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ON THE GALOIS GROUP OF THE

GENERALIZED FIBONACCI POLYNOMIAL

Mihai Cipu∗ and Florian Luca

1 Statements of Results

For every integer n ≥ 2 let

fn(X) = Xn − Xn−1 − . . . − X − 1 ∈ Z[X] (1)

be the generalized Fibonacci polynomial. There are a few papers in the litera-
ture in which the distribution of the roots of fn is considered. For example,
from [5] and [6] we know that there exists a unique positive root θ of fn,
which is larger than 1, and all the other roots of fn have modulus less than
1. Moreover, if n is odd, then fn has only one real root, while if n is even, fn

has exactly two real roots (the root θ > 1 and one other root in the interval
(−1, 0)). For an analysis of the real roots of f ′

n and f ′′
n see [3].

Since fn has a unique positive root θ which is larger than 1 and all the other
roots are in the open unit disk, it follows that θ is a Pisot number and fn is a
Pisot polynomial. In particular, fn is irreducible. This observation is due to
Boyd (see [9]). Thus, we may denote the roots of fn by θ(i) for i = 1, 2, . . . , n,
with the usual convention that θ(1) = θ. We also let n = r1 + 2r2, where r1 is
the number of real roots of fn and 2r2 is the number of complex non-real roots
of fn. From the above comments we know that r2 =

⌊

n−1
2

⌋

. We also number

the roots θ(i) with the usual convention, namely that θ(r1+j) = θ
(r1+r2+j)

for all j = 1, 2, . . . , r2. From the general theory of Pisot numbers, we can
immediately infer a few facts about the numbers θ(i) which, to our knowledge,
were not yet pointed out in the context of the polynomial fn. First of all, from
a result of Smyth (see [7]), it follows that |θ(i)| 6= |θ(j)| if 1 ≤ i < j ≤ r1 + r2.
In particular, the only coincidences among the absolute values of the θ(i)’s
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are the trivial ones. Moreover, by a result of Mignotte (see [4]), it follows
that the set { θ(i) : i = 2, 3, . . . , n } consists of multiplicatively independent
numbers. Notice also that since the constant term of fn is −1, it follows that
the numbers θ(i) are all units. Recall that an algebraic number α is called unit
if both α and 1/α are algebraic integers.

In [9] it was raised the question to compute the Galois group Gn of the
polynomial fn over the field of rational numbers. This group was computed
using MAGMA (see [9]) for all n ≤ 11 and it was found to be the symmetric
group Sn. This led the author of [9] to conjecture that the Galois group Gn =
Gal(fn,Q) is Sn for all n. The question of computing Gn was raised in the
context of finding the roots of fn by using radicals, which is equivalent to the
solvability of the group Gn.

In this paper we make some remarks on the Galois group Gn. We show
that Gn is not contained in the alternating group An for any n, and is not
2-nilpotent for n ≥ 3.

Our main result leaves open both possibilities to settle the conjecture. To
the best of our knowledge, it is the only general result valid for all polynomials
fn’s.

Theorem 1.1 The Galois group Gn is not contained in the alternating group
An (here we view Gn as contained in Sn).

The proof we shall give to this result works equally well for other polyno-
mials. Thus we have:

Theorem 1.2 The Galois group Gal(un,Q) of the polynomial

un(X) := Xn + Xn−1 − Xn−2 − . . . − X − 1 , n ≥ 4,

is contained in the alternating group An if and only if n ≡ 3 (mod 4).

For the generalized Fibonacci polynomial we prove also:

Theorem 1.3 For n ≥ 3, the Galois group Gn is not 2-nilpotent.

From this result it follows that the roots of the generalized Fibonacci poly-
nomials fn, n ≥ 3, can not be constructed by ruler and compass.

It is well-known folklore that in general the arithmetic over the ring of
integers Z is a lot harder than the arithmetic over the function field Q(t). In
particular, statements such as Fermat’s Last Theorem, or binary Goldbach’s
Conjecture, or ABC Conjecture, which are notoriously hard over the integers,
admit very easy proofs over the function field. In this paper we give another
example of this phenomenon.

Theorem 1.4 Let t be algebraically independent over Q(X). The Galois
group of the polynomial g := −Xnfn(1/X) − t over Q(t) is Sn.
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2 Proofs

Recall that if f ∈ Z[X] is any polynomial of degree d ≥ 2 and of roots
α1, α2, . . . , αd (not necessarily distinct), then the discriminant of f is defined
as

D(f) :=
∏

1≤i<j≤d

(αi − αj)
2 . (2)

This definition requires the knowledge of all the roots of the given polynomial,
which is in general a difficult task. The discriminat can be computed as the
resultant of the polynomial and of its derivative.

