An. Şt. Univ. Ovidius Constanța

A TWO-DIMENSIONAL DOMAIN WHOSE INTEGRAL CLOSURE IS NOT T-LINKED

Tiberiu Dumitrescu

Abstract

We construct a two-dimensional domain D having two nonzero vcoprime elements a, b such that a, b are not v-coprime in the integral closure of D.

Let D be an integral domain with quotient field K and D' the integral closure of D. By an overring of D we mean a ring between D and K. Recall that for a nonzero fractional ideal I of D, $I_v = (I^{-1})^{-1} = (D:I): I = \cap \{xD; xD \supseteq$ $I, x \in K$. It is well known that for $x, y \in D \setminus \{0\}, xD \cap yD$ is a principal ideal if and only if so is $((x, y)D)_v$. According to [3], an overring E of D is *t-linked* over D, if whenever $x_1, ..., x_n \in D \setminus \{0\}$ with $((x_1, ..., x_n)D)_v = D$, we have $((x_1, ..., x_n)E)_v = E$.

In [3], it was asked whether D' is always t-linked over D. While this is true if $\dim(D) \leq 1$ [3, Corollary 2.7], in [4, Example 4.1] there were constructed examples of domains D of every dimension ≥ 3 such that D' is not t-linked over D (see also [5, Proposition 3] for a generalization). As noted in [4, page 1482], the two-dimensional case remained open.

The aim of this note is to construct a two-dimensional domain D such that D' is not t-linked over D. Call two nonzero elements $x, y \in D$ v-coprime, if $((x,y)D)_v = D$, equivalently, if $xD \cap yD = xyD$. Our plan is to construct a two-dimensional domain D having two nonzero v-coprime elements a, b such that a, b are not v-coprime in the integral closure of D (hence D' is not tlinked over D). For that, we use a composite domain construction of type A + XB[X]. More precisely, whenever $A \subseteq B$ is an extension of domains, we can consider the subring A + XB[X] of B[X] consisting of all polynomials in B[X] with constant term in A (see [8] and its references). Any unexplained

Key Words: integral closure, t-linked overring Mathematical Reviews subject classification: Primary 13A05, 13A15; Secondary 13B22 Received: October, 2001.

⁵⁵

material is standard, as in [6], [7].

We begin with the following simple lemma.

Lemma 1. Let $A \subseteq B$ be an extension of domains, D = A + XB[X] and $0 \neq a \in A$. Then a, X are v-coprime in D if and only if $aB \cap A = aA$.

Proof. Assume that $aB \cap A = aA$ and let $h \in aD \cap XD$. There exist $f, g \in D$, say $f = \sum f_i X^i$ and $g = \sum g_j X^j$, such that h = af = Xg. Obviously, u = g/a lies in B[X]. Also, $af_1 = g_0 \in aB \cap A = aA$, so $f_1 \in A$. As $u(0) = g_0/a = f_1 \in A$, $u \in D$. So $h = aXu \in aXD$. Hence a, X are v-coprime in D.

Conversely, assume that $aB \cap A \neq aA$. Then $ab \in A$ for some $b \in B \setminus A$. Hence $abX \in aD \cap XD$, but $abX \notin aXD$ because $b \notin A$. So a, X are not v-coprime in D.

We present our construction followed by a specific example.

Theorem 2. Let $A \subseteq B$ be an integral extension of PIDs and $0 \neq p \in A$ a prime element. Assume there exist two distinct prime elements q and r of B which divide p in B (i.e., p decomposes in B) and let $D = A + XB_{qB}[X]$. Then D is two-dimensional and p, X are v-coprime in D but not v-coprime in D'. In particular, D is a two-dimensional domain such that D' is not t-linked over D.

Proof. By [1, Theorem 2.7], the integral closure of D is $D' = B + XB_{qB}[X]$, because B is integrally closed, so the integral closure of A in B_{qB} is B. By [2, Example 2.11], D' is two-dimensional, hence so is D. As pA is a maximal ideal of A and pA survives in B_{qB} , $pA = pB_{qB} \cap A$. So p, X are v-coprime in D, cf. Lemma 1. Since r is a unit of B_{qB} , r divides X in D'. So r is a non-invertible common factor of p and X in D'. Consequently, p, X are not v-coprime in D'. The 'in particular' statement is clear.

Example 3. As a specific example, we may take $A = \mathbf{Z}$, $B = \mathbf{Z}[i]$, p = 5, q = 2 + i and r = 2 - i. So $\mathbf{Z} + X\mathbf{Z}[i]_{(2+i)}[X]$ is a two-dimensional domain with D' not t-linked over D.

Remark 4. Let D be the domain in Theorem 2 and $D_n = D[Y_1, ..., Y_n]$ where $Y_1, ..., Y_n$ are indeterminates over D and $n \ge 0$. It is easy to see that p, X are v-coprime in D_n but not v-coprime in D'_n . Moreover, $\dim(D_n) = \dim(D'_n) = n + 2$. Indeed, $D' = B + XB_{qB}[X]$ is the directed union (inductive limit) of its subrings B[X/s] for $s \in S$, where $S = B \setminus qB$. Consequently, $D'_n = \bigcup_{s \in S} B[X/s, Y_1, ..., Y_n]$. Since $\dim(B[X/s, Y_1, ..., Y_n]) = n + 2$ [6, Theorem 30.5], a direct limit argument shows that $\dim(D'_n) = n + 2$. So we get such examples in each dimension ≥ 2 .

References

- [1] D.D. ANDERSON, D.F. ANDERSON AND M. ZAFRULLAH, Rings between D[X] and K[X], Houston J. Math. **17** (1991), 109-128.
- [2] D. COSTA, J.L. MOTT AND M. ZAFRULLAH, The construction $D + XD_S[X]$, J. Algebra 53 (1978), 423-439.
- [3] D.E. DOBBS, E. HOUSTON, T. LUCAS AND M. ZAFRULLAH, t-linked overrings and Prufer v-multiplication domains, Comm. Algebra 17 (1989), 2835-2852.
- [4] D.E. DOBBS, E. HOUSTON, T. LUCAS, M. ROITMAN AND M. ZAFRULLAH, On t-linked overrings, Comm. Algebra 20 (1992), 1463-1488.
- [5] T. DUMITRESCU AND M. ZAFRULLAH, *LCM-splitting sets in some ring extensions*, to appear in Proc. Amer. Math. Soc.
- [6] R. GILMER, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- [7] I. KAPLANSKY, Commutative Rings, Revised Edition, University of Chicago Press, Chicago, 1974.
- [8] M. ZAFRULLAH, Various facets of rings between D[X] and K[X] (manuscript).

Faculty of Mathematics, Bucharest University, RO-70109 Bucharest, Romania e-mail: tiberiu@al.math.unibuc.ro