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ABOUT THE GROUPS ALL OF WHOSE CHARACTERS ARE
RATIONAL VALUED ON THE 2-ELEMENTS

ION ARMEANU

University of Bucharest, Physics Faculty, Mathematics Dept.
Bucharest-Magurele, P.O.Box MG-11, Romania

ABsTRACT. In this note we shall study the structure of the finite groups all
whose irreducible characters are rational valued on the conjugacy classes
of odd order elements.

1. ELEMENTARY RESULTS

The notations and terminology are standard (see for example (3] and [5]).
All groups will be finite.

DEFINITION. A 2'-r group is a group all whose irreducible Characters are
rational valued on the conjugacy classes of 2'-elements.

PropoSITION 1. The following statements are equivalent:

1) G 1s a 2'-r group. :

i1) For every 2'-element g of G the gemerators of the cyclic group < g > are
conjugate in G.

i11) Ng(< g >)/Cq(g) = Aut(< g >) for every 2'—element g € G.

Proof. Let g € G and x € Ir7(G). Let w be a primitive n-root of the unity
where n = |G| and G{w) = Gal(Q(w), Q). Then G(w) acts naturally on Irr(G).
For every o € G(w) there is a.n, € Z such that o{w) = ¢™ and (n,n,) = 1.
G(w) acts on G by g — g™°. The generators of < ¢ > are ¢"7 when o € G(w).

Suppose G is a 2'-r group and let g, h € G, 2'-elements such that < g >=< h >
but g is not conjugate in G to h. Since h = g™~ for some ¢ € G(w) there exists
x € Irr(G) such that x(g) # x(h). Thus x(h) = x(9"") = o(x(9)) = x(9),
contradiction.

Reciprocally, let g € G be a 2'-element and x € Irr(G) and suppose that
g is conjugate in G with the generators of < g >. Then, for every ¢ € G(w),
a(x(9)) = x(g"") = x(g) hence x(g) is rational.

Received by the editors June 19, 1996.



2 ION ARMEANU

DEFINITION. Let G be a group. An element g of G is p-central for a rational
prime p if there ezists a Sylow p-subgroup S of G such that S C Cg(g)-

PROPOSITION 2. Let G be a 2'-r group. Then:

1) There is no 2-central 2’ —elements in G.

1t) Z(S) 1s an abelian 2-group.

1) If G is abelian then G is a 2-group.

iv) G/G' is an abelian 2-group.

v) O(G) = O*(().

vi) Let p be an odd prime and P be a Sylow p-subgroup of G. Then P < [P,G].

Proof. i) Let g # 1 be a 2-central 2'-element of G. Then for some S € Syl%(G)
S < C(z) < N(< z >) hence 2 does not divide | Aut(< z >) | , contradiction.

vi) The focal subgroup of P in G, Foc(P), is generated by the commutators
l9,h], where g isin P and h isin G which liein P. Let f : G — P/Foc(P) the
transfer map. Then f is onto and therefore P/Foc(P) is an abelian 2’ —group.
Since p # 2, it follows that P = Foc(P). Hence P = Foc(P) < PN[P,G] < P
thus P < [P,G].

COROLLARY 3. Let G be a 2'—r group and S be a Sylow 2-subgroup of G.
Then Cg(S) = Z(5).

Proof. The elements of C'(S) are 2-central.

DEFINITION. An element g € G 1is real if there is an element t € G such that
ot =gzt

LEMMA 4. Let G be a solvable group and S be a Sylow 2-subgroup of G.
Then the odd order elements of Ng(S) are non-real.

Proof. Induction on the order of G. Let H be a minimal subgroup of G.
Since G is solvable, H is an elementary abelian p-group, for a rational prime p.
If z ¢ H the image of z in G/H is non-real by induction hence z is non-real.
If z € H we have that [z,5] C SN H = 1. Since Cg(z) contains a Sylow
2-subgroup of G, we have that the order of Ng(< z >)/Cg(z) is odd hence z
is non-real.

By Lemma 4 follows immediately:

PROPOSITION 5. Let G be a solvable 2'—r group and S € Syly(G). Then
Ng(S) = S.

COROLLARY 6. Let G be a 2'—r group with S € Syl,(G) and let S < W < G.
Then N(W) =W.

Proof. Let g € N(W). Then S and S¢ are Sylow 2-subgroups of W and
hence there is a w € W such that 59 = §¥. Thenw™lg e N(§) =S < W
hence g € W.

COROLLARY 7. Let G be a 2 — 1 group and P € Syl,(G), with p an odd
prime. Then N(P) # P.
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Proof. Let z be an element of order p in Z{P). Then P < C(z) < N(z).
From Frattini argument, Ng(z) = C(2)Nn(3)(P). If Ng(P) = P, then Ng(z) =
C¢(z)P = Cg(z) which contradicts p — 1 # 1.

2. WREATH PRODUCTS

DEeFINITION Let H be a permutation group on the set W and let z be in H.
The cyclic group < = > acts on W. Denote by O(z,w) the orbit of w. We shall
say that H is 2'r-transversal if for every 2'—element z € H, and m an integer
relatively prime to | z | there exist some element h € H such that " = 2™ and
hO(z,w) = O(z,w) for every w € W.

Using techniques of [4] we shall prove the next two statements.

ProproSITION 1. Suppose GV H is a 2' — 1 group. Then both G and H are
2" —r groups.

Proof. By the definition of the wreath product (see [4]}, H is a factor group
of G H, hence H is a 2’ — r group.

Let g € G be a 2'-element. Define 7 : W — G by setting n(w) = g for every
w € W. Then 1*(r)(w) = m(w) = g, therefore 1*(w) = n. Hence | (m;1) |=| g |
and (m; 1) is an 2'—element in G H. Then for every positive integer m relatively
prime to | g | there exists (u; h) in GUH such that {u; h)(m; 1)(u; )~ = (7; 1)™.
Hence urpu™! = 7™. Since 7, = = it follows that u(w)gu(w)™? = r(w)™ = g™
for every w in W. Hence g is conjugate to g™.

REMARK. Hence to construct new 2’ —r groups by wreathing groups we must
consider only 2’ —r groups.

In general, it is not true that the wreath product of two 2' — r groups is a
2' —r group. For ezample let S3°? be the left regular permutation representation
of the symmetric group Ss. Then Z,153;% is not a 2' — r group.

THEOREM 2. Let G be a 2’ —r group and (H, W) be a 2'r-transversal group.
Then GU(H,W) is a 2’ — r group.

Proof. Let (f;z) in G H be a 2'-element and let m be a positive integer
relatively prime to | (f;z) | We have to show that (f;z)™ is conjugate to
(f;z). Clearly (f;2)™ = (ffz..-fem-1;2™). Denote g = ff,...fzm-1. Since H is
2'7-transversal, there is an element h in H such that 2" = 2™ and hO(z,w) =
O(z,w) for every w in W. Then (1;h)(f;2)™(1;R)™" = (gn; z).

‘We shall prove now that (g,) is conjugate to (f;z). It is straightforward to
prove that z*(gn)(w) = (z*(f))(h~}(w)))™ for every w in W. Then
M (w) € O(z,w) and therefore (z*(f)(h~*(w)))™ is conjugate to z*(f)(w).
Hence z* (g5 )(w) is conjugate to (z*(f)(w))™ and since G is a 2’ — r group and
z*(f)(w) € G it follows that z*(gn(w) is conjugate to z*(f)(w).

We shall construct now a map u: W — G such that

(1, 1) (gn, 2) (1, 1) = (f, ).
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Let W = O(z,w:)U...00(z, w,) be the pairwise disjoint factors decomposition.
Let | O(z,w;) |= s;. By the previous, there exists u(w;) € G such that

p(wi)e™ (gn)(wi)p(wi) ™t = 2 (f)(w:)
fori=1,...q. We define y on all W by setting

p(@F(w:) = {f (W) feor (we)} 7 p(wi){gn(w:)...ga (&~ F 7 (wi)}
forevery 1 <k <s;— 1L .

It remains to verify that (u,1)(gn,z)(u,1)”™' = (f,z). This follows if we
prove that p(w)gn(w)u(z™*(w))™! = f(w) for every w in W. For w = w;
this is obvious. In general, write w = 2~ (w;) and straightforward follows the
statement. .

COROLLARY 3. Let G be a 2/ —r group. Then G S, 1s a 2' —r group.

THEOREM 4. [1] Every group G can be embedded in a symmetric group S
such that if z,y € G are conjugate in S then < z > and <y > are conjugate
mG.

COROLLARY 5. A group G can be embedded in a symmetric group S such
that the 2'—elements of G do not fusion in S iff G is a 2' —r group.

Proof. Let G be a 2/ — r group embedded in a symmetric group S as in
Theorem 4. Then z9 ~¢ y for some positive integer ¢. Since z ~g z9, the
2'—elements of G do not fusion in S.

Reciprocally, let G be embedded in S such that the 2'—elements of G do
not fusion in in S. Let x € Irr(G). For every 2'—element z of G we have
x°(z) = ex(z) with e a positive integer. Then x(z) is rational and the statement
follows.

COROLLARY 6. Let G be a group embedded in a symmetric group as in The-
orem 4. Then there is a bijection between the conjugacy classes C of odd order
elements of S with CN G # @ and the conjugacy classes of cyclic 2' —subgroups
of G.

3. SCHUR INDEX FOR 2/ — 7 GROUPS

DEFINITION. Let G be a group.
1) An element g of G is 2-regular if the order of g is odd.
1) A conjugacy class of G is 2-regular if its elements are 2-regular.

We shall denote by ny the number of conjugacy classes of 2'—cyclic subgroups
of G. Clearly ny can be compute from the character table of G.

Let C; = 1,C4,...,Ck the conjugacy classes of G and select g; € Cj.
Let Ki = Q (x1(gi), -, Xx(g:)) where x; € Irr(G) and s; = [K; : QJ. Let
a; =[G :< g; >]. Then K; C Q (wq,) and L; = Gal(Q (w,,) : Kj) is isomorphic
to the subgroup of the classes Z of 27, such that gf ~ g;. Clearly, s; = [Z} ; L;].
If R; are representatives modulo L;, then card(R;) = s;.
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From now on we shall keep these notations.

PROPOSITION 1. Let G be embedded in a symmetric group S such that the
2-reqular elements of G do not fusion in S and let A be a 2-regular conjugacy
class of S such that ANG #9 and g; € C; C ANG. Then ANG splits in G in
s; conjugacy classes.

Proof. Let z € ANG. Since ¢ ~g g;, we have < z >~g< g; > hence £ ~¢ g}
for some z € Z. Thus g; ~¢ gf for every z such that z € ;. Hence we can
choose a w such that W € R; and z ~¢ ¢. Therefore A NG splits in at most
card(R;) conjugacy classes in G.

Let y,z be positive integers relatively prime to the order of g; such that
7 # Z(modG;). Then g7 and g7 are conjugate in S but not in G. Thus ANG
splits in exactly s; conjugacy classes in G.

COROLLARY 2. They are 3 (1/t;) 2-regular conjugacy classes A of S such
that ANG # B, where t; = s; for g 2-regular classes.

COROLLARY 3. na = > (1/t;). ] :

THEOREM 4. Let G be a 2' — r group. Then G has at least na irreducible
characters of odd absolute Schur indez.

