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GRÖBNER BASIS AND DEPTH OF REES

ALGEBRAS

Dorin Popescu

Introduction

Let B = K[X1, . . . , Xn] be a polynomial ring over a field K and A = B/J
a quotient ring of B by a homogeneous ideal J . Let m denote the maximal
graded ideal of A. Then the Rees algebra R = A[mt] may be considered
a standard graded K-algebra and has a presentation B[Y1, . . . , Yn]/IJ . For
instance, if J = 0 then R ∼= K[X1, . . . , Xn, Y1, . . . , Yn]/(H), where H :=
{XiYj −XjYi|1 ≤ i < j ≤ n}.

The generators of IJ can be easily described as follows. For any homoge-
neous form f =

∑
1≤i1≤...≤id≤n ai1...id

Xi1 . . . Xid
∈ B of degree d we set

f (k) =
∑

1≤i1≤...≤id≤n ai1...id
Xi1 . . . Xid−k

Yid−k+1
. . . Yid

for k = 0, . . . , d. For any subset L ⊂ B of homogeneous polynomials in B we
set
L′ := {f (k)|f ∈ L, k = 0, . . . , deg f}. If L is a minimal system of generators
of J , then L′∪H is a minimal system of generators of IJ (see Proposition 1.1)
and if L is a Gröbner basis of J for the reverse lexicographic order induced
by X1 > . . . > Xn > Y1 > . . . > Yn then L′ ∪ H is a Gröbner basis of IJ
(see Theorem 1.3). This procedure is described in [HPT1]. However it is not
included in the new version [HPT2] even it has its own value (it is used in
[HOP]). Our Section 1 is an attempt to give a printed presentation.

The purpose of [HPT2] is to compare the homological properties of A and
R. In particular the Castelnuovo-Mumford regularity of R, reg R, is ≤ reg
A+ 1 (see also [E]). Unfortunately, depth R could be > depth A+ 1 as shows
an example of Goto [G], but if A is a polynomial algebra in one variable over a
standard graded K-algebra then it holds depth R ≤ depth A+1 (see [HPT2]).
The proof from [HPT2] uses a description of the local cohomology of R in
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terms of the local cohomology of A. Our Section 2 contains a direct proof of
the above inequality which does not use the local cohomology. This is part
of the joint work with J.Herzog and N.V.Trung which was not inclosed in
[HPT1], [HPT2].

1. Gröbner basis of Rees algebras

Let A be a standard graded K-algebra with maximal graded ideal m =
(x1, . . . , xn), A = B/J where B = K[X1, . . . , Xn] is a polynomial ring over a
field K and J is a homogeneous ideal of B. Then the Rees algebra R = A[mt]
may be considered as a bigraded module over the bigraded polynomial ring
S = K[X1, . . . , Xn, Y1, . . . , Yn] (where deg Xi = (1, 0), deg Yj = (1, 1)) and
has a presentation S/IJ via the bigraded canonical surjection φ : S → R given
by φ(Xi) = xi and φ(Yj) = xjt .

Let f =
∑

1≤i1≤...≤id≤n ai1...id
Xi1 . . . Xid

∈ B be a homogeneous form of
degree d. For k = 0, . . . , d we set

f (k) =
∑

1≤i1≤...≤id≤n ai1...id
Xi1 . . . Xid−k

Yid−k+1
. . . Yid

.

Notice that f (k) is bihomogeneous of degree (d, k). For any subset L ⊂ B
of homogeneous polynomials in B we set
L′ := {f (k)|f ∈ L, k = 0, . . . , deg f}.

Proposition 1.1 Let L be a (minimal) system of generators of J , then
{L′ ∪ H} is a (minimal) system of generators of IJ , where H := {XiYj −
XjYi|1 ≤ i < j ≤ n}.

Proof. Let P = B[X1t, . . . , Xnt] ⊂ B[t], φ1 : S → P , φ2 : P → R be
the maps given by (X,Y ) → (X,Xt), respectively (X,Xt) → (x, xt). We
have φ = φ2φ1. Since φ is bigraded IJ is bigraded too. Clearly we have
L′ ∪ H ⊂ IJ . Conversely, let f ∈ IJ , we may choose f bigraded with deg
f = (a, b). Then φ1(f) = f(X,Xt) = f(X,X)tb, and so 0 = φ(f) = f(x, x)tb,
that is f(x, x) = 0. Therefore, there exist homogeneous elements gi ∈ B and
fi ∈ L such that f(X,X) =

∑r

i=1 gifi. We may suppose L = {f1, . . . , fr}.
Let bi =min {deg fi, b}. Then

φ1(f) = f(X,X)tb =
∑r

i=1(git
b−bi)(fit

bi) = φ1(
∑r

i=1 g
(b−bi)
i f

(bi)
i ),

and so f ∈ L′ ∪H, since Ker φ1 is generated by H.
Now let L be a minimal system of generators of J . We first show that

φ1(L
′) is a minimal system of generators of the ideal J1 := φ1(IJ) in P .

