An. Şt. Univ. Ovidius Constanţa

GORENSTEIN TILED ORDERS WITH HEREDITARY RING OF MULTIPLIERS OF JACOBSON RADICAL *

Vladimir V. Kirichenko, Marina A. Khibina
and Viktor N. Zhuravlev

Abstract

The present paper is devoted to the description of Gorenstein tiled orders with hereditary ring of multipliers of the Jacobson radical. It is proved that all Gorenstein (0,1)-tiled orders satisfy this property.

On the Algebraic Seminar of the Kiev Taras Shevchenko University Yu. Drozd had proposed a problem of description of Gorenstein tiled orders over discrete valuation ring (d.v.r.) with the hereditary ring of multipliers of the Jacobson radical. In our terminology a tiled order over a disrete valuation ring coincides with a prime semimaximal ring [ZK1], [ZK2].
Every tiled order Λ over a d.v.r. \mathcal{O} is defined by the exponent matrix $\mathcal{E}(\Lambda)$. Hence for the fixed d.v.r. \mathcal{O} it is sufficient to describe the exponent matrices of such orders. Moreover, we can consider a tiled order Λ be reduced, i.e. the exponent matrix $\mathcal{E}(\Lambda)$ have not symmetric zeroes. The reader is referred to [Sim 1] and [ZK1], [ZK2] for information on tiled orders.

I. Main result

Denote by $M_{n}(B)$ the ring of all square matrices of order n over a ring B. Let $\mathcal{E} \in M_{n}(\mathbf{Z})$. We shall call the matrix $\mathcal{E}=\left(\alpha_{i j}\right)$ the exponent matrix if $\alpha_{i j}+\alpha_{j k} \geq \alpha_{i k}$ for $i, j, k=1, \ldots, n$ and $\alpha_{i i}=0$ for $i=1, \ldots, n$. A matrix \mathcal{E} is called a reduced exponent matrix if $\alpha_{i j}+\alpha_{j i}>0$ for $i, j=1, \ldots, n$.
*This work was partially supported by the Grant 01.07/ 00132 of the State Fund of Fundamental Research of Ukraine.

Let \mathcal{O} be a discrete valuation ring with the division ring of fractions T and $\mathcal{M}=\pi \mathcal{O}=\mathcal{O} \pi$ be an unique maximal ideal of \mathcal{O}. We shall build the tiled order in $M_{n}(T)$ by d.v.r. \mathcal{O} and the exponent matrix $\mathcal{E}=\left(\alpha_{i j}\right)$ of the following form:

$$
\begin{equation*}
\Lambda=\sum_{i, j=1}^{n} e_{i j} \pi^{\alpha_{i j}} \mathcal{O} \tag{1}
\end{equation*}
$$

where $e_{i j}$ are matrices units of $M_{n}(T)$. Obviously, $M_{n}(T)$ is both the left and right classical ring of fractions of Λ. We shall use the notation: $\Lambda=\{\mathcal{O}, \mathcal{E}(\Lambda)\}$, where $\mathcal{E}=\mathcal{E}(\Lambda)$. A tiled order Λ is reduced if and only if $\alpha_{i j}+\alpha_{j i}>0$ for $i, j=1, \ldots, n$. This is equivalent to the fact that among the modules $e_{i i} \Lambda$ there are no isomorphic one; i.e. the quotient of Λ by Jacobson radical R is a direct product of division rings. Since any tiled order Λ is Morita equivalent to a reduced order, we shall restrict ourselves to reduced tiled orders.
Any two-sided ideal $J \subset \Lambda$ has the form:

$$
J=\sum_{i, j=1}^{n} e_{i j} \pi^{\gamma_{i j}} \mathcal{O}
$$

The matrix $\mathcal{E}(J)=\left(\gamma_{i j}\right)$ will be called the exponent matrix of the ideal J. Recall [Z] that two reduced tiled orders over d.v.r. \mathcal{O} in $M_{n}(T)$ are isomorphic if and only if their exponent matrices can be obtained one from another by elementary transformations of the following two types:
(1) subtracting the integer α from i th row with simultaneously adding it to i th column;
(2) simultaneously interchanging of two different rows and columns which have the same numbers.

Theorem 1.1. $[\mathrm{K}]$. The following conditions for a reduced tiled order $\Lambda=$ $\left\{\mathcal{O}, \mathcal{E}(\Lambda)=\left(\alpha_{i j}\right)\right\}$ are equivalent:
(a) Λ is a Gorenstein order;
(b) there exists a permutation $\sigma=\{i \rightarrow \sigma(i)\}$ such that $\alpha_{i k}+\alpha_{k \sigma(i)}=$ $\alpha_{i \sigma(i)}$ for $i, k=1, \ldots, n$.

Definition. A Gorenstein tiled order Λ is called cyclic if a permutation σ is a cycle.

