the Rees algebra $R=A[m t]$ may be considered as a bigraded module over the bigraded polynomial ring $S=K\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right]$ (where $\left.\operatorname{deg} X_{i}=(1,0), \operatorname{deg} Y_{j}=(1,1)\right)$ and has a presentation S / I_{J} via the bigraded canonical surjection $\phi: S \rightarrow R$ given by $\phi\left(X_{i}\right)=x_{i}$ and $\phi\left(Y_{j}\right)=x_{j} t$.

Let $f=\sum_{1 \leq i_{1} \leq \ldots \leq i_{d} \leq n} a_{i_{1} \ldots i_{d}} X_{i_{1}} \ldots X_{i_{d}} \in B$ be a homogeneous form of degree d. For $k=0, \ldots, \bar{d}$ we set
$f^{(k)}=\sum_{1 \leq i_{1} \leq \ldots \leq i_{d} \leq n} a_{i_{1} \ldots i_{d}} X_{i_{1}} \ldots X_{i_{d-k}} Y_{i_{d-k+1}} \ldots Y_{i_{d}}$.
Notice that $f^{(k)}$ is bihomogeneous of degree (d, k). For any subset $L \subset B$ of homogeneous polynomials in B we set $L^{\prime}:=\left\{f^{(k)} \mid f \in L, k=0, \ldots, \operatorname{deg} f\right\}$.

Proposition 1.1 Let L be a (minimal) system of generators of J, then $\left\{L^{\prime} \cup H\right\}$ is a (minimal) system of generators of I_{J}, where $H:=\left\{X_{i} Y_{j}-\right.$ $\left.X_{j} Y_{i} \mid 1 \leq i<j \leq n\right\}$.

Proof. Let $P=B\left[X_{1} t, \ldots, X_{n} t\right] \subset B[t], \phi_{1}: S \rightarrow P, \phi_{2}: P \rightarrow R$ be the maps given by $(X, Y) \rightarrow(X, X t)$, respectively $(X, X t) \rightarrow(x, x t)$. We have $\phi=\phi_{2} \phi_{1}$. Since ϕ is bigraded I_{J} is bigraded too. Clearly we have $L^{\prime} \cup H \subset I_{J}$. Conversely, let $f \in I_{J}$, we may choose f bigraded with deg $f=(a, b)$. Then $\phi_{1}(f)=f(X, X t)=f(X, X) t^{b}$, and so $0=\phi(f)=f(x, x) t^{b}$, that is $f(x, x)=0$. Therefore, there exist homogeneous elements $g_{i} \in B$ and $f_{i} \in L$ such that $f(X, X)=\sum_{i=1}^{r} g_{i} f_{i}$. We may suppose $L=\left\{f_{1}, \ldots, f_{r}\right\}$. Let $b_{i}=\min \left\{\operatorname{deg} f_{i}, b\right\}$. Then

$$
\phi_{1}(f)=f(X, X) t^{b}=\sum_{i=1}^{r}\left(g_{i} t^{b-b_{i}}\right)\left(f_{i} t^{b_{i}}\right)=\phi_{1}\left(\sum_{i=1}^{r} g_{i}^{\left(b-b_{i}\right)} f_{i}^{\left(b_{i}\right)}\right)
$$ and so $f \in L^{\prime} \cup H$, since Ker ϕ_{1} is generated by H.