Proof. Let G be embedded in a symmetric group S as in Theorem 2.3. Let A;,
i = 1,...,n2 the 2-regular conjugacy classes of S which intersects G and choose
gi € A;NG. Let pj € Irr(S). Then the 2-rank of the matrix (p;(g:)) is ne and
hence they are n, irreduciblé characters pi1, ...pn, of S such that det(p;(z:)) £
0(mod2). If pjja(g:) = E:zl bigXq(gi), where x, € Irr(G), let U = (u;(gi)),
V = (bjq), W = (Xq(9:)). Then U = VW and since detU # 0(mod2) there are
no values of q such that det(d;q) Z 0(mod2) and det{x4(gi)) # 0(mod2). We can
suppose that ¢ = 1,...,n2 are these values. For every g there is a j such that
bjq is odd. Then x, appears with odd multiplicity in a Q-representation of G
and the absolute Schur index mg (x,) is odd.

Using methods of Gow [2] we can improve this result.

THEOREM 5. Let G be a 2’ —r group. Then G has at least ny + 1 1rreducible
characters of odd absolute Schur index.

Proof. Suppose G has exactly n, irreducible characters x1,...,xn, of odd
absolute Schur index. Let P € Syla(G) and v € Irr(P) be a non-trivial linear
character such that v = 1. Let 7 = v% and u = 1§. We write

T = Za,-xi +ijcpj
n= ZCiXi ""ZdJSOj

where ¢; € Irr(G) have even absolute Schur index. Since 7 and u are characters
of Q-representations it follows that b; and d; must be even. Let g; a 2-regular
element of G. Since the conjugacy class of g; does not intersect P we have
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7(g;) = 1(g;) = 0. Hence

n2

> (ai = c)xalgj) # O(mod2).

i=1
Thus a; Z ci(mod2) and by Frobenius reciprocity theorem a; = 0 and ¢; = 1,
contradiction.

PROPOSITION 6. Let G be a 2' —r group. Then @ (x1,..., xx) C @ {was).

Proof. Obvious.

THEOREM 7. Let G be a 2' —r group having s 2-regular conjugacy classes with
g1,--,9gs the corresponding representatives. Then there exist s rational valued
irreducible characters of G which satisfy detx;(gi) #0, 1 < 4,5 <s.

Proof. By Proposition 6 all characters of G take values in @ (w2, ). Suppose
the statement is not true. Then we can find ay,...,a; € Z not all zero, such
that for every x € Irr(G), we have >.;_; aix(gi) = 0. Thus for every Z-linear
combination of irreducible characters  of G, ;. ai7(g;) = 0. Let g = gs,
X =< g >and g =| X |.Lett P € Sylo(C(g)) and W = XP. X hasg
linear characters my,...,m; which extends to linear characters p1,..., g of W.
Let n= "1, 7:(g)u. Then n(g;) = 0if g; # g and n(g) # 0. Let H = Gal(Q
(won); Q). Clearly 7 is invariant to H and H acts naturally on Irr(G). The
number of characters in an orbit is a power of 2 and by preceding proposition
the rational valued irreducible characters are exactly the fix points of this action.
Let 3, be the sum of the charactersin the r orbit. Then 7 =Y. b,5,. It is clear
that B,(g;) = 0 unless the r orbit contains a single character. Hence b —7 # 0
only for the orbits of rational valued characters. Thus Y] a;in(g:) = a;n(g) # 0.
Since 7 is a Z-linear combination of irreducible characters of G, this contradicts
the assumption. _

COROLLARY 8. A 2 — 1 growp G possesses at least ng + 1 rational valued
irreducible characters of absolute Schur indez 1.

Proof. By Brauer-Speiser Theorem (see [3]) the rational valued irreducible
characters have Schur index at most 2. From preceding theorem and repeating
the arguments of Theorems 4 and 5 follows the statement.

-REMARK. Since S3 possesses exactly na + 1 rational valued irreducible char-
acters of absolute Schur index 1, ny + 1 1s the best lower rank.
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MODULE STRUCTURE OF THE TENSOR PRODUCT OF
SIMPLE ALGEBRAS OF KRULL DIMENSION 1

VLADIMIR BAVULA

Department of Mathematics, Kiev University,
Viadimirskaya Str. 64, Kiev 252617, Ukraine

Throughout let K be a (fixed) field, “module” means a left one, the tensor
product ® = ® is over K.

The Weyl algebra A, = A,(K) of degree n over K is the associative K-
algebra with identity generated by the 2n indeterminates Xi, ..., X,, 01, ..., On,
subject to the relations: ‘

[Xi,Xj] = [8i,8j] = [6,‘,Xj] =0 fori —‘,é j, [ai,Xi] = 1foralli,

where [z,y] = zy — yz.
If K has the characteristic zero, the Weyl algebra A,, is a simple Noetherian
domain.

The next theorem is the key result of [St], the other results of [St] are easy
corollaries of this one.

Theorem 0.1. Any right ideal of Ap(K), char K =0, can be generated by two
elements. Moreover, if a right ideal I = aA, +bA,+cA, andd #0 € A, then
there exist f and g € A,, such that I = (a + cfd)A, + (b+ cgd) A,.

For the first Weyl algebra A; the theorem was proved in [Di]. The n’th
Weyl algebra 4, = 4; ® --- ® A1, {n times), is the tensor product of the first
Weyl algebras and A, is a simple Noetherian domain with restricted minimum
condition (so of Krull dimension K.dim A; = 1). A ring R has the restricted
minimum condition if R is not Artinian but every proper left or right factor
module of R is Artinian.

In this paper we try to give a positive answer to the following
question and realize the following idea of Stafford ([St], Question (3)):

“find a more general class of rings for which the results of section 8 ([St])
still hold. Given a simple Noetherian ring that is “build up” from simple

Received by the editors Nov. 1995, revised May 2, 1996.
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8 VLADIMIR BAVULA
rings ” with restricted minimum condition (see p. 430, [St]), “it ought to
be possible to repeat the arguments of this paper”.
On this way, the concepts of strongly simple and special algebras naturally
arise.
Definitions. We say that a K-algebra A is strongly simple if for any
K -linearly independent elements a;,... ,a,:

Alay,... ,a.)A = A",

where A = A®--- @ A, r times. It is clear that a strongly simple algebra is
simple.

An algebra A is called special if for any two finite dimensional subspaces
V and U of A such that VU # 0 there exist bases {a;} and {b;} of V and U
respectively such that the rank of the set of vectors {a;b;} is greater than the
rank of {a;b;}\{a1b:}. '

As Lemma 2.2 shows, many “good” algebras are special (for example, the
Weyl algebra A,,, the universal enveloping algebra of a Lie algebra, but the
matrix algebras M,,(K), n > 2, are not (Proposition 2.3 )).

Let R be a domain, the full quotient ring (if exists) is denoted by D(R) and
the opposite ring by R°.

Let S be a subring of R. In order to simplify the notation the localization
of R at S\{0} (if it exists) is denoted by S~'R rather than the more correct
(S\{O})"R.

The next theorem gives (partly) an answer to the Stafford’s question, its
proof is given in Section 3.

Theorem 0.2. Let A; (1 = 1,...,n) be a central special simple algebra with
restricted minsmum condition. Let A= A1 ®---® A,,. Suppose that there exists
a subalgebra C of A which is the tensor product C = C, ®---®Cy of subalgebras
C; of A; such that

1. fori = 1,...,n — 1 there exists the localization S; := T, 'T;_, of the
T, .1 =C1 Q- ®@C;_1 ®A;®@---® A, at T; which has the restricted
minimum condition and there ezists R; = T, " A;

2. fori=2,...,n the quotient division rings E; .=D(C, ® --- ® C;_1) and
F;=D(Ci® --®Ci_1 ® 4;11 ® - ® A,) exist and the tensor product
of rings D(C1 ® --- ® C;_1) ® A; has the restricted minimum condition.

Let I = aA+bA+cA be a right ideal of A and let dy, do be arbitrary nonzero

elements of A. There exist f and g in A such that

I=(a+cfdi)A+ (b+cgds)A.

So, any finitely generated right ideal of A has no more than two generators.
If, in addition, A is Noetherian, then it is true for an arbitrary right or lefi
tdeal.
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Let D be a ring, o € Aut(D) be an automorphism of D and a € Z(D) an
element of the centre of D. The generalized Weyl algebra (GWA) A =
D{o,a) of degree 1 is the ring generated by D and two indeterminates X and
Y subject to the relations:

Xa=oc(a)X and Ya =07 (@)Y, Va € D, YX =a and XY = 0(a).

Let the algebras A;, ¢ = 1,...n, belongs to one of the two classes of general-
ized Wey! algebras (K[H] is a polynomial ring in one variable):

1. K[H](o,a),0(H)=H —pu, un#0€ K, char K = 0;
2. K[H,H|(0,a), o(H)=)AH,0+# X € K is not a root of 1.
In both cases a # 0 and for any two different irreducible multiples of
a, say p and ¢, there is not a nonzero integer ¢ € Z such that the maximal
ideals of K[H] and K[H, H 1] respectively to case 1 or 2 generated by p
and o*(q) coincide.

It is shown in Section 3 that an algebra

A=A ® - ®A, (0.1)

satisfies the conditions of Theorem 0.2 (Proposition 3.2). If all A; = K[H](0,a =
H), 0(H) = H — 1, the algebra A is isomorphic to the Weyl algebra A,. In
" [Bav 1] many results of [St] are carried over to the algebra A with all A; from
the first class and all g =1 (only sketches of proofs are given).
Corollaries of Theorem 0.2 are gathered in Section 4, for many of them the
proofs are omited since they are the same as in [St]. Name some of them: let
an algebra A be as in Theorem 0.2 and M be a finitely generated A-module.

o Then M ~ M' ® A, where M’ is a module with rank M’ < 1. If M is
torsionfree, then M’ is isomorphic to a left ideal of A.

e Suppose that the rank M > 2 and M & A ~ N ® A for some module N.
Then M ~ N. ‘

In order to make this paper more accessible (for the reader who read [St])
and to clarify the similarity and difference of this paper and of [St], the author
try to keep the notations as well as the way of thinking of [St]. So some parts
of proofs of [St] are included practically without changes.

1. PRELIMINARIES

A submodule N of M is called essential if it intersects non-trivially any
nonzero submodule of M. If a right (or left) ideal I is an essential right (or left)
submodule of R it is called an essential right (or left) ideal. A ring R is
essential if any nonzero left or right ideal is essential.
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Lemma 1.1. Let A be a ring every nonzero right ideal of which is essential.
Then the set J.(4) := {z € A|ann (z) # 0} is an ideal of A where ann.{(z) =
{a € A|za =0} is the annihilator right ideal of z.

Proof. Set J = J, for short. It is clear that AJ C J. If u, v € J, then by
assumption ann,(u) Nann.(v) #0,sou+v € Jand J+J C J, ie Jis a left
ideal of A. So it remains to show that JA C J. Let z € J and y € A such that
zy # 0. There are two possibilities: the first y ann.(z) = 0. Since ann,(z) # 0,
we conclude that y € J, thus zy £ AJ C J. The second, yann.(z) # 0. All
right nonzero ideals of A are essemtial, so y ann,.(z) Nann.(z) # 0, and there

exists z # 0 € anny(z) such that yz # 0 € ann,(z). It follows from zyz = 0
that JAC J. w

Corollary 1.2. Let A be a simple ring every right and left nonzero ideal of
which is essential. Then A is a domain.

Proof. 1t follows from Lemma 1.1 and the simplicity of A. =

Corollary 1.3. Let A be a simple ring with restricted minimum condition.
Then each nonzero left or right ideal of A is essential and (by Corollary 1.2) A
1s a domain.