Now we consider the following reduced Gorenstein tiled orders:
(a) $H_{m}=H_{m}(\mathcal{O})=\left\{\mathcal{O}, \mathcal{E}\left(H_{m}(\mathcal{O})\right)=\left(\alpha_{i j}\right)\right\}$, where $\alpha_{i j}=0$ for $i \leq j$ and $\alpha_{i j}=1$ for $i>j ; R_{m}$ is its Jacobson radical.
Obviously, H_{m} is a cyclic Gorenstein tiled order with the permutation $\sigma=(1 m m-1 \ldots 32)$. Let $P_{i}=e_{i i} H_{m},\left[P_{i}\right]=(11 \ldots 100 \ldots 0)$ and $\left[\pi P_{i}\right]=(22 \ldots 211 \ldots 1)$ for $i=1,2, \ldots, m$. Analogously, $Q_{i}=$ $H_{m} e_{i i},\left[Q_{i}\right]=(00 \ldots 011 \ldots 1)^{T}$ and $\left[Q_{i} \pi\right]=(11 \ldots 122 \ldots 2)^{T}$.
(b) $G_{2 m}=G_{2 m}(\mathcal{O})=\left\{\mathcal{O}, \mathcal{E}\left(G_{2 m}\right)\right\}$, where

$$
\mathcal{E}\left(G_{2 m}\right)=\left[\begin{array}{ll}
\mathcal{E}\left(H_{m}\right) & \mathcal{E}\left(R_{m}\right) \\
\mathcal{E}\left(R_{m}\right) & \mathcal{E}\left(H_{m}\right)
\end{array}\right] .
$$

A $(0,1)$-tiled order $G_{2 m}$ is Gorenstein with the permutation

$$
\sigma=(1 s+1)(2 s+2) \ldots(s 2 s)
$$

(c) $\Gamma_{2 m}=\Gamma_{2 m}(\mathcal{O})=\left\{\mathcal{O}, \mathcal{E}\left(\Gamma_{m}\right)\right\}$, where

$$
\mathcal{E}\left(\Gamma_{2 m}\right)=\left[\begin{array}{cc}
\mathcal{E}\left(H_{m}\right) & \mathcal{E}\left(R_{m}\right) \\
Y & \mathcal{E}\left(H_{m}\right)
\end{array}\right] \text { and } Y=\left[\begin{array}{c}
{\left[P_{2}\right]} \\
\vdots \\
{\left[P_{m}\right]} \\
{\left[\pi P_{2}\right]}
\end{array}\right]
$$

An order $\Gamma_{2 m}$ is a cyclic Gorenstein with the permutation

$$
\sigma=\left(\begin{array}{cccccccc}
1 & 2 & \ldots & m & m+1 & \ldots & 2 m-1 & 2 m \\
m+1 & m+2 & \ldots & 2 m & 2 & \ldots & m & 1
\end{array}\right) .
$$

(d) $D_{m}=D_{m}(\mathcal{O})=\left\{\mathcal{O}, \mathcal{E}\left(D_{m}\right)=\left(\beta_{i j}\right)\right\}$, where $\beta_{m 1}=2$ and all other elements $\beta_{i j}$ coincide with elements $\alpha_{i j}$ of $\mathcal{E}\left(H_{m}\right)$ and

$$
\Gamma_{2 m+1}=\Gamma_{2 m+1}(\mathcal{O})=\left\{\mathcal{O}, \mathcal{E}\left(\Gamma_{2 m+1}\right)\right\}
$$

where

$$
\mathcal{E}\left(\Gamma_{2 m+1}\right)=\left|\begin{array}{c|c}
\mathcal{E}\left(D_{m+1}\right) & X \\
\hline Y & \mathcal{E}\left(H_{m}\right)
\end{array}\right|
$$

and

$$
X=\left[\begin{array}{c}
\mathcal{E}\left(R_{m}\right) \\
{\left[\pi P_{1}\right]}
\end{array}\right], \quad Y=\left[\left[Q_{m} \pi\right] \mathcal{E}\left(R_{m}\right)\right] .
$$

An order $\Gamma_{2 m+1}$ is a cyclic Gorenstein with the permutation $\sigma=$

$$
=\left(\begin{array}{ccccccccc}
1 & 2 & \ldots & m & m+1 & m+2 & \ldots & 2 m & 2 m+1 \\
m+2 & m+3 & \ldots & 2 m+1 & 1 & 2 & \ldots & m & m+1
\end{array}\right) .
$$

In particular case $m=1$ we obtain

$$
\mathcal{E}\left(\Gamma_{3}\right)=\left|\begin{array}{lll}
0 & 0 & 1 \\
2 & 0 & 1 \\
1 & 1 & 0
\end{array}\right| \text { and } \Gamma_{3} \simeq \Delta_{3}, \text { where } \mathcal{E}\left(\Delta_{3}\right)=\left|\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 0 \\
2 & 2 & 0
\end{array}\right|
$$

Definition. Recall that a real $s \times s$-matrix $P=\left(p_{i j}\right)$ is double stochastic if $\sum_{j=1}^{s} p_{i j}=\sum_{i=1}^{s} p_{i j}=1$ for $i, j=1, \ldots, s$.