Indeed, φ1(L
′) = {fit

b|1 ≤ i ≤ r, 0 ≤ b ≤deg fi}. Suppose this is not a
minimal system of generators of J1. Then there exists an equation

fit
b =

∑
j

∑
k(fjt

bjk)(gjkt
cjk),
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where bjk ≤deg fj , bjk + cjk = b and fjt
bjk 6= fit

b for all j, k, and where all
summands are bihomogeneous of degree (d, b) with d =deg fi. Notice that
the right hand sum contains no summand of the form (fit

bik)(gikt
cik). In

fact, otherwise we would have deg gikt
cik = (0, b − bik), and so bik = b which

is impossible. It follows that fi =
∑

j 6=i(
∑

k gjk)fj , a contradiction to the
minimality of L.

Now suppose that L′∪H is not a minimal system of generators of IJ . If one

of the f
(k)
i is a linear combination of the other elements of L′ ∪H, then φ(L′)

is not a minimal system of generators of J1, a contradiction. Next suppose
one of the elements of H, say, h = X1Y2−X2Y1, is a linear combination of the
other elements of L′ ∪H. Only the elements of bidegree (2, 1) can be involved
in such a linear combination. In other words,

h =
∑
λff

(1) + h̃ with λf ∈ K.

Here the sum is taken over all f ∈ L of degree 2, and h̃ is a K-linear combi-
nation of the polynomials XiYj −XjYi different from h. Since the monomial
X2Y1 does not appear in any polynomial on the right hand side of the equation,
we get a contradiction.

Now we present an elementary Lemma useful in the next theorem.

Lemma 1.2 The Hilbert function H(R,−) : N → N of R is given by
H(R, i) = (i+1)H(A, i), i ∈ N, H(A,−) being the Hilbert function of A. In
particular, e(R) = dim A e(A).

Proof. We have Ri = ⊕|u|+|v|=iKX
u(Xt)v = ⊕|u|+|v|=iKX

u+vt|v| =

⊕i
s=0(⊕|w|=iKX

w)ts. Thus H(R, i) = (i+1)H(A, i). Let PA(z) = e(A)zd−1/(d−
1)! + . . ., d =dim A be the Hilbert polynomial of A (see [BH,4.1]). It follows
that PR(z) = (z+1)PA(z) = e(A)(z+1)zd−1/(d−1)!+ . . . = de(A)zd/d!+ . . ..
Since dim R =dim A+ 1, we are done.

We will now compute a Gröbner basis of IJ .

Theorem 1.3 Let < be the reverse lexicographic order induced by X1 >
. . . > Xn > Y1 > . . . > Yn. If L is a Gröbner basis of J with respect to the
term order <, then L′ ∪H is a Gröbner basis of IJ with respect to <.

Proof. Let L be a Gröbner basis of J with respect to the reverse lexico-
graphic order induced by < on B. Then L′ ∪H is a Gröbner basis of IJ with
respect to < if the obvious inclusion < in(L′ ∪H) >⊂ in(IJ ) is an equality.
For this aim it is enough to see that H(S/in(IJ ), i) =H(S/ < in(L′ ∪H) >, i)
for all i ∈ N. But H(S/in(IJ ), i) =H(S/IJ , i) = H(R, i) = (i + 1)H(A, i) by
Macaulay Theorem [BH,4.2.4] and Lemma 1.2. Choose a monomial basis T of
A. We need the following elementary lemma:
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Lemma1.4 T ′ is a monomial basis of S/ < in(L′ ∪H) > over K.

Back to our proof note that H(S/ < in(L′ ∪ H) >, i) = |T ′
i |, where T ′

i

denotes the monomials of T ′ of degree i. If u ∈ Ti then it gives exactly (i+1)-
monomials {u(k)|0 ≤ k ≤ i} in T ′

i . Thus |T ′
i | = (i + 1)|Ti| = (i + 1)H(A, i),

which is enough.

We need the following lemma in the proof of Lemma 1.4.