Now let L be a minimal system of generators of J. We first show that $\phi_{1}\left(L^{\prime}\right)$ is a minimal system of generators of the ideal $J_{1}:=\phi_{1}\left(I_{J}\right)$ in P. Indeed, $\phi_{1}\left(L^{\prime}\right)=\left\{f_{i} t^{b} \mid 1 \leq i \leq r, 0 \leq b \leq \operatorname{deg} f_{i}\right\}$. Suppose this is not a minimal system of generators of J_{1}. Then there exists an equation

$$
f_{i} t^{b}=\sum_{j} \sum_{k}\left(f_{j} t^{b_{j k}}\right)\left(g_{j k} t^{c_{j k}}\right),
$$

where $b_{j k} \leq \operatorname{deg} f_{j}, b_{j k}+c_{j k}=b$ and $f_{j} t^{t_{j k}} \neq f_{i} t^{b}$ for all j, k, and where all summands are bihomogeneous of degree (d, b) with $d=\operatorname{deg} f_{i}$. Notice that the right hand sum contains no summand of the form $\left(f_{i} t^{t_{i k}}\right)\left(g_{i k} t^{c_{i k}}\right)$. In fact, otherwise we would have $\operatorname{deg} g_{i k} t^{c_{i k}}=\left(0, b-b_{i k}\right)$, and so $b_{i k}=b$ which is impossible. It follows that $f_{i}=\sum_{j \neq i}\left(\sum_{k} g_{j k}\right) f_{j}$, a contradiction to the minimality of L.

Now suppose that $L^{\prime} \cup H$ is not a minimal system of generators of I_{J}. If one of the $f_{i}^{(k)}$ is a linear combination of the other elements of $L^{\prime} \cup H$, then $\phi\left(L^{\prime}\right)$ is not a minimal system of generators of J_{1}, a contradiction. Next suppose one of the elements of H, say, $h=X_{1} Y_{2}-X_{2} Y_{1}$, is a linear combination of the other elements of $L^{\prime} \cup H$. Only the elements of bidegree $(2,1)$ can be involved in such a linear combination. In other words,

$$
h=\sum \lambda_{f} f^{(1)}+\tilde{h} \text { with } \lambda_{f} \in K
$$

Here the sum is taken over all $f \in L$ of degree 2 , and \tilde{h} is a K-linear combination of the polynomials $X_{i} Y_{j}-X_{j} Y_{i}$ different from h. Since the monomial $X_{2} Y_{1}$ does not appear in any polynomial on the right hand side of the equation, we get a contradiction.

Now we present an elementary Lemma useful in the next theorem.
Lemma 1.2 The Hilbert function $H(R,-): \mathbf{N} \rightarrow \mathbf{N}$ of R is given by $H(R, i)=(i+1) H(A, i), i \in \mathbf{N}, H(A,-)$ being the Hilbert function of A. In particular, $e(R)=\operatorname{dim} A e(A)$.

Proof. We have $R_{i}=\oplus_{|u|+|v|=i} K X^{u}(X t)^{v}=\oplus_{|u|+|v|=i} K X^{u+v} t^{|v|}=$ $\oplus_{s=0}^{i}\left(\oplus_{|w|=i} K X^{w}\right) t^{s}$. Thus $\mathrm{H}(R, i)=(i+1) \mathrm{H}(A, i)$. Let $\mathrm{P}_{A}(z)=e(A) z^{d-1} /(d-$ $1)!+\ldots, d=\operatorname{dim} A$ be the Hilbert polynomial of A (see [BH,4.1]). It follows that $\mathrm{P}_{R}(z)=(z+1) \mathrm{P}_{A}(z)=e(A)(z+1) z^{d-1} /(d-1)!+\ldots=d e(A) z^{d} / d!+\ldots$. Since $\operatorname{dim} R=\operatorname{dim} A+1$, we are done.

We will now compute a Gröbner basis of I_{J}.

Theorem 1.3 Let $<$ be the reverse lexicographic order induced by $X_{1}>$ $\ldots>X_{n}>Y_{1}>\ldots>Y_{n}$. If L is a Gröbner basis of J with respect to the term order $<$, then $L^{\prime} \cup H$ is a Gröbner basis of I_{J} with respect to $<$.