Proof. Let J be a nonzero left ideal of A. If J intersects trivially a nonzero
left ideal I, JNI =0, then J & I C A and I can be seen as a submodule of
the factor module A/J of finite length (A with restricted minimum condition).
Thus the length [4(I) < co and {4 (A) = 14(A4/I)+14{I) < co which contradicts
non-artinianity of A. So, J is essential. By symmetry any nonzero right ideal
is essential. a

The next two results are folklore.

Proposition 1.4, Let A be a simple algebra, I be a left mazimal ideal of A
and J be a left ideal such that I NJ # 0. Suppose that a sequence of modules
0— A/ - M — A/J = 0 is exact. Then the module M is cyclic.

Proof. As a vector space M can be decomposed into a direct sum M =
A/l ® A/J where an element a € A acts on M as ap = ((8 p(aa))) for
some map p: A - Homg(A/J,A/I). Set j=INnJ,u=1+1¢€ A/I and
v=1+J¢€ A/J.

If p(7)v #0, then w = u + v is a generator of M. In fact, jw = p(jlv #£0 C
A/I, thus Aw 2 A/I and finally Aw = M.

Suppose that p(j)v = 0. Since j # 0 and A is simple, jA = A, so there exists
a nonzero element b € A such that jb € I. Then w = bu + v is a generator of
M. In fact, jw = jbu #0 C A/I, thus Aw D A/I and finally Aw = M. «
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Corollary 1.5. Let A be a simple algebra which is not a left Artinian module,
i.e. 1a(A) = co. Then any A-module of finite length is cyclic.

Proof. Let M be an A-module of finite length { = [4(M) < oo. We use the
induction on I. The case [ = 1 is clear. Suppose that [ > 1 and it is true for
all M such that [4(M) < I. Choose N to be a simple submodule of M, since
la(M/N) =1-1, by induction, M/N is cyclic. There exist left ideals I and J
of A such that a sequence

0= N=A/I -+ M- M/N=A4/J -0

is exact (] 'is maximal). Then INJ # 0, otherwise J can be seen as a submodule
of A/I, a contradiction (00 = l4(J) < l4(A/I) < ). Now the result follows
from Proposition 1.4. =

A module M over a K-algebra A is called Schurian if Endg (M) = K.

A module M is strongly simple if for any K -linearly independent elements
mi,-..,Mer € M-

A(my,... ,mp) =M.

Let an abelian group M be both an R- and an S-module. The module g M
is dense in gM if for any finitely many elements m;,... ,m; € M and any
s € S there exists 7 € R such that

sm; =rm; foralli=1,...,s.

Let M be aleft R-module. Set R’ for the endomorphism ring R’ = End(gM)
of the module M. Then g Mg/ is an R — R’-bimodule:

{rm)r' =r(m7’) forallre R, me M, € R'.

Set R” for the endomorphism ring R” = End(Mg') of the right R’-module
M, then p» Mg is an R” — R'-bimodule. The map

R— R, a—= (am:m —am), me M,

is a ring monomorphism and we shall identify R with its image in R”.

(The density theorem) Each semisimple module g M 1s dense in M.

Theorem 1.6. 1. A simple Schurian module is strongly simple.
2. A simple central algebra is strongly simple.

Proof. 1Tt follows immediately from the density theorem.
2 Set A for A ® A°. It is clear A is a simple Schurian A-module:
Endp(A4) ~ Z(A) = K (4 is central),

so A is a strongly simple A-module, i.e. A is strongly simple. =
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2. SPECIAL AND STRONGLY SIMPLE MODULES AND ALGEBRAS

Let E = {e;} be a set of vectors. Remind that the dimension of the vector
space < E > generated by E is called the rank of E.

A set E =-{¢;} is called special if there exists an element ¢; € E such
that the rank of E; := E\{e;} is smaller than the rank of E (i.e. dim <
E; >= dimE — 1). Then the element e; is called prime as well as any basis
€4y €igy -+ 1€iy, ... Of <E >. Any set of linearly independent elements is special
and each element of it is prime.

An algebra A is called special if for any two finite dimensional subspaces
V and U of A such that VU # 0 there exist bases {a;} and {b;} of V and U
respectively such that the set {a;b;} is special.

Lemma 2.1. Let my,... ,m, be a special set of vectors. Then my,...,mg are
prime elements if and only if dimLiN...NL; =n—1 foralli =1,...,s,
where n is the dimension of the vector space V generated by all m; and L; is
the vector space generated by all m; ezcept m;.

Proof. (=) Set L' = LiN...NL;fori=1,...,s, then L* D {miyy,... ,m;},
thus dim L* > n — 1.

Clear, L* # L**! otherwise, m;y1 € L* = L**?, a contradiction, so dim L? =
n—1i.

(<) If we suppose that m; is the first non-prime in the row my, ... ,m,, then
L* = [*=%, thus L' = L~ N L;, a contradiction. = '

The next lemma shows that special algebras are common.

Lemma 2.2. 1. Fach subalgebra of a special algebra is special too.

2. Let B = S~ A be a localization of a special algebra A at a multiplicatively
closed subset S of A consisting of regular elements. Then B is special.

3. Let G be a well-ordered monoid. Then the monoidal algebra KG is special.
In particular, the polynomial ring Kz, ..., 2] is special.

4. If A =UE8, A Ag = K, is a filtered algebra such that the associated graded
algebra gr A is a special domain, then A is special too. In particular, the
universal enveloping algebra U(G)of a finite-dimensional Lie algebra G and
the Weyl algebra A, are special.

5. Let A be a special domain. Then the skew polynomial ring A[X;c,d]
and the skew Laurent polynomial ring A[X,X~'; 0| are special (0 is a
K -algebra isomorphism of A and 0 is a o-derivation of A).

Proof. 2 The set S consists of regular elements, so the map A =+ B, a — a/],
is monic. We identify A with its image in B. Let P and @ be finite-dimensional
vector subspaces of B such that PQ # 0. Then there exist s, ¢ € § such that
the vector spaces V = sP and U = @t are in A. The algebra A is special,
choose bases {a;} and {b;} of V and U respectively such that {a;b;} is special.



TENSOR PRODUCT OF SIMPILE ALGEBRAS OF KRULL DIMENSION 1 13

Then the bases {s7'a;} and {bjt~*} of P and Q are such that {s™ta;b;t 7'} is
special.
5 Let P be a finite-dimensional vector subspace of R = A[X;0,8]. Then
there exists a basis e1,... ,e,..., e of P such that
1. e1,... e, are polynomials of the same degree, say p, in X and dege; <p
for all j > r;
2. let a; € A be the highest coefficient of e;, i =1,...,7:

e; =aiXP+-.-.
The elements ay,...,a, of A are linearly independent.
For short we say that the basis {e;} is good of degree p and order s.

Let @ be a finite-dimensional subspace of R with a good basis
fiy--- s fty-- fm of degree q¢ @and order ¢, i.e.
fj =ijq+-” , 1=1,...,1%,

and {b;} are linearly independent in A. Let V and U be the subspaces generated
by {a:} and {b;} respectively. Then oP(V') has the basis {o?(b;)}. The algebra
A is a special domain, let {a;} and {0?(b})} be bases of V and o?(U) such that
{ajoP(b})} is special. Without loss of generality we may suppose that all a} = a;
and b} = b;. Then {e;f;} are special too, thus R is special.

Since the skew Laurent polynomial ring L = A[X, X ~!;0] is the localiza-
tion of A[X;0,0 = 1] at the set § = {1,X,X?,...} where X is regular in
A[X; o, 8 = 1]. So L is special by the statement 2. »

A module M over a ring A is faithful if aM = 0, a in A, is possible if and
only if a = 0. '

Proposition 2.3. Suppose that a finite-dimensional algebra A has a left faithful
ideal U such that dim A > (dim U)? — dimU + 1. Then A is not special. In
particular, the n x n matriz ring M,(K) is not special for n > 2.

Proof. The left ideal U is faithful, so the algebra homomorphism
A= End(U), a = (ay : u — au), (2.1)

is monic. Choose e;,... ,e,, n = dimU and ay,...,a,,, m = dim A to be
bases of U and A respectively, then End(U) can be identified with the matrix
ring M,(K) over a field K and by (2.1) A with a matrix subalgebra of M,,(K),
le. q; is a matrix a; = (ai,a8) € Mn(K). Denote by a;; the j’th column
of the matrix a;. It is enough to show that the set {a;e;} is not special { in
AU = U). Suppose the contrary and aje; is prime. Then the rank of the set

F = {aie;}\{aie1} is n — 1, thus the rank of all columns of az, ... ,am, is less
or equal to n — 1 ( since a;; = a;e;). Using this fact we shall show that the
vectors ag, ... ,a,, are linearly dependent, a contradiction. For we need to find

m? — 1 scalars z3,... ,T,2, not all of them are zero such that
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m2
E - zia; =0.
=2

Considering this equality as the matrix one, it is equlvalent to the system of n
equations:

> ziaier =Y. ziai =0

> Tiaien = > ziai, =0.

Since 7k F' < n — 1, an equation ) zja;; = 0 is equivalent to ) yrar; =
0 where k runs through a set of linearly independent columns of {a;;|i =
2,...,m?*} and yi denotes a linear combination of z;. Thus we have no more
than n(n — 1) linear homogeneous equations with m? — 1 indeterminates which
have a nonzero solution since by assumption n(n — 1) < m? — 1.

In the case of the matrix ring A = M, (K), the left ideal U = ML(K)E;; ~
K™ is faithful and

dim M, (K) =n®* > n(n-1)+1=dimU(dimU — 1) + 1 forn > 2,

where E1; is the matrix unit. So, M,(K), n > 2, is not special. a
We say that a K-algebra A is strongly simple if for any K-linearly inde-
pendent elements a1,...,a,:

Aay,... ,a,)A=AD
It is clear that a strongly simple algebra is simple.

Lemma 2.4. Let A be a strongly simple algebra and B be simple. Then their
tensor product C = A® B is a simple algebra too.

Proof. Let us to show that for any nonzero ¢ € C : CcC = C. For write
¢ =37 a; ®b; as a sum of linearly independent elements {a;} in A and {b;} in
B. Then as an A-bimodule

AcA =40, A®b & - ® A0, A® b, ~ Alar,...,ar)A = A
since A is strongly simple and {a;} is linearly independent. Thus
CcCOB{1®0)B=1®BhB31®1=1,
ie. CcC=C. n

Lemma 2.5. Let algebras A and B be domains and A be special strongly simple.
Then

1. A® B is a domain.
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2. If B is a division ring and S = T~ (A® B) s a localization of A® B at a
multiplicatively closed subset T of A® B, then S is a simple domain and
for any linearly independent elements a;,... ,ar € A and any0#t€ S :

Aas,. .. ,a.)tS = S0,
Proof. 1 Let v and v be nonzero elements of C := A® B. They can be

written as sums
u:Z a; ® b; a.ndv:Z a; ® B

with {a:},...,{B;} linearly independent. The A is special, then for the vector
spaces V and U generated by all {a;} and {c;} respectively exist bases {a;} and
{a;'} such that {aia;’} is special. Changing in a proper way b;’th and 3;’th we
may suppose that all a} = a; and all ;' = a;. Let ayaq,a4,04,,... ,0;,04, be
a prime basis of {a;a;} and with a;a; prime. Since A is strongly simple there
exists w =) ¢; ®d; € A ® A° such that ’

wa o) = Z ciarond; = landwa; oy, =0forall2 <v <s.

Since a1y is prime, it is easy to see that wa;a; = 0 for all (,7) # (1,1). Then
wuv = 1 ® b1, # 0, thus uv # 0, i.e. C is a domain.