It is easy to show that adjacency matrices of the quivers $Q\left(H_{s}\right), Q\left(G_{2 s}\right), Q\left(\Gamma_{2 s}\right)$ and $Q\left(\Gamma_{2 s+1}\right)$ have the form λP, where P is doubly stochastic and $\lambda=1$ for $Q\left(H_{s}\right)$ and $\lambda=2$ for other quivers.

Main Theorem. A reduced Gorenstein tiled order has the hereditary ring of multipliers of the Jacobson radical if and only if it is isomorphic to one of the rings $H_{m}(\mathcal{O}), G_{2 m}(\mathcal{O}), \Gamma_{2 m}(\mathcal{O})$ or $\Gamma_{2 m+1}(\mathcal{O})$.

II. Gorenstein $(0,1)$-orders.

In this section we shall use the notations and terminology of the paper [Sim2].

Definition. A tiled order $\Lambda=\left\{\mathcal{O}, \mathcal{E}(\mathcal{O})=\left(\alpha_{i j}\right)\right\}$ is called a $(0,1)$-order if $\mathcal{E}(\Lambda)$ is a $(0,1)$-matrix.

We associate with a reduced $(0,1)$-order Λ the poset

$$
I_{\Lambda}=\{1, \ldots, n\}
$$

and the relation \leq defined by the formula $i \leq j \Leftrightarrow \alpha_{i j}=0$. It is easy to see that $\left(I_{\Lambda}, \leq\right)$ is a poset.
Conversely, with any finite poset

$$
I=\{1, \ldots, n\}
$$

we associate the reduced exponent $(0,1)$-matrix $\mathcal{E}_{I}=\left(\gamma_{i j}\right)$ by the following way: $\gamma_{i j}=0 \Leftrightarrow$ if and only if $i \leq j$. Then $\Lambda(I)=\left\{\mathcal{O}, \mathcal{E}_{I}\right\}$ is a reduced $(0,1)$-order.

Definition. The width of a poset I_{Λ} is called the width of a reduced $(0,1)-$ order Λ and is denoted $w(\Lambda)$.

In general case we define $w(\Lambda)$ as $w(\mathbf{M}(\Lambda))$ (see [ZK1 proposition 2.5]).

Theorem 2.1. Any reduced Gorenstein (0,1)-order is isomorphic to a order $H_{m}(\mathcal{O})$ or to a order $G_{2 m}(\mathcal{O})$.

Proof. First of all we shall prove that the width $w(\Lambda)$ of Gorenstein $(0,1)$-order Λ is not greater 2 .
Let $w(\Lambda) \geq 3$. Consequently there exist 3 pairwise non-comparable indecomposable modules P_{i}, P_{j}, P_{k}. Using the elementary transformation of type (2) let us assume $i=1, j=2$ and $k=3$. Then

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{llll}
0 & 1 & 1 & \\
1 & 0 & 1 & * \\
1 & 1 & 0 & \\
& * & & *
\end{array}\right)
$$

Obviously, $\sigma(i)>3$ for $i=1,2,3$. As above, we can consider that $\sigma(1)=$ $4, \sigma(2)=5, \sigma(3)=6$. From the Gorenstein condition if follows that $\alpha_{i 4}=$ $1-\alpha_{1 i}, \alpha_{i 5}=1-\alpha_{2 i}, \alpha_{i 6}=1-\alpha_{3 i}$. First of all we shall compute the elements of $\mathcal{E}(\Lambda)$ for $i=1,2,3$, after that - for $i=4,5,6$. Therefore, the exponent matrix in this case is

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 0 & 0 & \\
1 & 0 & 1 & 0 & 1 & 0 & * \\
1 & 1 & 0 & 0 & 0 & 1 & \\
& & & 0 & 1 & 1 & \\
& * & & 1 & 0 & 1 & * \\
& & & 1 & 1 & 0 & \\
& * & & & * & & *
\end{array}\right)
$$

There are no symmetric zeroes in $\mathcal{E}(\Lambda)$. Since $\alpha_{42}=\alpha_{43}=\alpha_{51}=\alpha_{53}=\alpha_{61}=$ $\alpha_{62}=1$. From the unequalities $\alpha_{24}+\alpha_{41} \geq \alpha_{21}, \alpha_{15}+\alpha_{52} \geq \alpha_{12}, \alpha_{16}+\alpha_{63} \geq$ α_{13} it follows $\alpha_{41}=\alpha_{52}=\alpha_{63}=1$. Then