Proof. Let L be a Gröbner basis of J with respect to the reverse lexicographic order induced by $<$ on B. Then $L^{\prime} \cup H$ is a Gröbner basis of I_{J} with respect to $<$ if the obvious inclusion $<i n\left(L^{\prime} \cup H\right)>C i n\left(I_{J}\right)$ is an equality. For this aim it is enough to see that $\mathrm{H}\left(S / \operatorname{in}\left(I_{J}\right), i\right)=\mathrm{H}\left(S /<\operatorname{in}\left(L^{\prime} \cup H\right)>, i\right)$ for all $i \in \mathbf{N}$. But $\mathrm{H}\left(S / \operatorname{in}\left(I_{J}\right), i\right)=\mathrm{H}\left(S / I_{J}, i\right)=\mathrm{H}(R, i)=(i+1) \mathrm{H}(A, i)$ by Macaulay Theorem [BH,4.2.4] and Lemma 1.2. Choose a monomial basis T of A. We need the following elementary lemma:

Lemma1.4 T^{\prime} is a monomial basis of $\left.S /<i n\left(L^{\prime} \cup H\right)\right\rangle$ over K.

Back to our proof note that $\mathrm{H}\left(S /<i n\left(L^{\prime} \cup H\right)>, i\right)=\left|T_{i}^{\prime}\right|$, where T_{i}^{\prime} denotes the monomials of T^{\prime} of degree i. If $u \in T_{i}$ then it gives exactly $(i+1)$ monomials $\left\{u^{(k)} \mid 0 \leq k \leq i\right\}$ in T_{i}^{\prime}. Thus $\left|T_{i}^{\prime}\right|=(i+1)\left|T_{i}\right|=(i+1) \mathrm{H}(A, i)$, which is enough.

We need the following lemma in the proof of Lemma 1.4.

Lemma 1.5 Let \mathcal{M} be the set of monomials of B. Then
i) \mathcal{M}^{\prime} is a K-basis in $S /<\operatorname{in}(H)>$.
ii) If the linear K-space generated by $T \subset \mathcal{M}$ is an ideal in B then the linear K-space generated by T^{\prime} in $S /<i n(H)>$ is an ideal too.
iii) Let $T \subset N \subset \mathcal{M}$. If N is contained in the ideal generated by T in B then N^{\prime} is contained in the ideal generated by T^{\prime} in S.
iv) Let $T, N \subset \mathcal{M}$. If $T \cap N=\emptyset$ then $T^{\prime} \cap N^{\prime}=\emptyset$.

Proof. i) Note that $\operatorname{in}(H)=\left\{X_{i} Y_{j} \mid i>j\right\}$. By construction in \mathcal{M} appear all monomials of type $X_{1}^{k_{1}} \cdots X_{e}^{k_{e}} Y_{e}^{s_{e}} \cdots Y_{n}^{s_{n}}$, these are exactly the monomials which are not divided by a monomial of type $X_{i} Y_{j}$ with $i>j$. But these are the monomials which are not in $\langle i n(H)\rangle$.
ii) An element of T^{\prime} has the form $u^{(k)}$ for an $u \in T, 0 \leq k \leq \operatorname{deg} u$ and it is enough to show that $X_{i} u^{(k)}, Y_{j} u^{(k)}$ belong to $T^{\prime}+<\overline{i n}(H)>$. But if $X_{i} u^{(k)} \notin<i n(H)>$ then as in i) it is contained in \mathcal{M}^{\prime} and moreover $X_{i} u^{(k)}=$ $\left(X_{i} u\right)^{(k)} \in T^{\prime}$ since $X_{i} u \in T$ by hypothesis. Similarly, if $Y_{j} u^{(k)} \notin<i n(H)>$ then $Y_{j} u^{(k)}=\left(X_{j} u\right)^{(k+1)} \in T^{\prime}$.
iii) Let $u^{(k)} \in N^{\prime}$ for some $u \in N, 0 \leq k \leq \operatorname{deg} u$. By hypothesis $u=v w$ for a $v \in T$ and a $w \in \mathcal{M}$. Then $u^{(k)}=v^{(s)} w^{(\bar{k}-s)}$ for some $0 \leq s \leq k$ and so $u^{(k)}$ belongs to the ideal generated by T^{\prime} in S.
iv) Let $\psi: S \rightarrow B$ be the retraction of $B \subset S$ given by $Y \rightarrow X$. Then $\psi\left(T^{\prime}\right)=T$ for $T \subset \mathcal{M}$. If $T^{\prime} \cap N^{\prime} \neq \emptyset$ then $\psi\left(T^{\prime} \cap N^{\prime}\right) \subset \psi\left(T^{\prime}\right) \cap \psi\left(N^{\prime}\right)=T \cap N$ and so $T \cap N \neq \emptyset$.