Lemma 1.5 Let M be the set of monomials of B. Then

i) M′ is a K-basis in S/ < in(H) >.

ii) If the linear K-space generated by T ⊂ M is an ideal in B then the
linear K-space generated by T ′ in S/ < in(H) > is an ideal too.

iii) Let T ⊂ N ⊂ M. If N is contained in the ideal generated by T in B
then N ′ is contained in the ideal generated by T ′ in S.

iv) Let T,N ⊂ M. If T ∩N = ∅ then T ′ ∩N ′ = ∅.

Proof. i) Note that in(H) = {XiYj |i > j}. By construction in M appear

all monomials of type Xk1

1 · · ·Xke
e Y se

e · · ·Y sn
n , these are exactly the monomials

which are not divided by a monomial of type XiYj with i > j. But these are
the monomials which are not in < in(H) >.

ii) An element of T ′ has the form u(k) for an u ∈ T , 0 ≤ k ≤ deg u and
it is enough to show that Xiu

(k), Yju
(k) belong to T ′+ < in(H) >. But if

Xiu
(k) 6∈< in(H) > then as in i) it is contained in M′ and moreover Xiu

(k) =
(Xiu)

(k) ∈ T ′ since Xiu ∈ T by hypothesis. Similarly, if Yju
(k) 6∈< in(H) >

then Yju
(k) = (Xju)

(k+1) ∈ T ′.

iii) Let u(k) ∈ N ′ for some u ∈ N , 0 ≤ k ≤deg u. By hypothesis u = vw
for a v ∈ T and a w ∈ M. Then u(k) = v(s)w(k−s) for some 0 ≤ s ≤ k and so
u(k) belongs to the ideal generated by T ′ in S.

iv) Let ψ : S → B be the retraction of B ⊂ S given by Y → X. Then
ψ(T ′) = T for T ⊂ M. If T ′∩N ′ 6= ∅ then ψ(T ′∩N ′) ⊂ ψ(T ′)∩ψ(N ′) = T∩N
and so T ∩N 6= ∅.

Proof of Lemma 1.4 Let D ⊂ M be the set of monomials from in(J)
and C = in(L). By hypothesis we have T ∪D = M and T ∩D = ∅ and using
Lemma 1.5 i),iv) we get T ′ ∪ D′ = M is a K-basis in S/ < in(H) > and
T ′ ∩ D′ = ∅ . Thus T ′ is a K-basis in S/ < D′, in(H) > because the linear
K-space generated by D′ in S/ < in(H) > is an ideal by Lemma 1.5 ii). But
in(L′ ∪H) >=< D′, in(H) > by Lemma 1.5 iii), which is enough.

Corollary 1.6 If J has a quadratic Gröbner basis, then so does IJ .
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We would like to remark that if L is a reduced Gröbner basis, then L′ ∪H
need not be reduced as shows the following:

Example 1.7 Let A = K[X1, X2, X3]/(X1X2 −X2
3 ). Then L = {X1X2 −

X2
3} is a reduced Gröbner basis of J , but L′ ∪H is not reduced, since X1Y2 =

in(X1Y2 −X3Y3) appears in X1Y2 −X2Y1.

2. Depth of Rees algebras

As above, let B = K[X], A = B/J = K[x], x = (x1, . . . , xn), S = K[X,Y ],
R = S/IJ = K[x, y] ⊂ A[t], where y = xt.

Lemma 2.1 (after [GS, 2.7]) Suppose x1, . . . , xr, r ≥ 1 is a regular se-
quence on A and let fi := xi − yi−1, 1 ≤ i ≤ r, y0 = 0. Then the sequences
{f1, . . . , fr}, {f1, . . . , fr−1, yr} are regular on R. In particular depth R ≥depth
A.

Proof. Apply induction on r. Clearly x1 = f1 is regular on R ⊂ A[t] and
by symmetry y1 is too. Suppose r > 1. Let

0 → (xr) → R/(yr) → R/(xr, yr) → 0
be the canonical exact sequence. We have xrR/(yr) ∼= (Xr, Yr, IJ)/(Yr, IJ ) ∼=
(Xr)/(Xr) ∩ (Yr, IJ ) ∼= S/((Yr, IJ ) : XR)(−1). Note that ((Yr, IJ ) : Xr) ⊃
(Y1, . . . , Yn) because XrYj −XjYr ∈ IJ . Thus ((Yr, IJ ) : Xr) = (Y1, . . . Yn, (J :
Xr)) = (Y, J), xr being regular on B. Hence xrR/(yr) ∼= S/(Y, J)(−1) ∼=
A(−1) which yields the following exact sequence:

(*) 0 → A(−1) → R/(yr) → R/(xr, yr) → 0.
By induction hypothesis, we have {f1, . . . , fr−1} regular on R/(xr, yr). Since
{f1, . . . , fr−1} acts on A as {x1, . . . , xr−1} it is also regular on A and so on
R/(yr) by (*). Since xr is regular on A it is also regular on R as well as yr

(see case r = 1). Thus {f1, . . . , fr−1, yr} is regular on R.
Suppose that {f1, . . . , fr} is not regular on R. Then there exists a prime

ideal P ⊂ R associated to (f1, . . . , fr−1) and containing fr. Since {f1, . . . , fr−1,
yr} is regular it follows yr 6∈ P . We claim that P ⊃ (x1, . . . , xn). Otherwise,
let xj 6∈ P for a 1 ≤ j ≤ n. By induction on 1 ≤ i ≤ r we see that j > i and
(x1, . . . xi, y1, . . . , yi) ⊂ PRP . Indeed, if i = 1 then x1 = f1 ∈ P and so j > 1
and xjy1 = x1yj ∈ PRP . Thus y1 ∈ PRP . Suppose 1 < i ≤ r. By induction
hypothesis on i we have j > i − 1 and (x1, . . . , xi−1, y1, . . . , yi−1) ⊂ PRP .
Since fe ∈ P , 1 ≤ e ≤ r it follows xi ∈ PRP . Thus j > i and yi ∈ PRP

because xjyi = xiyj ∈ PRP . This completes our induction on i. It follows
yr ∈ PRP which is a contradiction.
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Then P ⊃ (x1, . . . , xn, y1, . . . , yr−1) since fi ∈ P . By induction hypothesis
on r we have {f2, . . . , fr} regular onR/(x1, y1). It follows depth (R/(x1, y1))P ≥
r−1 because P ⊃ (f2, . . . , fr, x1, y1). But (R/(y1))P

∼= (R/(x1, y1))P because
yrx1 = xry1 ∈ (y1) and yr 6∈ P . Thus depth (R/(y1))P ≥ r − 1 and so
depth (RP ) ≥ r since y1 is regular on R. This contradicts the choice of P as
associated to (f1, . . . , fr−1). Hence {f1, . . . , fr} is regular on R.

Remark 2.2 Note that yr(x)
r = (y)xr(x)

r−1 ≡ (y)yr−1(x)
r−1 ≡ · · · ≡

(y)rx1 ≡ 0 modulo (f1, . . . , fr). Thus if {f1, . . . , fr, yr} would be regular on
R then (x)r ⊂ (f1, . . . , fr) and so (x1, . . . , xr) would be a m-primary ideal
in A. Thus dim A =depth A = r. This is exactly the Cohen-Macaulay case
investigated in [GS]. Here we are interested especially in the case when A is
not Cohen-Macaulay.

Lemma 2.3 Suppose depth A = r and x1, . . . xs is regular for a s, 1 ≤ s ≤ r
in A and depth R/(x1, . . . , xs, y1, . . . , ys) 6= r − s. Then depth R = r + 1.

Proof. Apply induction on s. If s = 1 then we consider the exact sequence
(*) from the proof of 2.1

0 → A(−1) → R/(y1) → R/(x1, y1) → 0.
By Lemma 2.1 and our hypothesis we have depth R/(x1, y1) ≥ r. As depth

A = r we obtain
depth R/(y1) ≥ min {depth A, depth R/(x1, y1)} ≥ r.

On the other hand r = depth A ≥ min {depth R/(y1), 1+ depth R/(x1, y1)}
implies necessarily depth R/(y1) = r and so depth R = r+1, y1 being regular
on R.

Suppose now s > 1. By induction hypothesis we get then depthR/(xs, ys) =
r > r − 1. Applying again the case s = 1 it follows depth R = r + 1.

From Lemma 2.3 it follows

Proposition 2.4 Suppose that depth A 6=depth R. Then the Rees algebra
R′ of A[X ′], X ′ = (X ′

1, . . . , X
′
s) has depth R′ = depth A+ s+ 1.

Lemma 2.5 Let R′ be the Rees algebra of A′ = A[X ′]-the polynomial A-
algebra in one variable X ′, r =depth A, x1, . . . , xr a regular sequence on A
and f1, . . . , fr defined as in 2.1. Suppose that depth R = r <dim A. If depth
R′ 6=depth A′ then depth R′ =depth A′ + 1.