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 0 & 0 & \\
1 & 0 & 1 & & 0 & 1 & 0 \\
* \\
1 & 1 & 0 & & 0 & 0 & 1 \\
1 & 1 & 1 & & 0 & 1 & 1 \\
\\
1 & 1 & 1 & 1 & 0 & 1 & \\
1 & 1 & 1 & 1 & 1 & 0 & \\
& * & & & * & & *
\end{array}\right)
$$

Obviously that $\sigma(i)>6$ for $i=4,5,6$. We can consider $\sigma(4)=7, \sigma(5)=$ $8, \sigma(6)=9$. From the Gorenstein condition it follows $\alpha_{i 7}=1-\alpha_{4 i}, \alpha_{i 8}=$ $1-\alpha_{5 i}, \alpha_{i 9}=1-\alpha_{6 i}$. First of all we shall compute for $i=1,2,3,4,5,6$, after
that - for $i=7,8,9$. Therefore, the exponent matrix in this case is

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{llllllllll}
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & * \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & * \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & \\
& & & & & & 0 & 1 & 1 & \\
& * & & & & 1 & 0 & 1 & * \\
& * & & & * & & & 1 & 0 & \\
& & & & *
\end{array}\right) .
$$

Since are no symmetric zeroes in this matrix, then $\alpha_{71}=\alpha_{72}=\alpha_{73}=\alpha_{75}=$ $\alpha_{76}=1, \alpha_{81}=\alpha_{82}=\alpha_{83}=\alpha_{84}=\alpha_{86}=1, \alpha_{91}=\alpha_{92}=\alpha_{93}=\alpha_{94}=\alpha_{95}=$ 1. From the unequalities $\alpha_{57}+\alpha_{74} \geq \alpha_{54}, \alpha_{48}+\alpha_{85} \geq \alpha_{45}, \alpha_{49}+\alpha_{96} \geq \alpha_{46}$ it follows that $\alpha_{74}=\alpha_{85}=\alpha_{96}=1$. Since,

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{llllllllll}
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & * \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & * \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & * \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & \\
& * & & & * & & & * & & *
\end{array}\right) .
$$

Again, $\sigma(i)>6$ for $i=7,8,9$. Continuing this process we shall get that the exponent matrix $\mathcal{E}(\Lambda)$ have such a block form:

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{ccccccc}
A & E & O & O & \ldots & O & O \\
U & A & E & O & \ldots & O & O \\
U & U & A & E & \ldots & O & O \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
U & U & U & U & \ldots & U & A
\end{array}\right)
$$

where

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right), U=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

$$
O=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), E=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

This matrix is not the exponent matrix of the reduced $(0,1)$-order because there does not exist such k that $\sigma(k)=1,2,3$. Hence, the width of the poset $I_{\Lambda} \leq 2$.
If $w\left(I_{\Lambda}\right)=1$, in view of the theorem $3.4[\mathrm{ZK} 1] \Lambda$ is hereditary and then $\Lambda \simeq$ $H_{s}(\mathcal{O})$.
Consider the case $w\left(I_{\Lambda}\right)=2$, that means I_{Λ} has two non-comparable elements. Let they are P_{1} and P_{2}. Then $\alpha_{12}=\alpha_{21}=1$, and the exponent matrix has such a form:

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{ccc}
0 & 1 & \\
1 & 0 & * \\
& * & *
\end{array}\right)
$$

Suppose, that $\sigma(1), \sigma(2)>2$. One may assume, $\sigma(1)=3, \sigma(2)=4$. Then, in view of the Gorenstein condition, from $\alpha_{1 j}+\alpha_{j 3}=\alpha_{13}=1, \alpha_{2 j}+\alpha_{j 4}=$ $\alpha_{24}=1$ obtain $\alpha_{j 3}$ and $\alpha_{j 4}$ for $j=1,2,3,4$.

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{ccccc}
0 & 1 & & 1 & 0 \\
1 & 0 & & 0 & 1 \\
& * \\
& & & 0 & 1 \\
& & & 1 & 0
\end{array}\right)
$$

$\alpha_{32}=\alpha_{41}=1$. From rings unequalities $\alpha_{14}+\alpha_{42} \geq \alpha_{12}, \alpha_{23}+\alpha_{31} \geq \alpha_{21}$ it follows, that $\alpha_{42}=\alpha_{31}=1$. Then

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{ccccc}
0 & 1 & 1 & 0 & \\
1 & 0 & & 0 & 1 \\
* \\
1 & 1 & & 0 & 1 \\
\\
1 & 1 & & 1 & 0 \\
& * & & * & *
\end{array}\right)
$$

Obviously, $\sigma(3), \sigma(4)>4$. Let $\sigma(3)=5, \sigma(4)=6$. from $\alpha_{i 5}=1-\alpha_{3 i}$ and $\alpha_{i 6}=1-\alpha_{4 i}$ obtain $\alpha_{i 5}$ and $\alpha_{i 6}$ for $i=1, \ldots, 6$. The matrix $\mathcal{E}(\Lambda)$ has the following form