Proof of Lemma 1.4 Let $D \subset \mathcal{M}$ be the set of monomials from $\operatorname{in}(J)$ and $C=\operatorname{in}(L)$. By hypothesis we have $T \cup D=\mathcal{M}$ and $T \cap D=\emptyset$ and using Lemma 1.5 i),iv) we get $T^{\prime} \cup D^{\prime}=\mathcal{M}$ is a K-basis in $S /<i n(H)>$ and $T^{\prime} \cap D^{\prime}=\emptyset$. Thus T^{\prime} is a K-basis in $S /<D^{\prime}, i n(H)>$ because the linear K-space generated by D^{\prime} in $S /<i n(H)>$ is an ideal by Lemma 1.5 ii). But $\operatorname{in}\left(L^{\prime} \cup H\right)>=<D^{\prime}, \operatorname{in}(H)>$ by Lemma 1.5 iii), which is enough.

Corollary 1.6 If J has a quadratic Gröbner basis, then so does I_{J}.

We would like to remark that if L is a reduced Gröbner basis, then $L^{\prime} \cup H$ need not be reduced as shows the following:

Example 1.7 Let $A=K\left[X_{1}, X_{2}, X_{3}\right] /\left(X_{1} X_{2}-X_{3}^{2}\right)$. Then $L=\left\{X_{1} X_{2}-\right.$ $\left.X_{3}^{2}\right\}$ is a reduced Gröbner basis of J, but $L^{\prime} \cup H$ is not reduced, since $X_{1} Y_{2}=$ $\operatorname{in}\left(X_{1} Y_{2}-X_{3} Y_{3}\right)$ appears in $X_{1} Y_{2}-X_{2} Y_{1}$.

2. Depth of Rees algebras

As above, let $B=K[X], A=B / J=K[x], x=\left(x_{1}, \ldots, x_{n}\right), S=K[X, Y]$, $R=S / I_{J}=K[x, y] \subset A[t]$, where $y=x t$.

Lemma 2.1 (after [GS, 2.7]) Suppose $x_{1}, \ldots, x_{r}, r \geq 1$ is a regular sequence on A and let $f_{i}:=x_{i}-y_{i-1}, 1 \leq i \leq r, y_{0}=0$. Then the sequences $\left\{f_{1}, \ldots, f_{r}\right\},\left\{f_{1}, \ldots, f_{r-1}, y_{r}\right\}$ are regular on R. In particular depth $R \geq$ depth A.