2 It follows from 1 and Lemma 2.4 that S is a simple domain. It is enough
to prove the above equality in the case S = A® B. Write t = )~ a; ® §; with
{a;} and {B;} linearly independent. Note that any K-linear nondegenerate
transformation in S() (i.e. the basis e; = (1,0,...,0),..., en = (0,...,0,1)
is changing to e = >~ Ajiej, where A = (A;;) € GL,(K)) will not affect either
the hypotheses or validity of the lemma. Using the same argument as above for
the vector spaces V and U generated by {a;} and {c;} respectively we can find
an element w € A ® A° as above, i.e. (modulo the above arguments)

wayay = 1 and wa;a; = 1 for all (4,5) # (1,1).

Then w(ai,...,a-)t =(1,0,...,00®8 =(8,0,...,0) € A(ay,...,a,)tS where
0 # B8 € B is a unit. Induction now completes the argument. »

The next lemma is an extension of sublemma 2.4, [St], on general situation
(for the reason of completeness a proof is given, it is almost the same as in [St]).

Lemma 2.6. Let S, t and ay,...,a, be as in Lemma 2.5.(2) such that S is not

Artinian. Suppose that N is a right submodule of SU) of finite colength. Then
there exists f € A such that

N+ f(ay,...,a.)tS = S,

Proof. We use the induction on the length [ of S(")/N. The case | = 0 is
clear. So suppose that the lemma holds for any right submodule N’ of 5(") with
length S /N’ < [ and I(S("/N) = I. By Lemma 2.5 choose g € A such that

glay,...,ar S N.
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Since S is not Artinian but S(") /N is, choose 0 # v € S such that g(as,... ,ar)tv
€ N. Denote by M aright submodule of N +g(ay, ... ,ar)tS containing N and
M/N is simple. By the induction there exists f € A such that

M+ flay,...,ar)tvS = s,
If N+ flay,...,a.)tS = S the result follows. Otherwise,
N+ f(ai,-..,a:)tvS = N + f(a1,...,a,)tS.
Set J = (g + f)(a1,... ,ar)tS + N. Then
J2(g+ fHla,...,ar)tvS+N = flay,... ,a ) tvS+N = f(a1,...,a-)tS+ N.

So J+M = S(), But also J D g(a1,...,a:)tS+ N D M. Thus J = S as
required. =

Lemma 2.7. Let S, t and a1,... ,a, be as in Lemma 2.6 such that S with

restricted minimum condition and let 0 # p € S. Then there exists f € A such
that

Sr+1) = (pS)r 1) 4 (ey + f(an,- .. ,ar)t)S,
where e; = (1,0,...,0) € SU+1),

Proof. The algebra S has the restricted minimum condition, thus the right
submodule N = (pS)("+1) of S("+1) is of finite colength. Applying Lemma 2.6
we find f € A4 such that

N+ f(ar,... ,a.)tpS = S,
Set I = N + (ey + f(0,a1,...,ar)t)S, then
IDN+(e1+ f(0,a1,-..,a:.)t)pS =N + f(0,a1,... ,a.)tpS =

N+(0,5,...,9) 3 f(0,a1,...,a).

Thus I contains also e; and so [ = S("+1)

3. Proor oF THEOREM 0.2

Theorem 3.1. Let an algebra A be a special strongly stmple domain aend an
algebra B be a simple domain. Let R = T~ 'C be a localization of C = A® B at
a multiplicatively closed subset T of C such that the subalgebra S of R generated
by T, T~ and A equals to a localization S = F~1(A®D) where D is the full ring
of fractions of some subalgebra B, of B, FF C A ® B s a multiplicatively closed
subset. Suppose that S has the restricted minimum condition. Let U = SN C.
Choose 0 #p € U and a, b € C and let I = pR +aR + bR be the right ideal of
R. Let 0 #d € C. Then there exists f € C such that I = pR + (a + bfd)R.
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Proof. The algebra C is the tensor product A ® B of a.lgebras, thus the
element d can be written as
) m
d= Zi:l d; @ ¢

with {d;} and {c;} linearly independent in A and B respectively.

Consider the right ideal J = pR+aR + ), bd; R C I and the right module
M = J/pR. Since A is special strongly simple, by Lemma 2.5.(2) the algebra S is
a simple Noetherian domain. Thus there exist nonzero elements go, q1,... ,¢m €
S such that agg and each b;d;q; € pS. Each ¢; = pit:1 for some p; € C and
t; € T (in fact, allp; € CNS = U). Hence, apy and each b;d;p; € pC C pR.
Let z € S be a common multiple in S of the p;, i.e. £ = p;z; for some z; € S.
Choose t € T such that all ¢; := z;t € C. Then ¢g:=zt € SNC = U and
q €Np;U.

By Lemma 2.5.(1) C is a domain, thus R = T~!C is too as well. By the
choice of ¢ the module M is a homomorphic image of

N =aR/agR® bd  R/bd1qR® --- ® bd,, R/bd g R

and, hence, (R is a domain) of D := (R/qR)(m“)\. By Lemma 2.6 the right

S-module Q := (S/¢S)(™*1) is cyclic, moreover, there exists f € A such that
the element

(1, fer, -, fom) + (¢8) ™)
is a generator. Consider the map
0:P 5 Q, z+ (gS) ™) 5z + (gR)™HY,
Using ¢ we can see that the R-homomorphism
Q®sR— P qg®r - o(gr,

is epic. Thus M is cyclic too, moreover,
J=pR+(a+ ) bdifc;)R=pR+ (a+bf>»  dic;)R=pR+ (a+bfd)R.

If J = I, it is nothing to prove. Otherwise, since by Lemma 2.4 C' is a simple
ring, for each 7 : Cd;C = C, or there exist elements s;j, t;; € C such that
>~ sijditi; = 1, hence, »_ s;;,dC = C. Let s3,...,s; be the elements of the set
{S,;j}, then Z ki sxd;C = C. So,

I=pR+aR+)Y bsidiR+---+ ) bsidiR.

Doing as above ¢ times with B replaced by bsy on the k’'th occasion, we
obtain fi,...,fx € A such that I = pR + (a + bgd)R where g =) sgfx. »
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3.1. Proof of Theorem 0.2.

Remark. By Corollary 1.3 all A; are domains, thus by Theorem 1.6 all 4;
are strongly simple, by Lemmas 2.4 and 2.5 A is a simple domain and by (1)
the localization _Tl‘lA = Tl‘lTo is a Noetherian ring, so the quotient division
ring D(A) of A exists.

Proof. If one of the a, b, ¢ is zero it is nothing to prove. So we assume that
each of them is nonzero. According to [St] replacing a by a + c¢fdy and b by
b+ cgd, for some f and g € A will be called a refinement of ¢ and b (it does
not change the hypotheses of the theorem). As we have seen above the ring A
has the quotient division ring D{A}, thus any nonzero left or right ideal of A is
essential. Thus, i

cq€aA+bAforsomegq#0€ A (3.1)

and to finish the proof it is sufficient to show that there exists ¢ # 0 € K such
that (3.1) holds. It will be done by two steps. The first step is to show, by using
the localizations S;, that there exist refinements of @ and b such that (3.1) holds
for some ¢ € C. The second, by the hypothesis 2, there exists a refinement of a
and b such that (3.1) holds for some ¢ # 0 € C; and then for ¢ 20 € K. Then
the results follows from Theorem 3.1.

Step 1. So suppose that, after possibly refining a and b, (3.1) holds for some
q #0 € Ti_,. We aim to show that there exists a refinement of a and b such
that ¢ can be chosen in T;.

It follows from (3.1) that there exist Ty, T2 € A such that c¢q = az; + bz,.
Since A is essential we may choose z;'th to be nonzero, then Adyz; NAz2ds # 0
(A is an essential domain), so there exist nonzero y1, y2 € A such that

y1di 21 = —Y2daz2. (3.2)

By the same argument there exist nonzero s and ¢t in A such that bt = cs. It
is clear that R; = qR; + sR; + 1R;. Now applying Theorem 3.1 for C = A,
A=A4A;, B= ®j;ﬁ,’Aj, R=R;, S=25;, F:Ti\{o}, D = F; and d = yadat we
find f € A such that

Ri=¢Ri + (s + fy2dat) Ri. (3.3)
It follows from (3.2) that ¢q € J; := (a + cfyrdi)Ri + (b + cfy2da) R;. In fact,
(@ +cfyrdi)zy + (b + cfyady)ze = azy + bze = cq.
It follows from (3.3) and bt = ¢s, that
Ji D cqR; + (b + cfyada)tR; = c(qR; + (s + fy2dat)Ri) = cR; 3 ¢
Since R; is the localization of 4 at T;\{0}, there exists 0 # ¢ € T; such that
cq € (a+cfyrdi)A + (b+ cfyada) A
Thus, by induction, a and b can be refined so that (3.1) holds for ¢ € 7, = C.
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Step 2. So suppose that, after possibly refining a and b, (3.1) bolds for some
g€ Cu =C1® --®C;, set Cpy = K. We will show that there exists a
refinement of a and b such that g can be chosen from C(;_;). We use induction
on i. The casei = n is proved. Fix 7 < n and suppose that foralln > j > iitis
true. An exact duplicate of the argument of Step 1 with applying Theorem 3.1
in the following situation : C = A, A = A;, B = Q;#i 4;, F =T = C;\{0},
D =K, S="D(C(-1)) ® Ai;;, R = T~ A, shows that there exist f and g in 4
such that

cRC (a+ecfdi)R+ (b+cgdz)R.
Thus there exists 0 # ¢ € C(;_1) such that

cq € (a-+cfdy)A+ (b+cgda)A.

By induction it is true for z = 0, but Cg) = K and the result follows. «
A criterion of simplicity of a generalized Weyl algebra D(o,a) of degree 1
was established in [Jor] for commutative D and in [Bav 3] for arbitrary D.

Proposition 3.2. Let an algebra A = A ® - ® A, be as in (0.1). Then A
satisfies the condition of Theorem 0.2. :

Proof. Let A be one of the A4;. The simplicity of A follows from [Bav 4].
By [Bav 2, 4] A has the restricted minimum condition. Let A = D(c,a) be a
generalized Weyl algebra of degree 1. Then A = @,cz A, is a Z-graded ring
where

DX™, ifn>0;
A, =<{D, if n=0;
DY—", ifn<0. _

If D is Noetherian (resp. a domain and a # 0) then by [Bav 4] a generalized
Weyl algebra D(o,a) is Noetherian (resp. a domain). So A is a Noetherian
domain, thus there exists a quotient division ring of A. :

Suppose that z belongs to the centre of .A. Since A is a simple Z-graded
domain, z € D is a unit, i.e. z € K and A is central.

Set D = K[H] or K[H,H™']. It is easy to verify that Q@ := D\{0} is a
multiplicatively closed subset of A (which satisfies the Ore condition) and the
localization Q' A is the skew Laurent polynomial ring T'[X, X ~!; o] with coeffi-
cients in the field of rational functions T = K(H). By Lemma 2.2 T[X, X ~!; 0]
is special, so A is special too.

Suppose that A; = D;[o;,a;] where D; = K[H;) or K[H;, H™"]. It is clear
that the algebra C = C) ® --- ® C, with C; = D; satisfies the condition of
Theorem 0.2. =
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4. THE MODULE STRUCTURE OF THE TENSOR PRODUCT OF SIMPLE
ALGEBRAS WITH RESTRICTED MINIMUM CONDITION

The next results and Corollaries of Theorem 0.2 and their proofs are the
same as for the Weyl algebra A, over a field K of characteristic zero. For
more details the reader is referred to [St)].

Let R be a domain with quotient ring @ (which is supposed to exist) and let
M be a left R-module. The rank of M is the dimension of the left vector space
QR M, ie.

rkM =dimgQ ® rM.