Proof. Note that R′/(Y ′) ∼= R[X ′]/(X ′y). By Lemma 2.1 {f1, . . . , fr, Y
′}

forms a regular sequence in R′ and so depth R′/(Y ′) ≥ r. By hypothesis
r =depth R and so depth R̄ = 0, where R̄ := R/(f1, . . . , fr). As dim A > r
we see that depth (R̄/H0

(x,y)(R̄)) > 0, where
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H0
(x,y)(R̄) = {v ∈ R̄|AnnR̄v is (x, y)-primary}.

Choose a homogeneous element u ∈ R which is regular on R̄/H0
(x,y)(R̄). We

may change A by A⊗K K(Z) in order to suppose K infinite. By [BH,1.5.12]
we may take u of degree 1.

We claim that X ′ − u is regular on R̄[X ′]/(X ′y). Indeed, if q ∈ R satisfies
(X ′ − u)q ∈ (X ′y) in R̄[X ′] then X ′q, uq are zero in R̄[X ′]/(X ′y). Then q ∈
H0

(x,y)(R̄), u being regular on R̄/H0
(x,y)(R̄). Since X ′q is zero in R̄[X ′]/(X ′y)

we see that q ∈ H0
(x,y)(R̄[X ′]/(X ′y)). But depth R′ 6=depth A′ by hypothesis.

Then depth R′ > r + 1 and so depth R̄[X ′]/(X ′y) > 0. It follows that
H0

(x,y)(R̄[X ′]/(X ′y)) = 0 and so q is zero in R̄[X ′]/(X ′y), that is q is zero in

R̄ (apply to q the retraction R̄[X ′]/(X ′y) → R̄, X ′ → 0 of the inclusion).

Now, let q =
∑e

i=0 qiX
′i ∈ R′[X ′] be such that (X ′−u)q = 0 in R̄[X ′]/(X ′y).

The expression of q as a polynomial in R[X ′]/(X ′y) could be “unique” if we ask

for i > 0 either qi 6∈ (y), or qi = 0. From (X ′−u)q =
∑e+1

i=0 (qi−1−qiu)X
′i = 0

it follows qi = 0 for 1 ≤ i ≤ e by “unicity” of the expression of q. So we may
suppose q = q0 ∈ R, which was already settled. Note that R′/(Y ′, X ′ − u) ∼=
R/(uy) and let v ∈ R be inducing a nonzero element in H0

(x,y)(R̄). As above

v 6∈ yR̄ because otherwise v ∈ H0
(x,y)(R̄[X ′]/(X ′y)) = 0. But then v induces

a nonzero element in H0
(x,y)(R̄/(uy)), i.e. depth R̄/(uy) = 0. Hence depth

R′ = r + 2, a regular sequence being f1 . . . , fr, Y
′, X ′ − u.

Theorem 2.6 Let R′ be the Rees algebra of A[X ′], X ′ = (X ′
1, . . . , X

′
s),

s ≥ 1. Then depth A[X ′] ≤depth R′ ≤depth A[X ′] + 1.

The proof follows from Lemma 2.1, Proposition 2.4 and Lemma 2.5 applied
recursively.

Example 2.7 Let u, v be two algebraically independent elements over K
and A := K[u4, u3v, uv3, v4]. Then dim A = 2 and A ∼= K[X1, . . . , X4]/J ,
where J = (X1X4 − X2X3, X

3
3 − X2X

2
4 , X

2
2X4 − X1X

2
3 , X

2
1X3 − X3

2 ). We
see that X2

2 (X2, X3, X4) ⊂ (X1) + J and so X1 is maximal regular sequence
in A, that is depth A = 1. By Proposition 1.1 we have R = S/IJ , where
S = K[X,Y ], IJ = J + J(Y ) + T +H, J(Y ) being obtained from J changing
X by Y , H being as in 1.1, and T = (X1Y4 −X2Y3, X

2
3Y3 −X2X4Y4, X

2
2Y4 −

X1X3Y3, X
2
1Y3−X

2
2Y2, X3Y

2
3 −X2Y

2
4 , X2Y2Y4−X1Y

2
3 , X1Y1Y3−X2Y

2
2 ). Then

x2
2(x2, x3, x4, y1, y2, y3, y4)

⊂ (x1) and so depth R/(x1) = 0. Thus depth A =depth R = 1. It is not
difficult to show that depth R′ = 2 =depth A′, but the Rees algebra R′′ of
A′′ := A[X ′, X ′′] has depth = 1+depth A′′ = 4.
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