Proof. Apply induction on r. Clearly $x_{1}=f_{1}$ is regular on $R \subset A[t]$ and by symmetry y_{1} is too. Suppose $r>1$. Let
$0 \rightarrow\left(x_{r}\right) \rightarrow R /\left(y_{r}\right) \rightarrow R /\left(x_{r}, y_{r}\right) \rightarrow 0$
be the canonical exact sequence. We have $x_{r} R /\left(y_{r}\right) \cong\left(X_{r}, Y_{r}, I_{J}\right) /\left(Y_{r}, I_{J}\right) \cong$ $\left(X_{r}\right) /\left(X_{r}\right) \cap\left(Y_{r}, I_{J}\right) \cong S /\left(\left(Y_{r}, I_{J}\right): X_{R}\right)(-1)$. Note that $\left(\left(Y_{r}, I_{J}\right): X_{r}\right) \supset$ $\left(Y_{1}, \ldots, Y_{n}\right)$ because $X_{r} Y_{j}-X_{j} Y_{r} \in I_{J}$. Thus $\left(\left(Y_{r}, I_{J}\right): X_{r}\right)=\left(Y_{1}, \ldots Y_{n},(J:\right.$ $\left.\left.X_{r}\right)\right)=(Y, J), x_{r}$ being regular on B. Hence $x_{r} R /\left(y_{r}\right) \cong S /(Y, J)(-1) \cong$ $A(-1)$ which yields the following exact sequence:
$\left(^{*}\right) 0 \rightarrow A(-1) \rightarrow R /\left(y_{r}\right) \rightarrow R /\left(x_{r}, y_{r}\right) \rightarrow 0$.
By induction hypothesis, we have $\left\{f_{1}, \ldots, f_{r-1}\right\}$ regular on $R /\left(x_{r}, y_{r}\right)$. Since $\left\{f_{1}, \ldots, f_{r-1}\right\}$ acts on A as $\left\{x_{1}, \ldots, x_{r-1}\right\}$ it is also regular on A and so on $R /\left(y_{r}\right)$ by $\left(^{*}\right)$. Since x_{r} is regular on A it is also regular on R as well as y_{r} (see case $r=1$). Thus $\left\{f_{1}, \ldots, f_{r-1}, y_{r}\right\}$ is regular on R.

Suppose that $\left\{f_{1}, \ldots, f_{r}\right\}$ is not regular on R. Then there exists a prime ideal $P \subset R$ associated to $\left(f_{1}, \ldots, f_{r-1}\right)$ and containing f_{r}. Since $\left\{f_{1}, \ldots, f_{r-1}\right.$, $\left.y_{r}\right\}$ is regular it follows $y_{r} \notin P$. We claim that $P \supset\left(x_{1}, \ldots, x_{n}\right)$. Otherwise, let $x_{j} \notin P$ for a $1 \leq j \leq n$. By induction on $1 \leq i \leq r$ we see that $j>i$ and $\left(x_{1}, \ldots x_{i}, y_{1}, \ldots, y_{i}\right) \subset P R_{P}$. Indeed, if $i=1$ then $x_{1}=f_{1} \in P$ and so $j>1$ and $x_{j} y_{1}=x_{1} y_{j} \in P R_{P}$. Thus $y_{1} \in P R_{P}$. Suppose $1<i \leq r$. By induction hypothesis on i we have $j>i-1$ and $\left(x_{1}, \ldots, x_{i-1}, y_{1}, \ldots, y_{i-1}\right) \subset P R_{P}$. Since $f_{e} \in P, 1 \leq e \leq r$ it follows $x_{i} \in P R_{P}$. Thus $j>i$ and $y_{i} \in P R_{P}$ because $x_{j} y_{i}=x_{i} y_{j} \in P R_{P}$. This completes our induction on i. It follows $y_{r} \in P R_{P}$ which is a contradiction.

Then $P \supset\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{r-1}\right)$ since $f_{i} \in P$. By induction hypothesis on r we have $\left\{f_{2}, \ldots, f_{r}\right\}$ regular on $R /\left(x_{1}, y_{1}\right)$. It follows depth $\left(R /\left(x_{1}, y_{1}\right)\right)_{P} \geq$ $r-1$ because $P \supset\left(f_{2}, \ldots, f_{r}, x_{1}, y_{1}\right)$. But $\left(R /\left(y_{1}\right)\right)_{P} \cong\left(R /\left(x_{1}, y_{1}\right)\right)_{P}$ because $y_{r} x_{1}=x_{r} y_{1} \in\left(y_{1}\right)$ and $y_{r} \notin P$. Thus depth $\left(R /\left(y_{1}\right)\right)_{P} \geq r-1$ and so depth $\left(R_{P}\right) \geq r$ since y_{1} is regular on R. This contradicts the choice of P as associated to $\left(f_{1}, \ldots, f_{r-1}\right)$. Hence $\left\{f_{1}, \ldots, f_{r}\right\}$ is regular on R.