For the proof of Theorem 1.1 we use the well-known criterion: the Galois
group of a polynomial of degree n is contained in the alternating group An if
and only if the discriminant of the polynomial is a perfect square in the base
field. So we need the value of the discriminant of the generalized Fibonacci
polynomial.

Lemma 2.1 Let Dn be the discriminant of fn. Then

Dn = (−1)(n−1)(n−2)/2 · 2n+1nn − (n + 1)n+1

(n − 1)2
. (3)

Remark 2.1 Notice that if one substitutes n = 2 in the above expression,
then one obtains the familiar D2 = 5.

In all the proofs we will not actually work with polynomial fn but rather
with its reciprocal polynomial, namely

gn(X) := −Xnf

(

1

X

)

= Xn + Xn−1 + . . . + X − 1 . (4)

It is clear that by replacing fn by gn we do not change the Galois group Gn.
Moreover, since the product of the roots of fn is ±1, and since the roots of gn

are the reciprocals of the roots of fn, formula (2) shows that the discriminant
of gn is Dn as well.

We are now ready to prove Lemma 2.1.

Proof of Lemma 2.1.
For the sake of convenience, we drop the index n appearing at the poly-

nomial gn. We also denote by βi = 1/θ(i) for i = 1, 2, . . . , n the roots of the
polynomial g. Notice that

g(X) =

n
∑

i=0

Xi − 2 =
Xn+1 − 1

X − 1
− 2 =

Xn+1 − 2X + 1

X − 1
. (5)
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Let us consider the polynomial appearing as the numerator of the last expres-
sion:

h(X) := Xn+1 − 2X + 1 . (6)

Formula (5) can be rewritten as

(X − 1)g(X) = h(X) . (7)

Taking derivatives in both sides of equation (7) and then evaluating the re-
sulting expression in βi for i = 1, 2, . . . , n, we get

(βi − 1)g′(βi) = h′(βi) , for i = 1, 2, . . . , n. (8)

Taking the product of all expressions (8) for i = 1, 2, . . . , n, and rearranging
some factors we get

n
∏

i=1

g′(βi) = (−1)n ·
∏n

i=1 h′(βi)
∏n

i=1(1 − βi)
. (9)

It is easily seen that the denominator appearing in the right-hand side of
formula (9) is g(1) = n− 1. Moreover, from formula (7) we see that the roots
of h are precisely the numbers βi for i = 1, 2, . . . , n together with βn+1 := 1.
Since h′(1) = n − 1, it follows that one may rewrite formula (9) as

∏

β | g(β)=0

g′(β) =
(−1)n

(n − 1)2

∏

γ |h(γ)=0

h′(γ). (10)

It is well-known that if f is any polynomial with rational coefficients, then
its discriminant can be computed using the formula

D(f) = (−1)r2

∏

α | f(α)=0

|f ′(α)|. (11)

From formulae (10) and (11) it follows that

|Dn| =
∏

β | g(β)=0

|g′(β)| =
1

(n − 1)2

∏

γ |h(γ)=0

|h′(γ)| =
|Dn|

(n − 1)2
. (12)

Hence, it suffices to compute the discriminant of the polynomial h. However,
it is well-known that if f ∈ Z[X] is a polynomial of the form

f(X) = Xn + aX + b , (13)
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then its discriminat satisfies

|D(f)| = |nnbn−1 + an(1 − n)n−1| (14)

(see, for instance, Ex. 4.5.4 on page 48 in [2]). Using formulae (6) and (14),
we get

|D(h)| = |(n + 1)n+1 + (−2)n+1(1 − (n + 1))n|
= |(n + 1)n+1 + (−1)2n+1 · 2n+1nn|
= 2n+1nn − (n + 1)n+1.

(15)

Hence,

|Dn| =
2n+1nn − (n + 1)n+1

(n − 1)2
. (16)

It remains to establish the sign of Dn. But this is (−1)r2 , where r2 =
⌊

n−1
2

⌋

, and it is easy to see that

⌊

n − 1

2

⌋

≡
(

n − 1

2

)

=
(n − 1)(n − 2)

2
(mod 2) , for all n ∈ Z. (17)

Formula (3) is therefore proved.

Proof of Theorem 1.1.
According to the criterion recalled before the proof of Lemma 2.1, in order

to establish Theorem 1.1, it suffices to show that Dn is never a square, where
Dn is given by formula (3). Since Dn < 0 when n ≡ 0 , 3 (mod 4), it is
sufficient to treat the cases n ≡ 1 , 2 (mod 4).