An element of M is called torsion if it is annihilated by some nonzero element
of R. The set t(M) of all torsion elements of M is called the torsion submodule
of M. It is the kernel of the R-homomorphism M = Q ® gM, m - 1 ®m.
A module M is called torsion, if t(M) = M, and torsionfree, if t(M) = 0.An
element m € M is not torsion if and only if there exists ¢ € Homg(M, R) such
that ¢(m) # 0. Define

O(m) = {f(m) : f € Homg (M, R)}.

So, O(m) is a right ideal of R. An element m € M is called unimodular if
O(m) = R, equivalently, m generates a free direct summand of M.

Theorem 4.1. Let A be as in Theorem 0.2 . Let N be a finitely generated left
A-module and M be a submodule of N of rankrk M > 2. Then M contains an
element m which is unimodular as an element of N. That is M = Am @& M’ C
Am @® N' = N where N' is a submodule of N and M' = M N N'.

Proof is the same as in (Theorem 3.4, [St]). =
The next theorem follows from Theorem 4.1 by induction on the rank of M.

Theorem 4.2. Let A be as in Theorem 0.2 . Let M be a finitely generated left
A-module. Then M ~ M' @ A), where M’ is a module with rank M’ < 1. If
M is torsionfree, then M’ is isomorphic to a left ideal of A. =

Lemma 4.3. Let A be as in Theorem 0.2 . Let M be a finitely generated left
A-module with rank M =r > 2. Suppose that m @t € M ® A s unimodular.
Then there exists ¢ € Homp(A, M) such that m + ¢(t) is unimodular in M.

Proof is the same as (Lemma 3.5, [St]). =

Theorem 4.4. Let A be as in Theorem 0.2 . Let M be o finitely generated left

A-module with rank M > 2. Suppose that M & A~ N& A for some module N.
Then M ~ N.

Proof. The element 1 = 0@ 1 € N @ A is unimodular, it can be written as
l=m®te M A Let ¢ € Homs(A, M). Then the map

MeA->MaA (ma)— (m+¢a),a)
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is a module isomorphism. Using this fact and Lemma 4.3 we may suppose that
m is unimodular, hence, M = Am & M’', Am ~ A, for some submodule M’
of M. Suppose that t # 0. The isomorphism Am — At, am — at, can be
extended to the homomorphism M — At C A putting ¢(M') = 0. Using the
isomorphism

MeA->MoeA, (ma)— (m,a—e(m)),
we may suppose t = 0, i.e. Al = Am and M ~ A@ M'. Now

Ne(NoAJA~(M@A)/Am~M & A~ M.

A left module M over a ring R is called stably n-generated if, given any
r > n and my,...,Mry; € M such that M = ZIH Rm;, then there exist
fi € Rsuch that M =37 R(m; + fimry1).

Theorem 4.5. Let A be as in Theorem 0.2 and Noetherian.

1. If I is a left (or right) ideal of A, then I is stably two-generated;
2. let M be a finitely generated torsion left A-module. Then M is a homomor-
phic tmage of a projective left ideal of A. Thus M is stably two-generated.

Proof. 1 1t follows from Theorem 0.2.
2 The module M can be written as M = A+ /N with 7k N = s+1. Apply-

ing Theorem 4.1 s times we obtain unimodular in At elements n1, ... ,ng €
N, thus

M=ACYY N = (An,; ®-- ® An, ® P)/(An, @ --- ® An, ® N') =~ P/N’
where P is isomorphic to a left ideal of A and N'=NNP. «
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ON THE GROUP OF UNITS IN MODULAR GROUP
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University of Debrecen, Hungary

ABSTRACT. We give a summary of known and new results on unitary ele-
ments, generating systems, conjugacy classes, nilpotency class and solvable
length in the group of units of a modular group algebra.

Let FG be the group algebra of a group G over a field F of characteristic

p > 0 and V(FG) the group of normalized units (that is, of the units with
augmentation 1) in FG.

1. UNITARY UNITS

The anti-automorphism g — g~! extends linearly to an anti-automorphism

a:ZaggHa‘=Zagg‘1

9€G g€eG

of F, G, where [y, is the field of p elements; this extension leaves V (F, G) setwise
invariant. The elements v of V (F,G) satisfying v™' = v* are called unitary
normalized units of F, G; these form a subgroup which we denote by V. (F,G).

The interest in unitary units arose from algebraic topology. S. Novikov had
raised the problem of studying the group V.(FG) and of determining the invari-
ants and a basis of V.(FG) when G is a finite abelian p-group. We describe the
basis of Vi (FG).

Let G = {a1) x {ag) X - -+ x {a;) be a direct decomposition into cyclic factors
of a finite abelian p-group G. Let L(G) be the set of all ¢-tuples of integers
o = (a1, as,...,q;) with coordinates satisfying the conditions 0 < a; < o(a;)
and at least one of the coordinates is not divisible by p. By Sandling’s Theorem
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[San; 84b], the subset
B(V)={ua =1+ (a1 — 1) (az — 1)*2---{(a; — 1)**| @ € L(G)}
is a basis for the group V (F,G).

Bovdi-Szakacs [Bo-Sz; 89] described all invariants of V.(F,G) and, using
Sandling’s basis, they obtained the following result.

Theorem 1.1. If G is a finite abelian p-group and p > 2, then
{za =uluZ' | @ € L(G) and a1 +ap+---+ o 15 odd} is a basis for V. (FpG).

In case p = 2 we gave [Bo-Sz; 95] an algorithm to construct a basis for
V.(F2 G). It would be interesting to give a basis in an explicit form.

We know only the following result about the unitary subgroup V. (F,G) for
a nonabelian group G.

Theorem 1.2. (V. Bovdi-Rozgonyi [B-R; 92]). Let G be a finite 2-group which
contains an abelian normal subgroup A of index 2. Suppose that there exists an
element b € G\ A of order 4 such that b*ab = a™! for alla € A. Then the
unstary subgroup Vi (B2 G) is the semidirect product of G and a normal subgroup
H. The subgroup H is the semidirect product of the normal elementary abelian
2-group W = {1+ (1 +b*)zb | z € F, A} and the abelian subgroup L, where
V.(F2 A) = A x L. The abelian group W is the direct product of %|A| copies of
the additive group of the field Fy. ‘

Definition 1.3. Let M be an ideal of the group ring F,G. Then the subgroup
Mt ={u € V(F,G) | w—1 € M} is called a congruence subgroup of
V(F,G) and the subgroup MF = {u € V.(F,G) | u—1 € M} is called a
unitary congruence subgroup of V(F,G).

Problem 1.4. Is the unitary subgroup V.(F,G) a semidirect product of G and

a normal subgroup? Moreover, is there any unitary congruence subgroup M
such that Vi.(F,G) = M} x G?

Since G is a subgroup of V. (F, G), it is clear that if V(IF,G) is the semidirect
product of G and a normal subgroup (or a congruence subgroup M*) then
V. (F,G) is also the semidirect product of G and a normal subgroup (or a unitary
congruence subgroup M;). A normal complement exists in the following cases:

1. (Moran-Tench [M-T; 77], Bovdi [Bo; 77, Bo; 82]). If G is a nilpotent
p-group of class 2 and exponent p, then V(F,G) = M+ x G;

2. (Bovdi [Bo; 77, Bo; 82, Bo; 96]). If G is a nilpotent group of class 2 and
exponent 4 then V(F,G) = Mt x G;

3. (Bovdi [Bo; 82], Sandling [San; 74a]). If G is the circle group of a radical
ring of characteristic p then V(F,G) = M* x G;
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4. (Sandling [San; 89¢]). If G is a central-elementary-by-abelian p-group
then V(F,G) = N x G.

Recall [Iv; 80] that for the 2-group G of maximal class of order greater than
8 (that is the dihedral, semidihedral or generalized quaternion 2-group) there is
no normal complement to G in ¥/ (F,G). Note that in this situation we do not
know whether a normal complement exists for the unitary subgroup.

Bovdi-Erdei [Bo-E; 96] describred the unitary subgroup in the group algebras
F,G of nonabelian 2-groups of order 16. In each of these cases the subgroup G
has a normal complement in V,(F;G).

Example 1.5. V,(F; Dy4) is a direct product of the dihedral group D4 and three
groups of order two.

Example 1.6. V.(F; Dg) = Dg = N, where N is a direct product of a dihedral
group of order 8 and five groups of order two.

Example 1.7. Let G = {a,b | a®*=1, b2 =1, b lab=a% ) and

v; =14+ (1+a?+a*+a%a vg =1+ (1+a?+a*+ab)ab
vg =1+ (1+a?+a*+af) vs =1+ (1+a*)a? ,
v =1+ (1+a*) u =1+a®+a°+(a®+a")b.

Then V.(F,G) = (G x L) x L2, where

1. Ly, Ly are elementary 2-groups of order §;
— _ _ b _ —
2. Ly = (u) x (v1) x (vg), u® = uvg, ub = wvivg, v = vy, v) = vy, v§ = vy,

v} = vg and Ly = (v2) X {v3} X (vs).

Example 1.8. Let G ={a,b | a®=1, v* =1, b~lab=a® ) and

v =1+ (14 a®+a*+ a) vy =1+ (1+at)ab
va =1+ (1+a%+a*+ab)a vs =1+ (1+a*)a?
vg =1+ (1+a*)b : ve =1+ (1+a*)a’b

u=1+a’+a®+ (a* +a®)b.
Then V. (F2G) = G x L where

1. L is an elementary abelian group of order 27 ;
2. Ly = (u) x (v1) X {v2) x {vay x {(vs) x (vg) X (v3) subject to the relations

a b a b a
U~ = UV1V4VsV6 , U = UV1V2V4Us5V6 , U1 = U1, Uy = V1, Uy = V2,
b _ a _ b _ a __ b _ b __
Up =V, V3 = Vs, U3 = U3, Uy =g, Vs = Vg, Vs = Us -
Let GG be a locally finite p-group. For each element g in G, let § denote the

sum (in FG) of the distinct powers of g. The elements 14-(g—1)h§ with g, h € G
are the bicyclic units of FG, introduced by Ritter and Sehgal. V. Bovdi and
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Kovacs [B-K; 94] described those F and G for which all bicyclic units in V(FG)
are unitary. This is an answer to the difficult question of Sehgal and the first
step to determine the generators of the unitary subgroup V,(F,G). If the map
f.KG = KG, z— zf of the group ring KG, where K is a commutative ring
with unity, has the properties

L (¢ +y)f =zf +yf;
2. (zy)f = yfzfy
3. (g =z

then it is called an involution of KG. We considered above the classic involution
of FG, which is an extension of the anti-automorphism g — g=! of the group
G. We give another example of involution. Let ((G) be the center of a finite
2-group G, and suppose that the central quotient G/{(G) is a direct product of
two groups of order two and that the commutator subgroup G’ = (e | €2 = 1)
is of order two. Then the mapping © : G — G, defined by

=B if g € ((G),
ge, ifg¢((G)

is an anti-automorphism of order two. If z = dec a,g € KG, then
ur—u® =3 ;a,g® is an involution.

Problem 1.9. Let G be a finite p-group. Find all the involutions of V (F,G)
(for instance, for an abelian G). Study the unitary subgroups related with these
involutions. ‘

V. Bovdi and Rozgonyi described the unitary subgroup Vo (F, G) in [B-R; 92].

There is an extensive literature on the unitary subgroup in integral group
rings, see [Art-Bo; 89], [Bo; 87], [Seh; 93].