Remark 2.2 Note that $y_{r}(x)^{r}=(y) x_{r}(x)^{r-1} \equiv(y) y_{r-1}(x)^{r-1} \equiv \cdots \equiv$ $(y)^{r} x_{1} \equiv 0$ modulo $\left(f_{1}, \ldots, f_{r}\right)$. Thus if $\left\{f_{1}, \ldots, f_{r}, y_{r}\right\}$ would be regular on R then $(x)^{r} \subset\left(f_{1}, \ldots, f_{r}\right)$ and so $\left(x_{1}, \ldots, x_{r}\right)$ would be a m-primary ideal in A. Thus $\operatorname{dim} A=\operatorname{depth} A=r$. This is exactly the Cohen-Macaulay case investigated in [GS]. Here we are interested especially in the case when A is not Cohen-Macaulay.

Lemma 2.3 Suppose depth $A=r$ and $x_{1}, \ldots x_{s}$ is regular for a $s, 1 \leq s \leq r$ in A and depth $R /\left(x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{s}\right) \neq r-s$. Then depth $R=r+1$.

Proof. Apply induction on s. If $s=1$ then we consider the exact sequence $\left.{ }^{*}\right)$ from the proof of 2.1
$0 \rightarrow A(-1) \rightarrow R /\left(y_{1}\right) \rightarrow R /\left(x_{1}, y_{1}\right) \rightarrow 0$.
By Lemma 2.1 and our hypothesis we have depth $R /\left(x_{1}, y_{1}\right) \geq r$. As depth $A=r$ we obtain
depth $R /\left(y_{1}\right) \geq \min \left\{\operatorname{depth} A\right.$, depth $\left.R /\left(x_{1}, y_{1}\right)\right\} \geq r$.
On the other hand $r=\operatorname{depth} A \geq \min \left\{\right.$ depth $R /\left(y_{1}\right), 1+$ depth $\left.R /\left(x_{1}, y_{1}\right)\right\}$ implies necessarily depth $R /\left(y_{1}\right)=r$ and so depth $R=r+1, y_{1}$ being regular on R.

Suppose now $s>1$. By induction hypothesis we get then depth $R /\left(x_{s}, y_{s}\right)=$ $r>r-1$. Applying again the case $s=1$ it follows depth $R=r+1$.

From Lemma 2.3 it follows
Proposition 2.4 Suppose that depth $A \neq$ depth R. Then the Rees algebra R^{\prime} of $A\left[X^{\prime}\right], X^{\prime}=\left(X_{1}^{\prime}, \ldots, X_{s}^{\prime}\right)$ has depth $R^{\prime}=$ depth $A+s+1$.

Lemma 2.5 Let R^{\prime} be the Rees algebra of $A^{\prime}=A\left[X^{\prime}\right]$-the polynomial A algebra in one variable $X^{\prime}, r=$ depth A, x_{1}, \ldots, x_{r} a regular sequence on A and f_{1}, \ldots, f_{r} defined as in 2.1. Suppose that depth $R=r<\operatorname{dim} A$. If depth $R^{\prime} \neq$ depth A^{\prime} then depth $R^{\prime}=\operatorname{depth} A^{\prime}+1$.