Case 1. n ≡ 1 (mod 4)
The fact that Dn is a square is equivalent to

2n+1

(

nn −
(

n + 1

2

)n+1
)

= x2 (18)

for some positive integer x. From equation (18) we conclude that one may
write x = 2(n+1)/2y for some positive integer y which satisfies

nn −
(

n + 1

2

)n+1

= y2. (19)

Since n ≡ 1 (mod 4), equation (19) reduced modulo 4 shows that y is even.
We now rewrite (19) as

nn = y2 +
(

n+1
2

)n+1

=
(

y + i
(

n+1
2

)(n+1)/2
)

·
(

y − i
(

n+1
2

)(n+1)/2
)

.
(20)
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Since n is odd, y is even and n and n + 1 are coprime, it follows that the
two conjugate factors appearing in the right-hand side of equation (20) are
coprime in the ring of Gaussian integers Z[i]. Since Z[i] is an Euclidian ring,
it follows that there exist an integer ω ∈ Z[i] and a unit ζ ∈ Z[i] such that
ω · ω = n and



















ζωn = y + i

(

n + 1

2

)(n+1)/2

,

ζωn = y − i

(

n + 1

2

)(n+1)/2

.

(21)

Since the only units of Z[i] are ±1,±i of order dividing 4 and n is odd, it
follows that, via an appropriate substitution, we may assume that ζ = 1.
With this assumption, we eliminate y from the equation (21) obtaining

ωn − ωn

ω − ω
=

i(n + 1)(n+1)/2

2(n−1)/2(ω − ω)
. (22)

Notice that the left-hand side of equation (22) is the nth term of a Lucas
sequence of first kind with roots ω and ω. The right-hand side of equation
(22) is therefore a rational integer as well, and its prime factors divide n + 1.
In particular, the largest prime dividing the number appearing in either side
of formula (22) is at most

P (n + 1) ≤ n + 1

2
< n − 1 , for n ≥ 5 . (23)

Here, for a positive integer K > 1 we have denoted by P (k) the largest prime
divisor of k. In particular, inequality (23) implies that the Lucas number
appearing in the left-hand side of equation (22) has no primitive divisors.
The Lucas numbers without primitive divisors have been completely classified
recently by Bilu, Hanrot and Voutier (see [1]). There are none with n > 13
odd, there are only a few with 5 ≤ n ≤ 13 odd, and all of these appear in
Table 1 in [1]. A quick look at the Table 1 in [1] suffices to notice that none
of these defective Lucas numbers has roots belonging to the ring of Gaussian
integers. Hence, the Diophantine equation (22) has no solutions.

Case 2. n ≡ 2 (mod 4).
We can treat this case in an elementary way. Assume that x is a positive

integer such that
2n+1nn − (n + 1)n+1 = x2 . (24)

Let p be any prime divisor of n + 1. Reducing equation (24) modulo p and

using the fact that n is even, we get
(

2
p

)

= 1. (For any integers a and b with
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b odd we denote by
(

a
b

)

the Jacobi symbol of a with respect to b.) Hence,
p ≡ ±1 (mod 8). Since this holds for all prime divisors of the odd number
n + 1, we conclude that n + 1 ≡ ±1 (mod 8). However, since n + 1 ≡ 3
(mod 4), it follows that n + 1 ≡ 7 (mod 8).

Notice now that n/2 is an odd number. Let q be any prime divisor of it.
Reducing equation (24) modulo q, we get

(−(n + 1)

q

)

= 1 .

Since q is a divisor of n, we conclude
(

−1
q

)

= 1, which implies that q ≡ 1

(mod 4). Since this holds for all odd prime divisors of n, it results n/2 ≡ 1
(mod 4), or n ≡ 2 (mod 8). This leads to n+1 ≡ 3 (mod 8), which contradicts
the previous conclusion that n + 1 ≡ 7 (mod 8). This concludes the proof of

Theorem 1.1.

Proof of Theorem 1.2.
The pattern of the proof is as above. We start by computing the discrimi-

nant of the polynomials we are interested in.

Lemma 2.2 For n ≥ 4, the discriminant of un has absolute value

| Disc(un) |=



















2n+3(n − 1)n−1 − (n + 1)n+1

(n − 3)2
for n even,

(

(n + 1)(n+1)/2 − 2(n+3)/2(n − 1)(n−1)/2

n − 3

)2

for n odd,

and sign (−1)(n+1)(n+2)/2.