2. GENERATORS OF THE UNIT GROUP

Let G be a finite p-group. We know that the augmentation ideal A(F,G) is
nilpotent and the dimension subgroups D, = {g € G | g—1¢€ A™(F,G)} form
a central series such that D;/D;;, is an elementary abelian p-group of order
pd.' .

Let D;/D;iyq1 = Hj=1 (uijDiy1) be a decomposition into a direct product of
cyclic groups of order p. Then any element g € G can be written uniquely in
the form

— 211, %12 %1dy ) 221 22dy Zs1 Zsd, .
g =uifuls Ui ustt g G ugy (0 < 2y < p).
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The set {uij | j =1,...,d;, 1 =1,...,s} will be called a dimension basis of G.
If an element P
s k

w=[] I] (s —1)* (0 <wxs <p)
k=1 j=1

has indices of its factors in the lexicographic order then we call it regular.
Clearly, v(w) = 3, _, Z?’;l kyy; is the weight of this element. From Jennings’
theory it is well known that all elements of the form 1 4+ w generate the group
V(FG). But this generating system is a very big one. Jointly with Sehgal
we constructed a new generating system (yet unpublished), which is a part
of this system, and if G is abelian then this is just Sandling’s basis and a
minimal system. Using commutator calculations we exclude some elements from
this generating system. This rather complicated algorithm determines which
elements 1 + v of the generating system may be replaced by the commutator
(1 + w,g), where ¢ € G. Clearly, these elements can be excluded from the
generating system. This algorithm is very effective for the groups G satisfying
one of the following conditions: G is a 2-group of maximal class, |G| = p* or
|G] = 16. For example, we obtained:

Example 2.1. Let G be one of the following groups:

1. Dpn=(ab|a® =1, 02 =1,b"tab=a"'),n>2

2. Qe =(ab|a® =1, B =a", b-lab=0a"'),n>2;

3. Dy =(ab|a® =1, 62=1, b-lab=a2" 1) n>3.
Then V(F.G) is generated by a,b and {1 + (a -+ 1)*+1(b + 1) |
0<k<2"2 -1}
Example 2.2. Let G = {a,b | a* =1, b* = 1, b~lab = a® ). Then V(F.G)
is generated by the units a, b, 1+ (a + 1)(b + 1), 1+ (a + 1)(b + 1),
T+ (b+1)3 1+ (a+1)(b+1)% and 1 + (a+ 1)3(b + 1)
Example 2.3. Let G = {a,b,c|a* =1,b%> =1,c¢* = 1,b~tab = ac,c*ac = q,
¢ lbc = b). Then V(F,G) is generated by the units a, b, 1+ (a + 1)(b+ 1),
1+ (a+1)3 1+ (a+1)%(b+1), 1+ (a+1)3(b+1) and 1+ (a+1)3(b+1)(c+1).
Example 2.4. Let G = (a,b | a?” =1, b2 =1, b~lab = a2 +!, n > 3).
Then V (F,G) is generated by a, b, {1+ (a+1)*+3+2" 7 (b+1) | 0 <k < 2773}
and

I+ @+ 1) | 0<k<2"2}U{l+ (a+1)*0b+1) | 0<k <2},
Until now in the nonabelian case the generating system was not studied with

the exception of the groups V(F, G) for all groups G of order |G| < 32, which
was done by Sandling [San; 92d] and Rao [R; 93].



ON THE GROUP OF UNITS IN MODULAR GROUP ALGEBRAS 27
3. CONJUGACY CLASSES OF THE UNIT GROUP

We know very little of conjugacy classes in the group of units. The first result
was obtained by Coleman [C; 64]:

Theorem 3.1. Let G be a finite p-group and Cy, a conjugacy‘class in V(F,G).
If C, contains an element from G, then C, NG 1is a conjugacy class in G.

The next theorem was obtained by Rao-Sandling [R-San; 95b].

Theorem 3.2. Let G be a finite p-group and F a field of characteristic p. If u
1s a noncentral element in FG then the conjugacy subset
Cy = {z7tuz | z € V(FG)} has the following properties:

1. if F 45 an infinite field then Cy is infinite;
2. if p" = maz{p?,|F|} then p" divides |C,|;
3. if |Cy| is finite then the sum of all elements of Cy, 1s zero.

Theorem 3.3. If G is a finite p-group and F is o field of characteristic p, then
there ezists in V(FG) a conjugacy class Cy, which does not contain elements
from G. '

Theorem 3.4. Let F be a field of characteristic p and suppose that the finite
group G satisfies the following conditions: there exists a proper normal subgroup
H of G such that G = (g, H), the subset W = {(g,h) | h € H} of commutators

is a normal subgroup of G and W C Cg(g) If W = 3,y b and z € (F((G) N

IP‘H)/I/I7 (where ((G) is the centre of G), then L = (g + 2, H) is a group basis for
FG over F and the subgroups G and L are not conjugate in V(FG).

Clearly, every finite p-group of nilpotency class 2 satisfies the conditions of
Theorem 3.4.

4, THE NILPOTENCY CLASS OF THE UNIT GROUP

Let FG be a modular group algebra. By Khripta’s [Khr; 72] result V(FG) is
nilpotent if and only if G is nilpotent and the derived subgroup G’ is a finite

p-group. Denote by ¢l(V), cl(G) respectively the nilpotency class of V(FG) and -
G. '

Problem 4.1. Which values are taken by the function f(G) = cl(V) — cl(G),
and determine all groups G for which f(G) = n.
Denote by Syly,(G) the Sylow p-subgroup of G.

Theorem 4.2. (Khripta [Krh; 72]). f(G) = 0 if and only if G satisfies one of
the following conditions:
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G 1is an abelian group;

G' = Sylp(G) and |G'| = 3;

cd(G)=2,G' =Sylpy(G) = (ala® =1) x (b| b2 = 1);
cd(G) =3, G' = Syl,(G) and |G'| = 4.

Let G be a finite noncommutative p-group. Coleman-Passman [C-P; 70]
showed that V(F,G) involves a wreath product C(p) 1 C(p) of two groups of
order p, and, as a consequence, cl(V) > p. The values of the function are
determined in the following cases: '

1. (Baginski [Bag; 87]) cl(V) = pif and only if |G'| = p and f(G) =p— 2.
2. (Shalev [Sh; 93]) If c/(V) > p and p > 3, then cl(V) > 2p — 1. Equality

holds if G’ is elementary abelian of order p® and cl(G) = 2 and hence
f(G)y=2p-3. )

(Shalev [Sh; 93]). If ¢/(V) > 2p—1 and also p > 3, then we have the
relation cl(V) > 3p — 2. Equality holds if G’ is elementary abelian and
one of the following conditions holds:

(a) |G'| = p® and cl(G) = 2; thus f(G) =3p—4;

(b) |G'| = p? and cl(G) = 3; thus f(G) = 3p 5.

(Shalev [Sh; 93]). If G is a central elementary subgroup of order p™,p > 3,
then f(G) =n(p—1)+1— c{G).

(Konovalov [K; 95]). If G is a 2-group of maximal class, then f(G) =
|G| = l(G).

It is easy to see that in the next theorem f(G) = 1 or 0, and the question of
determining when f(G) = 1 is still open. Theorem 4.3 for finite p-groups was
also proved by Rao-Sandling [R-San; 95a].

Theorem 4.3. Let G be any nilpotent group with a nontrivial Sylow p-subgroup
and F a field of prime characteristic p. Then cl(V) = 3 if and only if one of
the following conditions is satisfied:

oo o N

p=23, c(G) =2, |G| =3 and Syl,(G) # G';

p=2, d(G) =2, Syl, (G’) G’ 1is cyclic of order 4;

p=2, c(G) =3, Sylp,(G) = G’ is cyclic of order 4;
p=2,c(G)=3,Syl,(G') =G =(a]a®=1) x (b|b* =1)
p=2,c(G)=2, Syl,(G) #G" and G' = (a|a®> =1y x (b| b* = 1);

p__2,cl(G)—-2,G'—(a|a =U)x®B|2=1x{c]|*=1) and
Sylp(G) is central of order at most 16.

5. SOLVABLE LENGTH OF THE UNIT GROUP

Problem 5.1. Describe the derived length of the group V (F,G).
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Although the problem of its solvability has formerly been solved, few facts are
known of the derived length of the group of units V(FG) of the group algebra
FG of either a torsion [Bo-Khr; 77] or a nilpotent group G [Bo; 92]. The first
result was obtained by Shalev [Sh; 91] for finite groups: V(F,G) is metabelian
if and only if G is abelian provided p > 3; for p = 3, V(F,G) is metabelian if
and only if G is either abelian or nilpotent with a derived subgroup of order 3.
Kurdics [Kur; 96] and also Coleman-Sandling [C-San; 94] treated the case p = 2
and obtained the following result:

Theorem 5.2. Let G be a finite group and F a field of characteristic 2. The

group of units V(FG) is metabelian if and only if one of the following conditions
holds:

1. G 1is abelian; :

2. G is nilpotent of class 2 and has an elementary abelian derived subgroup
of order 2 or 4;

3. F =T, the field of two elements, and G is an extension of an elementary
abelian 3-group H by the group (b) of order 2 with b=ab = a™* for every
a € H.
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0. INTRODUCTION

This paper is a report of a series of three lectures which I presented at a con-
ference on Representation Theory of Groups, Algebras and Orders at Ovidius
University in Constanta, Romania. The aim of my lectures was to give a sketch
of a new approach to the module theory of group algebras that has been devel-
oped over the last few years. The new methods involve the study of infinitely
generated modules and various subcategories and quotient categories of the
module category. Some surprising new theorem have already been discovered
and it seems likely that many other interesting results will come out of these
developments.

Throughout the notes G denotes a finite group and % denotes an algebraically
closed field of prime characteristic p > 0. As general references on represen-
tation theory we refer the reader to the book [CR] or to volume 1 of [B1].
For background on the cohomology theory see Volume 2 of [Bl] or [E1]. An
introduction to a lot of the material presented here is contained in [C5].

1. RANK VARIETIES

Let E = (z1,...,2,) be an elementary abelian group of order p™. That is,
E = (Z/p)" so that ¥ = 0 and z;z; = z;z; for all 1 and j. We say that n
is the rank of F, and in general, for any finite group G, the p-rank of G is
largest of the ranks of the elementary abelian p-subgroups of G. The group
algebra kE is a local ring with maximal ideal generated by the elements z; — 1
for i = 1,...,n. Note that for any z,y € E, (z —1)» = 2P — 1 = 0 and
cy—1=(z—-1)+(y—1)+ (z — 1){y — 1). So the ideal generated by {z; — 1}
is the same as the augmentation ideal of kE.

More generally the group algebra of any p-group is a local ring. This implies that
any projective module must be free and hence the dimension of any projective
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module over a p-group must be divisible by the order of the group. Another
important fact is that the group algebra of any finite group is a self-injective
ring. That is, injective modules are projective and vice versa.

Suppose that M is a finitely generated kE-module. We define the rank variety
of M to be the set

Ve (M) = {a € k*|M(,,) is not a free module} U {0}.

Here o = (@1,...,0n) € k™ and u, = 1 + Zei(z; — 1). Notice that uy € kE
is a unit of order p. By M |(,.) we mean the restriction of M to a k(uq)-
module where {(uq) is the subgroup of the group of units of kE generated by
Uq. With the zero element 0 € k™ thrown in, the rank variety V(M) is a closed
homogeneous subvariety of affine k-space, k", given the Zariski topology (see
[C1]). Note that if p does not divide the dimension of M then M, ) can not
be free (projective) if @ # 0. So in such a case VZ(M) = k". In particular
VE(k) = k™ where k denotes the one-dimensional trivial kE module.