Proof. Note that $R^{\prime} /\left(Y^{\prime}\right) \cong R\left[X^{\prime}\right] /\left(X^{\prime} y\right)$. By Lemma $2.1\left\{f_{1}, \ldots, f_{r}, Y^{\prime}\right\}$ forms a regular sequence in R^{\prime} and so depth $R^{\prime} /\left(Y^{\prime}\right) \geq r$. By hypothesis $r=\operatorname{depth} R$ and so depth $\bar{R}=0$, where $\bar{R}:=R /\left(f_{1}, \ldots, f_{r}\right)$. As $\operatorname{dim} A>r$ we see that depth $\left(\bar{R} / H_{(x, y)}^{0}(\bar{R})\right)>0$, where

$$
H_{(x, y)}^{0}(\bar{R})=\left\{v \in \bar{R} \mid \operatorname{Ann}_{\bar{R}} v \text { is }(x, y) \text {-primary }\right\} .
$$

Choose a homogeneous element $u \in R$ which is regular on $\bar{R} / H_{(x, y)}^{0}(\bar{R})$. We may change A by $A \otimes_{K} K(Z)$ in order to suppose K infinite. By [BH,1.5.12] we may take u of degree 1 .

We claim that $X^{\prime}-u$ is regular on $\bar{R}\left[X^{\prime}\right] /\left(X^{\prime} y\right)$. Indeed, if $q \in R$ satisfies $\left(X^{\prime}-u\right) q \in\left(X^{\prime} y\right)$ in $\bar{R}\left[X^{\prime}\right]$ then $X^{\prime} q, u q$ are zero in $\bar{R}\left[X^{\prime}\right] /\left(X^{\prime} y\right)$. Then $q \in$ $H_{(x, y)}^{0}(\bar{R}), u$ being regular on $\bar{R} / H_{(x, y)}^{0}(\bar{R})$. Since $X^{\prime} q$ is zero in $\bar{R}\left[X^{\prime}\right] /\left(X^{\prime} y\right)$ we see that $q \in H_{(x, y)}^{0}\left(\bar{R}\left[X^{\prime}\right] /\left(X^{\prime} y\right)\right)$. But depth $R^{\prime} \neq \operatorname{depth} A^{\prime}$ by hypothesis. Then depth $R^{\prime}>r+1$ and so depth $\bar{R}\left[X^{\prime}\right] /\left(X^{\prime} y\right)>0$. It follows that $H_{(x, y)}^{0}\left(\bar{R}\left[X^{\prime}\right] /\left(X^{\prime} y\right)\right)=0$ and so q is zero in $\bar{R}\left[X^{\prime}\right] /\left(X^{\prime} y\right)$, that is q is zero in \bar{R} (apply to q the retraction $\bar{R}\left[X^{\prime}\right] /\left(X^{\prime} y\right) \rightarrow \bar{R}, X^{\prime} \rightarrow 0$ of the inclusion).

Now, let $q=\sum_{i=0}^{e} q_{i} X^{\prime i} \in R^{\prime}\left[X^{\prime}\right]$ be such that $\left(X^{\prime}-u\right) q=0$ in $\bar{R}\left[X^{\prime}\right] /\left(X^{\prime} y\right)$. The expression of q as a polynomial in $R\left[X^{\prime}\right] /\left(X^{\prime} y\right)$ could be "unique" if we ask for $i>0$ either $q_{i} \notin(y)$, or $q_{i}=0$. From $\left(X^{\prime}-u\right) q=\sum_{i=0}^{e+1}\left(q_{i-1}-q_{i} u\right) X^{\prime i}=0$ it follows $q_{i}=0$ for $1 \leq i \leq e$ by "unicity" of the expression of q. So we may suppose $q=q_{0} \in R$, which was already settled. Note that $R^{\prime} /\left(Y^{\prime}, X^{\prime}-u\right) \cong$ $R /(u y)$ and let $v \in R$ be inducing a nonzero element in $H_{(x, y)}^{0}(\bar{R})$. As above $v \notin y \bar{R}$ because otherwise $v \in H_{(x, y)}^{0}\left(\bar{R}\left[X^{\prime}\right] /\left(X^{\prime} y\right)\right)=0$. But then v induces a nonzero element in $H_{(x, y)}^{0}(\bar{R} /(u y))$, i.e. depth $\bar{R} /(u y)=0$. Hence depth $R^{\prime}=r+2$, a regular sequence being $f_{1} \ldots, f_{r}, Y^{\prime}, X^{\prime}-u$.