We proceed to the proof of Theorem 1.2. Since the discriminant of un is
negative for n ≡ 0 , 1 (mod 4), for these values of n certainly Disc(un) is not
the square of an integer. For n ≡ 3 (mod 4) Disc(un) is a perfect square, so
it remains to consider tha case n ≡ 2 (mod 4).

Assume that x is an integer such that

2n+3(n − 1)n−1 − (n + 1)n+1 = x2 . (25)

Reducing equation (25) modulo 8 we get n ≡ 6 (mod 8). Hence, n + 1 has a
prime divisor p congruent to 3 modulo 4. Reducing equation (25) modulo p
and using the fact that n is even we get

(−1

p

)

= 1 ,
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which contradicts the previous conclusion that p ≡ 3 (mod 4). Therefore, the
Diophantine equation (25) has no solutions for n ≡ 2 (mod 4).

This concludes the proof of Theorem 1.2.

Proof of Lemma 2.2.
The familiar Sylvester determinant does not provide the simplest way to

compute the discriminant of un as the resultant of un and of its derivative.
We shall use the fortunate fact that the reciprocal of un has a sparse multiple

vn+1(X) := Xn(1 − X)un

(

1

X

)

= Xn+1 − 2Xn−1 + 1 .

Then

Disc(vn+1) = Disc((X − 1)un) = Disc(un) · Res(X − 1, un(X))2

= (n − 3)2 Disc(un) .

For the sake of simplicity, in the following we shall fix a value n and we
put v := vn. We have

| Disc(v) | = | Res(v, v′) |=
∏

v(ρ)=0

| nρn−1 − 2(n − 2)ρn−3 |

=
∏

v(ρ)=0

| nρ2 − 2n + 4 |

= ±nnv
(

√

2 − 4/n
)

v
(

−
√

2 − 4/n
)

.

For n even one has

v
(

√

2 − 4/n
)

= v
(

−
√

2 − 4/n
)

= 1 − 4

n

(

2 − 4

n

)n/2−1

,

so that

| Disc(v) |=
(

nn/2 − 2n/2+1(n − 2)n/2−1
)2

.

For n odd

v
(

√

2 − 4/n
)

= 1 − 4

n

(

2 − 4

n

)n/2−1

,

v
(

−
√

2 − 4/n
)

= 1 +
4

n

(

2 − 4

n

)n/2−1

.

Hence,
| Disc(v) |= 2n+2(n − 2)n−2 − nn .
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Notice that the right-hand side of the previous relation is non-negative for
every n ≥ 4.

From these computations it follows that the discriminat of un has absolute
value

| Disc(un) |=















2n+3(n − 1)n−1 − (n + 1)n+1

(n − 3)2
for n even ,

(

2(n+3)/2(n − 1)(n−1)/2 − (n + 1)(n+1)/2
)2

(n − 3)2
for n odd .

By Descarte’s rule of sign, v2n has 0 or 2 positive real roots and 0 or 2
negative real roots. Since v2n(±1) = 0, we conclude that v2n has exactly 4
real roots. Similarly on finds that v2n+1 has precisely 3 real roots. Hence, the
sign of Disc(un) is (−1)r2 , where r2 = bn/2c − 1. It is easily seeen that this
coincides with (−1)(n+1)(n+2)/2.

Lemma 2.2 is therefore proved.

Proof of Theorem 1.3.
Assume that the group Gn is 2-nilpotent and write Gn = S × T , where

S is the 2-Sylow subgroup of Gn and T is a subgroup of odd order. For any
root θ of fn write Kθ := Q[θ] and let K be the splitting field of fn. Notice
that since n ≥ 3, the polynomial fn has complex non-real roots therefore S
is non-trivial (the complex conjugation is an example of an element of order
two in Gn). Let θ be any root of fn. It is clear that StabGn

(θ) does not
contain S. Indeed, for if S ≤ StabGn

(θ), then, by the normality of S, it would
follow that S ⊆ ∩fn(θ)=0StabGn

(θ) = {1}, which is impossible because S is
non-trivial. Let N be a maximal subgroup of S containing S ∩ StabGn

(θ) and
let M = N × T . Since N is maximal in the 2-group S, we get that N is
normal in S and [S : N ] = 2. Clearly, M is a normal subgroup of index 2 in
Gn and contains StabGn

(θ) for every root θ of fn. By Galois correspondence,
K1 := KM is a number field of degree 2 which is contained in each one of the
fields Kθ. In particular, n = 2m is even and fn decomposes over K1 into two
polynomials, say gn and hn, each of degree m. We keep θ1 as the only root
of fn which is outside the unit disc and we reorder the roots θ2, . . . , θn such
that θ1, . . . , θm are the roots of gn and θm+1, . . . , θ2m are the roots of hn.
We also write K1 = Q[