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{ccccccc}
0 & 1 & 1 & 0 & 0 & 0 & \\
1 & 0 & 0 & 1 & & 1 & 0 \\
* \\
1 & 1 & 0 & 1 & 1 & 0 & \\
1 & 1 & 1 & 0 & 0 & 1 & * \\
& * & & * & 0 & 1 & \\
& * & & * & & * & *
\end{array}\right)
$$

The exponent matrix does not have symmetric zeroes, then $\alpha_{51}=\alpha_{52}=\alpha_{54}=$ $1, \alpha_{61}=\alpha_{62}=\alpha_{63}=1$. From $\alpha_{36}+\alpha_{64} \geq \alpha_{34}, \alpha_{45}+\alpha_{53} \geq \alpha_{43}$ it follows that $\alpha_{64}=\alpha_{53}=1$.
Continuing this process we shall obtain that the exponent matrix has such block form:

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{ccccccc}
A & E & O & O & \ldots & O & O \\
U & A & E & O & \ldots & O & O \\
U & U & A & E & \ldots & O & O \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
U & U & U & U & \ldots & U & A
\end{array}\right)
$$

where

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), U=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), O=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), E=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

This matrix is not the exponent matrix of the reduced $(0,1)$-order because does not exist such k that $\sigma(k)=1,2,3$.
Hence, at least, one of the numbers $\sigma(1), \sigma(2)$ is less then 3 . Suppose $\sigma(1)=2$, but $\sigma(2) \neq 3$. Let $\sigma(2)=3$. Then $\alpha_{i 3}=1-\alpha_{2 i}$ and

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{cccc}
0 & 1 & 0 & \\
1 & 0 & 1 & * \\
& * & & *
\end{array}\right)
$$

$\alpha_{i j}+\alpha_{j i}>0$ and $\alpha_{13}+\alpha_{32}>\alpha_{12}$. Then, $\alpha_{31}=\alpha_{32}=1$. Hence,

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{llll}
0 & 1 & 0 & \\
1 & 0 & 1 & * \\
1 & 1 & 0 & \\
& * & & *
\end{array}\right)
$$

Obviously, $\sigma(3)>3$. We can consider $\sigma(3)=4$. From the Gorenstein condition $\alpha_{3 i}+\alpha_{4 i}=1$ obtain $\alpha_{i 4}$ for $i=1,2,3$. Then

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & \\
1 & 0 & 1 & 0 & * \\
1 & 1 & 0 & 1 & \\
& & * & & *
\end{array}\right)
$$

$\alpha_{41}=\alpha_{42}=1$ and $\alpha_{43}=1$ because $\alpha_{24}+\alpha_{43} \geq \alpha_{23}$. Since,

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & \\
1 & 0 & 1 & 0 & \\
1 & 1 & 0 & 1 & * \\
1 & 1 & 1 & 0 & \\
& & * & & *
\end{array}\right)
$$

Continuing this process we obtain

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 0 & 1 & 0 & \cdots & 0 & 0 \\
1 & 1 & 0 & 1 & \cdots & 0 & 0 \\
1 & 1 & 1 & 0 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
1 & 1 & 1 & 1 & \cdots & 0 & 1 \\
1 & 1 & 1 & 1 & \cdots & 1 & 0
\end{array}\right)
$$

This matrix is not the exponent matrix of reduced $(0,1)$-order because there does not exist such k that $\sigma(k)=1$.
Hence, if P_{i} and P_{j} are two non-comparable elements of the poset I_{Λ}, then $\sigma(i)=j$ and $\sigma(j)=i$.
From this it follows that every element P_{i} may have only one non-comparable element, exactly it is $P_{\sigma(i)}$. Indeed, if P_{i} is non-comparable with P_{j} and P_{k}, then must be hold simultaneously $\sigma(i)=j, \sigma(j)=i, \sigma(i)=k, \sigma(k)=i$. It is possible only for $j=k$.
Let P_{1} and P_{s+1}, P_{2} and P_{s+2}, \ldots, P_{s} and $P_{2 s}$ are s pairs of pairwise noncomparable elements of the poset $I_{\Lambda}, \quad P_{2 s+1}, \ldots, P_{2 s+m}$ are the subset of elements of I_{Λ}, which are comparable with any element from I_{Λ}. The elements $P_{2 s+1}, \ldots, P_{2 s+m}$ are linearly ordered. The permutation σ decomposes into the product $\sigma=(1 s+1)(2 s+2) \ldots(s 2 s) \sigma_{m}$, where the permutation σ_{m} acts on the set $\{2 s+1, \ldots, 2 s+m\}$.
Let $1=e_{1}+\ldots+e_{2 s+m}$ be the decomposition of $1 \in \Lambda$ into the sum of pairwise orthogonal idempotents and $e_{i} \Lambda=P_{i}$. Denote $f_{1}=e_{1}+\ldots+e_{2 s}, f_{2}=1-f_{1}$. Since $P_{2 s+1}, \ldots, P_{2 s+m}$ is the subset of I_{Λ} and its width is equal 1 , then $w\left(I_{f_{2} \Lambda f_{2}}\right)=1$. Hence, $f_{2} \Lambda f_{2} \simeq H_{m}(\mathcal{O})$. Therefore the exponent matrix has
form:

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{cc}
\mathcal{E}(F) & * \\
* & \mathcal{E}(H)
\end{array}\right)
$$

where $F=f_{1} \Lambda f_{1}$. Since $\alpha_{2 s+1 \sigma(2 s+1)}=0$, then $\alpha_{2 s+1 j}=0$ for any $j=$ $1, \ldots, 2 s+m$.

Lemma. Let Λ be a reduced Gorenstein (0,1)-order with an exponent matrix $\mathcal{E}(\Lambda)=\left(\alpha_{i j}\right) i, j=1, \ldots, s$ and a permutation σ, and let exists such i that $\alpha_{i \sigma(i)}=0$. Then $\Lambda \simeq H_{s}(\mathcal{O})$, and $w\left(I_{\Lambda}\right)=1$.

Proof. Let $i=1, \sigma(1)=s$. From $\alpha_{1 j}+\alpha_{j \sigma(1)}=\alpha_{1 \sigma(1)}=0$ it follows that $\alpha_{1 j}=0$ for $j=1, \ldots, s$. It means P_{1} is a smallest element in I_{Λ}, i.e. $P_{1} \leq P_{j}$ for any $j=2, \ldots, s$. An indecomposable projective right Λ-module P_{1} has the unique maximal submodule $\operatorname{rad} P_{j}$. Then, taking into account that $\mathcal{E}(\Lambda)$ is $(0,1)$-matrix, we have $P_{1} \leq \operatorname{rad} P_{1} \leq P_{j}$ for $j=2, \ldots, s . P_{1}=$ $(0, \ldots, 0), \operatorname{rad} P_{1}=(1,0, \ldots, 0)$. Then $\alpha_{1 j}=1$ for $j=2, \ldots, s$. The order Λ is Gorenstein, hence there exists such k, that $\sigma(k)=1$. One can assume that $k=2$. From $\alpha_{2 j}+\alpha_{j 1}=\alpha_{21}=1$ we obtain $\alpha_{2 j}=0$ for $j=2, \ldots, s$. Then $P_{1} \leq \operatorname{rad} P_{1}=P_{2} \leq P_{j}$ for $j=3, \ldots, s$ and $P_{2} \leq \operatorname{rad} P_{2} \leq P_{j}$ for $j=2, \ldots, s$. Since $\operatorname{rad} P_{2}=(1,1,0, \ldots, 0)$, then $\alpha_{j 2}=1$ for $j \geq 3$.
Let $\sigma(3)=2$. Then $\alpha_{3 j}+\alpha_{j 2}=\alpha_{32}=1$ and $\alpha_{3 j}=0$ for $j=3, \ldots, s$. Again, $\operatorname{rad} P_{s} \leq P_{j}$ for $j=4, \ldots, s$. Continuing this process we obtain such chain of the elements of I_{Λ}

$$
P_{1} \leq \operatorname{rad} P_{1}=P_{2} \leq \operatorname{rad} P_{2}=P_{3} \leq \cdots \leq \operatorname{rad} P_{s-1}=P_{s}
$$

The exponent matrix has the following form

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 0 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 1 & 0 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
1 & 1 & 1 & \cdots & 0 & 0 \\
1 & 1 & 1 & \cdots & 1 & 0
\end{array}\right)
$$

So $w\left(I_{\Lambda}\right)=1$ and $\Lambda \simeq H_{s}(\mathcal{O})$. Lemma is proved.
Hence $w\left(I_{\Lambda}\right)=2$. Then the existence of the zero row in the exponent matrix is the contradiction to lemma. Therefore, in I_{Λ} there are only s pairs pairwise non-comparable elements. Hence

$$
\left.I_{(} \Lambda\right)=\left\{\begin{array}{ccccccccccc}
P_{1} & \rightarrow & P_{2} & \rightarrow & P_{3} & \rightarrow & \cdots & \rightarrow & P_{s-1} & \rightarrow & P_{s} \\
& \searrow & \\
P_{s+1} & \rightarrow & P_{s+2} & \rightarrow & P_{s+3} & \rightarrow & \cdots & \rightarrow & P_{2 s-1} & \rightarrow & P_{2 s}
\end{array}\right\} .
$$