Several properties of the rank variety are useful in the module theory. For
example, if

0->L->M-—N=D

is an exact sequence of kE-modules and if V is a closed subset of VZ(k) = k™
with two of VEL(L), VE(M) and VE(N) in V, then the third of these rank
varieties is also in V' [C1]. This implies, for example, that the subcategory of
all kE-modules with varieties contained the fixed closed set V C k™ is a “thick”
subcategory of the stable category of finitely generated kG-modules modules
modulo projectives (see [BCR2, BCR3, R]). We will explain this more fully
later. Two of the most useful facts about rank varieties are contained in the
following theorem.

Theorem 1.1.(a) (Dade’s Lemma [D]) VE(M) = {0} if and only if M is a
projective kE-module.

(b) (Tensor Product Theorem [C1]). If M and N are finitely generated kG-
modules then

V(M @ N) = Vg(M)NVE(N).

By M®N we mean the space M ®; N given the diagonal action of E (g{m®n) =
gm®gnforg€ E,m € M and n € N).

For an example consider the case in where p = 2 and E = (z,y) is an el-
ementary abelian group of order 4. Let M be a k-vector space with basis
G1,.++30m,b1,...,b, and define an action of £ on M by

(1‘ - 1)(1,' = b,‘, (y - 1)(1{ = bi+1
and
(z—=1)b;=(y—1)b;=0fori=1,...,n.
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Thus the matrices for the actions of z and y with respect to the given basis
have the forms

— Lo — Lo
’ I I y AT
where [ is the n x n identity matrix and _
"o -
1 0
10
A= .
([ 1 0 -

We claim that VE(M) = {(0, )|z € k} C k2.

To understand this we must look at the free module for a cyclic group of order
2. If U = (u) is such a group then kU has a basis consisting of 1 and u — 1.
With respect to this basis the matrix of 4 has the form

10
u<—>11.

So a kU-module is projective (free) if and only if it is a sum of such modules.
It can be seen that the following holds.

Lemma 1.2. A kU-module Nis free if and only if the rank of the matriz of
u—1 on N is ezactly half of the dimension of N.

Note that because {u—1)2 = 0, the rank can’t be more than half of the dimension
of N. The following is another way of saying the same thing. The advantage of
this formulation is that it doesn’t depend on NV being finite dimensional.

Lemma 1.3. A kU-module N is free if and only if
{u—=1)N = {m € N|(u - 1)m = 0}.

Now let’s examine the module M in the example. Suppose that a = (o), as) €

k?and u = uy = 1+ oy(z — 1) + a2(y — 1). Suppose that a; # 0, then notice
that the matrix of u — 1 is

0. 0
al +aA 0O
and has rank equal to half the dimension of M. So My is a free kU-module.
Likewise

(u—1)M = {m e M|(u—1)m =0}
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is the subspace spanned by by, ..., b,. So we have that VZ(M) = {(0, az)|az € k}
as claimed.

The second example is an infinite dimensional example defined in much the
same way. Let M be the space with basis a;,az,... and by, bs,.... Define the
action of B = (z,y) (|E| = 4,p = 2 as before) by

(z = Dai = bi, (y ~ L)a; = biyy

and
(fL‘ - 1)b,':0= (y—l)b,-

fori=1,2,....
Suppose we try to measure the rank variety in the same way. This time, we
claim that

VE(M) - kz\{(a1,0)|al € k}
Clearly if @ = (a1,0) then u, acts freely on M by Lemma 1.3. However, if
a = (a1,02),a2 # 0 then it is impossible to express by, which is in {m €

M|(uq — 1)m = 0}, as an element of (us — 1)M. That is, we would need to
write b; as a finite linear combination of the elements

(ua - 1)(1,' = b; + Otzbi.H.

This is impossible if a; # 0.

Therefore in the second example V(M) is an open set in k* and not a closed
set. The situation is actually much worse. It is possible to construct an infin-
itely generated module M with the property that VZ(M) = {0}, but M is not
projective. Thus there are counter-examples to Dade’s lemma which are infin-
itely generated. It is also possible to find infinite dimensional counter-examples
to the Tensor Product Theorem.

It has long been clear that there are problems with infinitely generated modules.
However recently it has been shown that a change in the definition can recover
some of these important properties [BCR1, BCR2]. The trick is to enlarge the
field. Suppose that K is a large algebraically closed transcendental extension
of k. The transcendence degree of K over k should be at least the rank of E.
Then we define a new rank variety (£ = (z1,...,2Z5)) as

VE(M) ={ae K" | (K ®M),) is not free } U{0}.

That is VE(M) = VZ(K @ M).
Notice that the new rank variety, V5 (—), is still not a variety in that it may
not be a closed set in K™. But we do have the following [BCR2].

Theorem 1.4. (a) (Dade’s Lemma) V(M) = {0} if and only if M is projec-
tive.
(b) (Tensor Product Theorem) Vi(M ® N) = V(M) NVE(N).
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There is another view of the new variety that comes from looking at generic
points. Recall that a point a € K™ is generic for an irreducible subvariety V of
k™ provided the collection of k-rational polynomials satisfied by « generate the
ideal of V. For example suppose that 7,72 € K are algebraically independent
over k. Let @ = (71,7172, 72,72)- Then « satisfies the k-rational polynomials
X1X3—X2 and X3—X,4. So « is generic for the irreducible subvariety V which is
the zero set in k* of the polynomials X; X3 — X, and X3 —X4. Every point in K™
is generic for some irreducible subvariety of k" and conversely every irreducible
subvariety of k™ has a generic point in K™ as long as the transcendence degree
of K over k is at least n. _

The connection of generic points with varieties of modules comes from a theorem
which says that if a, 8 € K™ are generic for the same irreducible subvariety of
k™ and if M is a kE-module then o € VL (M) if and only if 8 € V5(M). Hence

it is possiblé to think of VE{M) as a collection of closed irreducible subvariety
of k™.

2. COHOMOLOGY AND REPRESENTATIONS

In the last section we concentrated on representations over elementary abelian
p-groups. We begin this section by outlining some features of the module theory
for general groups. Most of this will not be needed for the rest of the paper,
but it shows why the elementary abelian case is so important. Throughout, G
denotes a finite group and & is an algebraically closed field of prime characteristic
p-

An old theorem of Evens [E2] and Venkov [V] shows that the cohomology ring
H*(G,k) = Extjy(k, k) is a finitely generated k-algebra. A major implication
of the finite generation is that the set of all maximal ideals of H*(G, k) is an
affine variety, called the maximal ideal spectrum of H *(G, k). We denote this
by Vg(k). In the case that G = E is an elementary abelian group of order p*,
then H*(G,k)/RadH*(G, k) = k[z1,...,2,] is a polynomial ring in n-variables.
Here RadH*(G, k) is the Jacobson radical. So the maximal ideal spectrum
Ve (k) = k™. That is, every o € k™ is associated to the maximal ideal which is
the kernel of the map H*(G, k) — k given by evaluating any f = f(X,,...,X,)
at o € k™. :

If M and N are finitely generated kG-modules then Ext},(M,N) and
Extj; (N, M) are finitely generated modules over H*(G, k) ([E1] or [V] again).
So let J(M) be the annihilator in H*(G, k) of Ext;;(M,—) and Ext;,(—, M).
Actually J(M) is equal to the annihilator of the identity homomorphism Id,, €
Ext); (M, M) C Ext;,(M, M). Then the variety of M is Vg(M) = Vg(J(M))
is the set of all maximal ideals in V5 (k) that contain J(M). V(M) is sometimes
called the cohomological variety of M or the support variety of M.
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If H is a subgroup of G then ther= i a restriction map on cohomology
resg y: H*(G,k) = H*(H,k).
This induces a map on maximal ideal spectra
resg gy - Yu(k) = Va(k),

which sends m € Vy(k) to {a € H*{G,k)|resg,u(y) € m} € Vg (k).

The following result was a fundam.ental contribution of Quillen [Q] in the case
that M = k. It was extended to general finite dimensional modules by Alperin
and Evens [AE] and independently by Avrunin [A].

Theorem 2.1. For any kG-module M, Vo(M) = | res; g(Ve(MEg)) where the
union is taken over all elementary ebelian p-subgroups of G.

Hence we see that the support varieties can be measured at the level of the
elementary abelian p-subgroups. In the case that G = E = (Z /p)™ is elementary
abelian, the support variety defined above is related to the rank variety of
Section 1 by the following.

Theorem 2.2.[C1, AS|. There is a one-to-one onto map of varieties (isogeny)
Ve(M) = VE(M).

. For p > 2, the map in the theorem involves applying the Frobenius automor-
phism to k™. Hence it is an isogeny not an isomorphism because its inverse is
" not a polynomial map.

The first part of this section was written in order to emphasize the role of the
~ elementary abelian p-subgroups in the module theory of kG-modules. We will
not really-use much of it in the rest of the paper. Most of what we do will
involve the cohomological variety Vg(M) rather than the rank variety VZ(M).
However the reader should keep Theorem 2.2 in mind.

Suppose that ‘

(Pi,G) "j—)Pzi)P]_ﬁ)PQ—E—}k—)O

_is a minimal projective kG-resolution of the trivial module k. By minimal we
mean that the kernels of the boundary maps, Q" (k) = Kerd,,_; = Imd,,, have no
projective submodules. One property of projective modules over kG is that if P
is projective and M is any kG-module then P® M = P ® M is also projective.
Therefore (P.,€)® M is a projective resolution (though not necessarily minimal)
of k® M = M. It follows that Q7{k) ® M = Q2"(M) @ proj where by “®proj”
we mean the direct sum with some projective module.

Now H*(G,k) = Ext;(k, k) is the cohomology of the complex Homyg (P, k).

So an element ¢ € H™(G, k) is represented by a cocycle ¢ P, = k. Of course
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“cocycle” means that the composition fan+1 : Poyy —» P, — k is zero. So
((8n41(Pnyt1)) = 0 and we have an induced homomorphism

C: Q" (k) = k

since Q™(k) =2 P,/0n+1(Pas1). In fact, it can be shown that { represents the

cohomology class ¢ € H™(G, k) uniquely. If ¢ # 0 then ¢ # 0 and hence it is
surjective. It follows that we have an exact sequence

0= Le = Q%(k) S k=0 (1)

where L¢ is the kernel of . The following can be proved using rank varieties.

[C2l.

Lemma 2.3. Vg(L¢) = Vg({) C Vg(k). Here Vg(C) is the collection of all
mazimal tdeals in H*(G, k) that contain (.

Another way of saying this is that the ideal J(L¢) has the same radical in
H*(G,k) as the ideal generated by (. This implies that some power of ¢ an-
nihilates the cohomology of L¢. In fact it can be shown that (* € J(L¢) (see
[B1)). -

To get another view of this consider the following commutative diagram

0 0
4 1
Le = L¢
\ 1
0 — Q%k) — . P —r Py —
&l i I
0 — k-5 QL) —» Po, =7
l 1
0 0

Here the left hand column is the sequence (1). The lower left hand s‘ci_uéxre is a

pushout diagram. Q7'(L¢) is by definition the cokernel of the embedding of L

into its injective hull, which is P,_;. Because the kernel of 8,_5 is Q" ! (k) we

have an exact sequence ‘ P o
B0 — kS5 Q7N Le) — Qv k) — 0.

Now the class of E; in Ext}.(Q"7(k), k) = ExtP;(k, k) = H*(G, k) is (. This
all follows by standard homological algebra. Another way of saying it is the
following.