√
d] for some squarefree integer d 6= 1. Let cg and ch be

the last two coefficients of gn and hn, respectively. Since cg = (−1)mθ1 · · · · ·θm

and ch = (−1)mθm+1 · · · · · θn and cg · ch = −1, it follows that cg and ch are
both units in K1 and cg = −c−1

h . Assume first that d < 0. Then all the
units in K1 are roots of unity of degrees 1, 2, 3, or 6, therefore we read that
c12
g = 1. In particular, (θ1 · · · · · θm)12 = 1, which is impossible either by the

result of Mignotte, or simply by noticing that since θ1 · · · · · θn = 1, it follows
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that |cg| = |θ1 · · · · · θm| = |θm+1 · · · · · θn|−1 > 1. So, we conclude that d > 0,
therefore K1 is real. Let ζ be a fundamental unit in K1. Since |cg| > 1, we
get that cg = ±ζt for some positive integer t. However, it is easy to see that
θ1 < 2, therefore |cg| < 2. We now get that |ζ|t = |cg| < 2, and the only
instance that this can happen in a quadratic number field is when t = 1 and
d = 5, for which ζ = (1 +

√
5)/2. Since we now know that d = 5, we get that

the discriminant of K1 is DK1
= 5, and since K1 ⊂ Kθ and [Kθ : K1] = m

we read that Dm
K1

| Dn, therefore 5n/2 | Dn. Notice that by the Claim below
this is impossible when n ≡ 1 (mod 5).

Claim. If p is an odd prime dividing n − 1, then p does not divide Dn.

To prove this Claim, we compute the numerator of Dn modulo (n − 1)3:

2n+1nn − (n + 1)n+1 = 2n+1((n − 1) + 1)n − ((n − 1) + 2)n+1

≡ 2n+1

((

n

2

)

(n − 1)2 + n(n − 1) + 1

)

−
((

n + 1

2

)

2n−1(n − 1)2 + (n + 1)(n − 1)2n + 2n+1

)

(mod (n − 1)3)

≡ 2n−1(n − 1)2 (mod (n − 1)3) .

The above computation together with formula (3) show that

Dn ≡ (−1)(
n−1

2 )2n−1 (mod (n − 1)) ,

whence our Claim.

We resume the proof of Theorem 1.3. We now distinguish two cases:

Case 1. n ≡ 0 (mod 4).
Since 5n/2 | Dn, we get 2n+1nn − (n + 1)n+1 ≡ 0 (mod 5). It is clear

that n 6≡ 0, 4 (mod 5) and since n ≡ 0 (mod 4) it follows, by Fermat’s
Little Theorem, that 2n+1nn − (n + 1)n+1 ≡ 2 − (n + 1) (mod 5) leading to
n ≡ 1 (mod 5), which we have seen that it is impossible.

Case 2. n ≡ 2 (mod 4).
In this case, we get again that n ≡ 0, 4 (mod 5) are not possible, and with

Fermat’s Little Theorem we obtain 2n+1nn−(n+1)n+1 ≡ 8n2−(n+1)3 (mod 5)
and the only solution n 6≡ 1 (mod 5) of 8n2 − (n + 1)3 ≡ 0 (mod 5) is n ≡
2 (mod 5). So, we get that n ≡ 2 (mod 20), and now since 20 = φ(25) we get,
with n = 2 + 20k,

2n+1nn − (n + 1)n+1 ≡ 23 · (2 + 20k)2 − (3 + 20k)3 (mod 25),
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therefore

2n+1nn − (n + 1)n+1 ≡ 8(4 + 80k) − (27 + 540k) (mod 25),

or
2n+1nn − (n + 1)n+1 ≡ 5 + 100k (mod 25) ≡ 5 (mod 25),

which shows that the divisibility relation 5n/2 | Dn is impossible for n > 2.
The Theorem is therefore proved.

Proof of Theorem 1.4.
We shall use a criterion going back to Hilbert: the polynomial does not

take the same value when evaluated for distinct roots of its derivative (see [8,
Theorem 3.6])

Let α and β be distinct roots of g′ (here the derivative is taken with respect
to X). Taking derivatives in both sides of equation (7) and then evaluating
the resulting expression in α and β, we conclude that g(α) = (n + 1)αn − 2
and g(β) = (n + 1)βn − 2 coincide if and only if c := α/β is an nth root of
unity. Since

g′(X) =
nXn+1 − (n + 1)Xn + 1

(1 − X)2
,

from g′(β) = g′(cβ) = 0 and c an nth root of unity it readily follows c = 1,
which contradicts α 6= β.
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