Theorem 2.6 Let R^{\prime} be the Rees algebra of $A\left[X^{\prime}\right], X^{\prime}=\left(X_{1}^{\prime}, \ldots, X_{s}^{\prime}\right)$, $s \geq 1$. Then depth $A\left[X^{\prime}\right] \leq$ depth $R^{\prime} \leq$ depth $A\left[X^{\prime}\right]+1$.

The proof follows from Lemma 2.1, Proposition 2.4 and Lemma 2.5 applied recursively.

Example 2.7 Let u, v be two algebraically independent elements over K and $A:=K\left[u^{4}, u^{3} v, u v^{3}, v^{4}\right]$. Then $\operatorname{dim} A=2$ and $A \cong K\left[X_{1}, \ldots, X_{4}\right] / J$, where $J=\left(X_{1} X_{4}-X_{2} X_{3}, X_{3}^{3}-X_{2} X_{4}^{2}, X_{2}^{2} X_{4}-X_{1} X_{3}^{2}, X_{1}^{2} X_{3}-X_{2}^{3}\right)$. We see that $X_{2}^{2}\left(X_{2}, X_{3}, X_{4}\right) \subset\left(X_{1}\right)+J$ and so X_{1} is maximal regular sequence in A, that is depth $A=1$. By Proposition 1.1 we have $R=S / I_{J}$, where $S=K[X, Y], I_{J}=J+J(Y)+T+H, J(Y)$ being obtained from J changing X by Y, H being as in 1.1, and $T=\left(X_{1} Y_{4}-X_{2} Y_{3}, X_{3}^{2} Y_{3}-X_{2} X_{4} Y_{4}, X_{2}^{2} Y_{4}-\right.$ $\left.X_{1} X_{3} Y_{3}, X_{1}^{2} Y_{3}-X_{2}^{2} Y_{2}, X_{3} Y_{3}^{2}-X_{2} Y_{4}^{2}, X_{2} Y_{2} Y_{4}-X_{1} Y_{3}^{2}, X_{1} Y_{1} Y_{3}-X_{2} Y_{2}^{2}\right)$. Then $x_{2}^{2}\left(x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}\right)$ $\subset\left(x_{1}\right)$ and so depth $R /\left(x_{1}\right)=0$. Thus depth $A=\operatorname{depth} R=1$. It is not difficult to show that depth $R^{\prime}=2=$ depth A^{\prime}, but the Rees algebra $R^{\prime \prime}$ of $A^{\prime \prime}:=A\left[X^{\prime}, X^{\prime \prime}\right]$ has depth $=1+\operatorname{depth} A^{\prime \prime}=4$.

References

[BH] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge, 1998.
[E] V. Ene, On the Castelnuovo Mumford regularity of Rees algebra, Math. Reports 3(53), 2, (2001), 163-168.
[G] S. Goto, On the associated graded rings of parameter ideals in Buchsbaum rings, J. Algebra 85(1980), 490-534.
[GS] S. Goto and Y. Shimoda, On the Rees algebra of Cohen-Macaulay local rings, Lect. Notes Pure and Appl. Math. 68 (1982), 201-231.
[HOP] J. Herzog, L. O’Carroll and D. Popescu, Explicite linear minimal free resolutions over a natural class of Rees algebras, Preprint 2000, Edinburgh, to appear in Archiv. Math.
[HPT1] J.Herzog, D. Popescu and N.V.Trung, Gröbner basis and regularity of Rees algebras, IMAR Preprint 10/2000, Bucharest.
[HPT2] J.Herzog, D. Popescu and N.V.Trung, Regularity of Rees algebras, to appear in J. London Math. Soc.

Institute of Mathematics,
University of Bucharest,
P.O. Box 1-764,

RO-70700 Bucharest,
Romania
e-mail: dorin@stoilow.imar.ro

[^0]: Received: October, 2001.