Denote $e=e_{1}+\ldots+e_{s}, f=1-e$. Subsets $\left\{P_{1}, \ldots, P_{s}\right\}$ and $\left\{P_{s+1}, \ldots, P_{2 s}\right\}$ linearly ordered in I_{Λ}, then $I_{e \Lambda e}$ and $I_{f \Lambda f}$ are linearly ordered also. Hence $e \Lambda e \simeq f \Lambda f \simeq H_{s}(\mathcal{O})$. So

$$
\mathcal{E}(\Lambda)=\left(\begin{array}{cc}
\mathcal{E}(H) & * \\
* & \mathcal{E}(H)
\end{array}\right)
$$

Proposition. Let Λ - a reduced Gorenstein $(0,1)$-order with a exponent ma-
trix $\mathcal{E}(\Lambda)=\left(\alpha_{i j}\right), i, j=1, \ldots, s$ and a permutation σ. If for some $i, j \sigma(i)=$ $j, \sigma(j)=i$ and $\alpha_{i \sigma(i)}=\alpha_{j \sigma(j)}=1$, then $\alpha_{i k}=\alpha_{j k}$ for all $k \neq i, j$.

Proof. A reduced order Λ does not have symmetric zeroes, hence $\alpha_{i k}+\alpha_{k i} \geq 1$ for $k \neq i$. From Gorenstein condition follows $\alpha_{i k}+\alpha_{k \sigma(i)}=1$. We obtain $\alpha_{k i} \geq \alpha_{k \sigma(i)}$ for $k \neq i$. Analogously $\alpha_{k j} \geq \alpha_{k \sigma(j)}$ for $k \neq j$. So $\alpha_{k i} \geq \alpha_{k j}$ and $\alpha_{k j} \geq \alpha_{k i}$, that is $\alpha_{k j}=\alpha_{k i}$, if $k \neq i, j$. Then for the same i, j, k $\alpha_{i k}+\alpha_{k i}=\alpha_{i k}+\alpha_{k j}=\alpha_{i k}+\alpha_{k \sigma(i)}=1$. Again $\alpha_{j k}+\alpha_{k j}=1$. Hence $\alpha_{i k}=\alpha_{j k}$ for $k \neq i, j$. The proposition is proved.

The elements P_{i} and P_{s+i} are non-comparable. By proposition we obtain $\alpha_{i k}=\alpha_{s+i k}$ for any $k \neq i, s+i$. From this equality we get $\alpha_{i k}$ for $k>s$

$$
\alpha_{i k}=\alpha_{s+i k}=\left\{\begin{array}{cc}
0, & \text { if } s+i<k \\
1, & \text { if } s+i>k
\end{array}\right.
$$

and $\alpha_{s+i k}$ for $k \leq s$

$$
\alpha_{s+i k}=\alpha_{i k}=\left\{\begin{array}{cc}
0, & \text { if } i<k \\
1, & \text { if } i>k
\end{array}\right.
$$

It is clear that $\alpha_{i s+i}=\alpha_{s+i i}=1$. Since

$$
\begin{gathered}
\mathcal{E}(B)=\left(\begin{array}{cccccccccc}
0 & 0 & 0 & \cdot & 0 & 1 & 0 & 0 & \cdot & 0 \\
1 & 0 & 0 & \cdot & 0 & 1 & 1 & 0 & \cdot & 0 \\
1 & 1 & 0 & \cdot & 0 & 1 & 1 & 1 & \cdot & 0 \\
\cdot & \cdot \\
1 & 1 & 1 & \cdot & 0 & 1 & 1 & 1 & \cdot & 1 \\
1 & 0 & 0 & \cdot & 0 & 0 & 0 & 0 & \cdot & 0 \\
1 & 1 & 0 & \cdot & 0 & 1 & 0 & 0 & \cdot & 0 \\
1 & 1 & 1 & \cdot & 0 & 1 & 1 & 0 & \cdot & 0 \\
\cdot & \cdot \\
1 & 1 & 1 & \cdot & 1 & 1 & 1 & 1 & \cdot & 0
\end{array}\right) \\
\sigma=\left(\begin{array}{ccccccc}
1 & 2 & \cdots & s & s+1 & \cdots & 2 s \\
s+1 & s+2 & \cdots & 2 s & 1 & \cdots & s
\end{array}\right) .
\end{gathered}
$$

We enumerate the elements of I_{Λ} in such way that $P_{2 k-1}$ and $P_{2 k}$ be noncomparable for $k=1, \ldots, s$. Then the exponent matrix $\mathcal{E}\left(G_{2 s}\right)$ has the following form:

$$
\mathcal{E}\left(G_{2 s}\right)=\left(\begin{array}{cccccc}
A & O & O & \cdots & O & O \\
U & A & O & \cdots & O & O \\
U & U & A & \cdots & O & O \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
U & U & U & \cdots & A & O \\
U & U & U & \cdots & U & A
\end{array}\right)
$$

where

$$
U=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), O=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

III. General case

Let $\Lambda=\{\mathcal{O}, \mathcal{E}(\Lambda)\}$ be a tiled order with a Jacobson radical R.
Denote $\Lambda_{r}(R)=\left\{a \in M_{n}(T) \mid R_{a} \subseteq R\right\}\left(\Lambda_{l}(R)=\left\{b \in M_{n}(T) \mid b R \subseteq R\right\}\right)$ the right (left) ring of multipliers of the Jacobson radical R.

