A TWO-DIMENSIONAL DOMAIN WHOSE INTEGRAL CLOSURE IS NOT T-LINKED

Tiberiu Dumitrescu

Abstract

We construct a two-dimensional domain D having two nonzero v coprime elements a, b such that a, b are not v -coprime in the integral closure of D.

Let D be an integral domain with quotient field K and D^{\prime} the integral closure of D. By an overring of D we mean a ring between D and K. Recall that for a nonzero fractional ideal I of $D, I_{v}=\left(I^{-1}\right)^{-1}=(D: I): I=\cap\{x D ; x D \supseteq$ $I, x \in K\}$. It is well known that for $x, y \in D \backslash\{0\}, x D \cap y D$ is a principal ideal if and only if so is $((x, y) D)_{v}$. According to [3], an overring E of D is t-linked over D, if whenever $x_{1}, \ldots, x_{n} \in D \backslash\{0\}$ with $\left(\left(x_{1}, \ldots, x_{n}\right) D\right)_{v}=D$, we have $\left(\left(x_{1}, \ldots, x_{n}\right) E\right)_{v}=E$.

In [3], it was asked whether D^{\prime} is always t-linked over D. While this is true if $\operatorname{dim}(D) \leq 1[3$, Corollary 2.7], in [4, Example 4.1] there were constructed examples of domains D of every dimension ≥ 3 such that D^{\prime} is not t-linked over D (see also [5, Proposition 3] for a generalization). As noted in [4, page 1482], the two-dimensional case remained open.

The aim of this note is to construct a two-dimensional domain D such that D^{\prime} is not t-linked over D. Call two nonzero elements $x, y \in D v$-coprime, if $((x, y) D)_{v}=D$, equivalently, if $x D \cap y D=x y D$. Our plan is to construct a two-dimensional domain D having two nonzero v-coprime elements a, b such that a, b are not v-coprime in the integral closure of D (hence D^{\prime} is not tlinked over D). For that, we use a composite domain construction of type $A+X B[X]$. More precisely, whenever $A \subseteq B$ is an extension of domains, we can consider the subring $A+X B[X]$ of $B[X]$ consisting of all polynomials in $B[X]$ with constant term in A (see [8] and its references). Any unexplained

[^0]material is standard, as in [6], [7].
We begin with the following simple lemma.
Lemma 1. Let $A \subseteq B$ be an extension of domains, $D=A+X B[X]$ and $0 \neq a \in A$. Then a, X are v-coprime in D if and only if $a B \cap A=a A$.

Proof. Assume that $a B \cap A=a A$ and let $h \in a D \cap X D$. There exist $f, g \in D$, say $f=\sum f_{i} X^{i}$ and $g=\sum g_{j} X^{j}$, such that $h=a f=X g$. Obviously, $u=g / a$ lies in $B[X]$. Also, $a f_{1}=g_{0} \in a B \cap A=a A$, so $f_{1} \in A$. As $u(0)=g_{0} / a=f_{1} \in A, u \in D$. So $h=a X u \in a X D$. Hence a, X are v-coprime in D.

Conversely, assume that $a B \cap A \neq a A$. Then $a b \in A$ for some $b \in B \backslash A$. Hence $a b X \in a D \cap X D$, but $a b X \notin a X D$ because $b \notin A$. So a, X are not v-coprime in D.

We present our construction followed by a specific example.
Theorem 2. Let $A \subseteq B$ be an integral extension of PIDs and $0 \neq p \in A$ a prime element. Assume there exist two distinct prime elements q and r of B which divide p in B (i.e., p decomposes in B) and let $D=A+X B_{q B}[X]$. Then D is two-dimensional and p, X are v-coprime in D but not v-coprime in D^{\prime}. In particular, D is a two-dimensional domain such that D^{\prime} is not t-linked over D.

Proof. By [1, Theorem 2.7], the integral closure of D is $D^{\prime}=B+X B_{q B}[X]$, because B is integrally closed, so the integral closure of A in $B_{q B}$ is B. By [2, Example 2.11], D^{\prime} is two-dimensional, hence so is D. As $p A$ is a maximal ideal of A and $p A$ survives in $B_{q B}, p A=p B_{q B} \cap A$. So p, X are v-coprime in D, cf. Lemma 1. Since r is a unit of $B_{q B}, r$ divides X in D^{\prime}. So r is a non-invertible common factor of p and X in D^{\prime}. Consequently, p, X are not v -coprime in D^{\prime}. The 'in particular' statement is clear.
Example 3. As a specific example, we may take $A=\mathbf{Z}, B=\mathbf{Z}[i], p=5$, $q=2+i$ and $r=2-i$. So $\mathbf{Z}+X \mathbf{Z}[i]_{(2+i)}[X]$ is a two-dimensional domain with D^{\prime} not t-linked over D.

Remark 4. Let D be the domain in Theorem 2 and $D_{n}=D\left[Y_{1}, \ldots, Y_{n}\right]$ where Y_{1}, \ldots, Y_{n} are indeterminates over D and $n \geq 0$. It is easy to see that p, X are v-coprime in D_{n} but not v-coprime in D_{n}^{\prime}. Moreover, $\operatorname{dim}\left(D_{n}\right)=\operatorname{dim}\left(D_{n}^{\prime}\right)=$ $n+2$. Indeed, $D^{\prime}=B+X B_{q B}[X]$ is the directed union (inductive limit) of its subrings $B[X / s]$ for $s \in S$, where $S=B \backslash q B$. Consequently, $D_{n}^{\prime}=$ $\cup_{s \in S} B\left[X / s, Y_{1}, \ldots, Y_{n}\right]$. Since $\operatorname{dim}\left(B\left[X / s, Y_{1}, \ldots, Y_{n}\right]\right)=n+2$ [6, Theorem 30.5], a direct limit argument shows that $\operatorname{dim}\left(D_{n}^{\prime}\right)=n+2$. So we get such examples in each dimension ≥ 2.

References

[1] D.D. Anderson, D.F. Anderson and M. Zafrullah, Rings between $D[X]$ and $K[X]$, Houston J. Math. 17 (1991), 109-128.
[2] D. Costa, J.L. Mott and M. Zafrullah, The construction $D+X D_{S}[X]$, J. Algebra 53 (1978), 423-439.
[3] D.E. Dobbs, E. Houston, T. Lucas and M. Zafrullah, t-linked overrings and Prufer v-multiplication domains, Comm. Algebra 17 (1989), 2835-2852.
[4] D.E. Dobbs, E. Houston, T. Lucas, M. Roitman and M. Zafrullah, On t-linked overrings, Comm. Algebra 20 (1992), 1463-1488.
[5] T. Dumitrescu and M. Zafrullah, LCM-splitting sets in some ring extensions, to appear in Proc. Amer. Math. Soc.
[6] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[7] I. Kaplansky, Commutative Rings, Revised Edition, University of Chicago Press, Chicago, 1974.
[8] M. Zafrullah, Various facets of rings between $D[X]$ and $K[X]$ (manuscript).

Faculty of Mathematics,
Bucharest University,
RO-70109 Bucharest,
Romania
e-mail: tiberiu@al.math.unibuc.ro

[^0]: Key Words: integral closure, t-linked overring
 Mathematical Reviews subject classification: Primary 13A05, 13A15; Secondary 13B22
 Received: October, 2001.