Example. Let $\Lambda=H_{m}(\mathcal{O}), \sigma=(1 m m-1 \ldots 32)$. Then $\Lambda(R)=\Lambda_{r}(R)=$ $\Lambda_{l}(R)=\left(\beta_{i j}\right)$, where $\beta_{i j}=\alpha_{i j}$ for $j \neq \sigma(i)$ and $\beta_{i \sigma(i)}=\alpha_{i \sigma(i)}-1(i, j=$ $1, \ldots, n)$, i.e. $\beta_{1 m}=-1, \beta_{21}=\beta_{32}=\ldots=\beta_{m m-1}=0$. Hence $\Lambda(R)$ is a minimal hereditary order.

Main proposition. Left and right rings of multipliers of the Jacobson radical R of a reduced Gorenstein tiled order Λ coincide.

Proof. Let $\mathcal{E}(\Lambda)=\left(\alpha_{i j}\right)$ be an exponent matrix of Λ and a be a permutation such that $\alpha_{i k}+\alpha_{k \sigma(i)}=\alpha_{i \sigma(i)}$ for $i, k=1, \ldots, n$. It is easy to verify that $\Lambda(R)=\Lambda_{r}(R)=\Lambda_{l}(R)=\left(\beta_{i j}\right)$, where $\beta_{i j}=\alpha_{i j}$ for $j \neq \sigma(i)$ and $\beta_{i \sigma(i)}=$ $\alpha_{i \sigma(i)}-1(i, j=1, \ldots, n)$.

Definition. A reduced Gorenstein tiled order Λ with the hereditary ring of multipliers of the Jacobson radical R will be called the $G H$ - order.

Proposition 3.1. Let Λ be $G H$ - order. Then $w(\Lambda) \leq 2$.
Proof. Denote P_{1}, \ldots, P_{s} all pairwise non-isomorphic indecomposable projective Λ - modules. Then the set of the modules P_{1}, \ldots, P_{s} and $P_{1} R, \ldots, P_{s} R$ contains all non-isomorphic irreducible Λ - lattices. Hence $l(X / X R) \leq 2$ for
any irreducible Λ - lattice X and by the Theorem 3.5 [ZK1] it follows that $w(\Lambda) \leq 2$.

If $w(\Lambda)=1$ then by Theorem 3.4 we have that Λ is a hereditary order and $\Lambda \cong H_{s}(\mathcal{O})$.

Let $w(\Lambda)=2$. We use theorem 3.6. [ZK1] which gives a description such tiled orders.

Taking into account that Λ is a $G H$-order we obtain that Λ is isomorphic to one of orders $G_{2 m}(\mathcal{O}), \Gamma_{2 m}(\mathcal{O})$ or $\Gamma_{2 m+1}(\mathcal{O})$.

References

[K] Kirichenko, V.V., On quasi-Frobenius rings and Gorenstein orders, Trudy Math. Steklov Inst., 148, (1978), 168-174 (in Russian).
[Sim1] Simson, D., Linear representations of partially ordered sets and vector space categories, Algebra, Logic and Appl., 4, Gordon and Breach Science Publishers, (1992).
[Sim2] Simson, D., Cohen-Macaulay Modules over Classic Order, Interaction between ring theory and representations of algebras, Murcia, (1998), 345-382.
[Z] Zavadskij, A.G., The structure of orders with completely decomposable representations, Mat. Zametki, 13, (1973), 325-335 (in Russian).
[ZK1] Zavadskij, A.G., Kirichenko, V.V., Torsion-free modules over prime rinqs, Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 57(1976), 100-116 = J. Soviet. Math., 11(1979), 598-612.
[ZK2] Zavadskij, A.G., Kirichenko, V.V., Semimaximal rings of finite type, Mat. Sbornik, 103, No. 3,(1977), $323-345=$ Math. USSR Sbornik, 32, No. 3,(1977), $273-291$.

Department of Mechanics and Mathematics,
Kiev Taras Shevchenko University,
Vladimirskaya Str., 64,
01033 Kiev,
Ukraine
e-mail: vkir@mechmat.univ.kiev.ua
Glushkov Institute of Cybernetics NAS Ukraine,
Glushkov Av., 40,
03680 Kiev,
Ukraine
Department of Mechanics and Mathematics, Kiev Taras Shevchenko University,
Vladimirskaya Str., 64,
01033 Kiev,
Ukraine