Lemma 2.4. The sequence E¢ represents the class { in the sense that  an-
nihilates the cohomology of M (i.e. ( € J(M)) if and only if E; @x M splits.
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The point of this is that the class of E; ® M in
Exto(Q" 7 (k) ® M, M) = Ext (2"~ (M), M) = Ext}; (M, M)

is precisely the cup product (Id,,.

Notice that the lemma is more a statement about the ideal generated by ¢ than it
is about the element ¢. Viewed this way it has a generalization. Suppose that
I = (¢,...,¢) is an ideal in H*(G, k) generated by homogeneous elements
Ciyeoos e Let oy i kb — Q71(Le,) be the map o; = o¢; in the sequence E; as
above. So we have a map

1@ - ®0:k® - ®k— QL) ®- - @ Q7 (Lg,).

Suppose that U is the cokernel of this map. Notice that k ® --- ® k = &, and
let 0 =03 ®--- ® 0y. Then we have an exact sequence

t
EN:0—kS & QY L) —U—o0. (2)
i=1

Proposition 2.5. ((CW2]) The sequence E(I) represents the ideal I C H*(G, k)
in the sense that, for any finitely generated kG-module M, I C J(M) if and
only if E(I) @ M splits.

The sequence E{I) and some of the terms in the sequence have several other
interesting properties which are explained in some detail in [CP].

3. IDEMPOTENT MODULES AND APPLICATIONS

In this section we present a brief description of one of the surprises of -dealing
with infinitely generated modules. One of the main motivations for the investi-
gation of infinitely generated modules arose in the study of quotient categories
of kG-modules in [CDW)]. There it was shown that certain quotient categories
have no Krull-Schmidt Theorem, no unique decomposition of objects as direct
sums of indecomposables. Even the trivial module, which is indecomposable,
has the property that a direct sum of certain number of copies of the trivial
module is also expressible as a sum of modules induced from proper subgroups
[C3]. This also happens for other modules [CW1].

It was Rickard who observed that the lack of a Krull-Schmidt theorem could
be repaired if the category allowed certain infinite direct sums. However then
it became necessary to extend the notions of complexity and varieties to the
infinitely generated modules. This was accomplished in [BCR1] and [BCR2].
Recall from the last section that if ( € H™(G, k), ( # 0, then we have an exact
sequence '

0— L — QMk) 2k — 0
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where ( is a cocycle representing ¢. For M a kG-module let M* = Hom(M, k)
be the k-dual with G-action given by (gf)(m) = f(g~!m). Then taking duals
is an exact contravariant functor and from the previous exact sequence we get
a new one:

0— k-3 Q"(k) — L; — 0

Here (Q7(k))* = Q7" (k) because the dual of a projective resolution of k is an
injective resolution. Of course, we should remember that injective modules are
also projective and in fact (kG)* = kG as kG-modules.

Now suppose that P, - Q7 "(k) is a projective cover of 27"(k). Then we get
an exact sequence

¢
0— QL) — k@ B = Q (k) — 0. (3)
It is an exercise to prove that the kernel of ( f) ) is isomorphic to Q(LZ) Now

recall also that Q™ (k) ® Q" (k) = Q**(k) @ proj, where “&® proj” indicates the
direct sum of some projective module. So we have a commutative diagram

(k) k) e k) 2%k
1@ |
Qn (k) Sk

where i is the split inclusion. We denote the composition (1 ® ¢)i by Q7(().
Taking duals we get a system of commutative diagrams

k= k)

[ R (9
R D)
e

P ()
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Now adding projectives to the middle terms we can get a directed system of
exact sequences:

0 — QL) — keh — Q7%k) — O

i i) {
0 — QLa) — kB8P — QM) — 0

l 1 l (4)
0 — ULL) — k&P — Q%) — 0

NS 1 X3

where the middle column is a sequence of identity maps on k plus projeétives.
Taking direct limits is an exact functor so we get a sequence of the direct limits:

0 — E({{) — k& (proj) — F(¢() — 0. (5)

Now suppose that M is a finitely generated module and that (™ € J(M) for
some m. Then we can tensor the system (4) with the module M and notice
that in the right hand column

QK@M — QKM — ...

any composition of m of these maps factors through a projective. It can be
proved that this implies that the limit of the system, F({) ® M, is a projective
module. ‘Hence by tensoring sequence (3) with M, we get a sequence

0— E(()® M — M & proj — proj — 0

which splits. Consequently E(¢)® M = M & (proj). In addition, E(¢) is itself a
direct limit of such modules, and we must have that E({) ® F'({) is projective.

Lemma 3.1. For ( € H™G, k), ( # 0, we have that
1 E(¢) ® F(¢) = proj,
i E(C) ® E(C) = E(C) @ proj,
il F(¢) ® F(¢) = F(() & proj.

The last two statements follow from (i) and the sequences obtained by tensoring
sequence (3) with E(¢) and F(({) respectively. Because of the results of the
lemma we say that E(¢) and F(({) are (orthogonal) idempotent modules.
Everything that we have said so far in this section is a special case of a more
general construction of Rickard [R]. To get a broader viewpoint we should note
first that the condition that (™ € J(M) for some m is equivalent to the state-
ment that Vg (M) C Vi (¢). In fact, the modules E(¢) and F{¢) do not depend
so much on ¢ as they do on the variety V = V3 ((). Moreover we can substitute
V = Va(C,.-.,6) for Vg(¢) by performing a similar construction beginning
with sequences (2) of the last section [CW2].
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Rickard’s best result is even more general that what we have stated below. To
state the main theorem of [R] in full generality requires some explanation of
thick subcategories of the stable category of kG-modules modulo projectives.
Such an explanation is beyond the scope of these notes.

Theorem 3.2. [R] Let V C Vg(k) be any collection of closed homogeneous
subvarieties of Vi(k). Assume that V is closed under specialization (i.e. if
UcVeVthenU €V). Let My be the full subcategory of all finitely generated
kG -modules M with V(M) € V. There is an ezact sequence

0 — E(V) — k& proj — F(V)— 0
of kG-modules such that

i E(V) and F(V) are idempotent modules in the sense of Lemma 3.1,
it E(V) is a direct limits of objects in My, and
il (V) is My local (i.e. if X € My and a : X — F(V) then a factors
through a projective module).

In fact properties (ii) and (iii) characterize the sequence up to direct sums with
projective modules and maps which factor through projectives.

We end this paper by mentioning two applications. First the idempotents mod-
ules allows us to define a cohomological variety for all kG-modules. The def-

inition goes as follows. Let V be a homogeneous closed irreducible subset of
Ve (k). Let

a(V) = {W C Vg(k)|W closed, homogeneous and W C V'},

b(V) = {W € a(V)|W # V}.

Let x(V) = E(a(V))®F(b(V)). Then the cohomological variety of a kG-module
M is ‘

Vo(M) = {V € Vg(k)|V closed, irreducible and (V) ® M not projective}.

This “variety” again is not really a variety. However it does satisfy Dade’s
Lemma and the Tensor Product Theorem [BCR2]. Also if G is an elementary
abelian p-group then it has a natural association with the rank variety of M,
as in Theorem 2.2. -

Finally the idempotent modules can be used to give necessary and sufficient
condition on a closed subvariety V C V(k) and a subgroup H such that if M
is a kG-module with Vg (M) C M then M must be stably induced from H in
the sense that there is a kH-module L with L'¢ = M @ proj. The condition
is very technical and we will not state it here. This type of theorem was first
proved by Benson in [B2] in the case that V is a line. It was generalized in [C4].
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Other applications of the techncillogy include a characterization of the thick
subcategories of the stable category for some groups [BCR3] and a solution to
some questions on the vanishing of group cohomology [B2].
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ABSTRACT. This paper is an attempt to complement my series of lectures
on quasi-hereditary algebras with brief references to existing literature,
reiterating the basic concepts of the existing theory, revisiting the defi-
nition of quasi-hereditary algebras and pointing out some of the recent
developments. The basic aim of the series was to provide an accessi-
ble introduction to the theory — initiated by Cline-Parshall-Scott ([PS],
{CPS1]) in their studies of serni-simple complex Lie algebras and algebraic
groups — for a general algebraically oriented audience. The presentation
was based on a previous exposition [DK], as well as on my recent work
with I. Agoston and E. Lukacs; bere, a reference to [A] could also be found
helpful. Due to time limitations, a selection of topics was necessary and
thus in no way it reflected all developments in this rapidly expanding field.
The subject was presented as a part of ring theory with only a few partic-
ular references to the numerous applications which have clearly governed
a number of recent results in the area.

1. NOTATIONS, DEFINITIONS

Let A be a (finite dimensional associative) K-algebra and, without loss of
generality, let A be basic (and connected). Thus the right regular representation
n
decomposes into a direct sum A4 = @ P(2) of pairwise non-isomorphic {right)
i=1
indecomposable projective A-modules. Write

k£3
P(i) = ;A with Zei =1
i=1
Now, we shall always consider an order of the set { P(i}|1 <i < n}, ie we
shall consider a (complete) sequence of the primitive orthogonal idempotents
e = (e1,€2,...,€n). In addition, we shall consider the related idempotents
€i=¢ei+e1+...+epforl <i¢<nande,1 = 0. Equivalently, we consider an
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order (S(1),5(2),...,S(n)) of the simple A-modules (i) = P(i)/rad P(s) =
e;Aje;rad A.

Definition 1.1. Define (with respect to the fixed order e!) the sequence

, A= (AQ1),AQ2),...,An))
of the right standard A-modules, and the sequence

A = (A(Q1),A(2),...,A(n))
of the right proper standard A-modules by
A('L) = e,-A/e,- radAE,-+1A, 1 < 1 <n,
and
A(i) = e;Afe;rad Ag;A, 1<i<n,

respectively.

Remark. Denote by P°(3), §°(i), A°(4) and A’ (i) corresponding (i.e. inde-
composable projective, simple, standard and proper standard) left A-modules:
P°(i) = Ae,-; S°(1) = Ae;/rad Ae;, A°(2) = Ae;/Ae;i; rad Ae; and
A° (1) = Ae;/Ae;rad Ae; .

Observe that for any K-algebra A and any order e, A(n) and A°(n) are
projective and A(1) and A°(1) are simple A-modules. Clearly,

End A(i) = Enda Zo(i) = e;Ae;/e;rad Aei( = End4 S(¢) = Endg S°(i)) =D;

for all 1 < i < n. In fact, one can see immediately that A(i) = A(i) (and
consequently A°(i) = A (3)) if and only if

EndA A(Z) = e,~Ae,~/e,~AEi+1Ae,~ = 6{A€,’/€,‘A6i+1A6i( = EndA Ao(i)) = D,- s

i.e. if and only if e;Ae;114e; = e;rad Ae; . In this case,_the standard module
A{2) is said to be Schurian [DK]. Consequently, A and A coincide if and only
if all A(3)’s (and thus also all A®(i)’s) are Schurian.

Definition 1.2. Given a K-algebra (4, e), i.e. A with an order e of the simple
A-modules, call

S =84 = (D; = Enda S(i), ;W; = DExty (S(4),5(5)),1 < 4,5 <n)

the ordered K -species of A.
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Recall that, for any K-species S, there is a canonical tensor algebra

. n
T(S) = PW®", where W®' =D ,W;, w& =][Di=D
k>0 ij i=1
and the multiplication is induced by %). Denote by d; = [D; : K], 1 <1 < n,
the K-dimension of D;.
One of the basic concepts of the theory of (A, e) is the concept of the canonical

trace filtration of a module X 4 afforded by the traces Xe;A of the projective
A-modules ¢; A.

Definition 1.3. Given an A-modlule X, define its trace filtration (with respect
to e) by

X=xWox®@o . oxWWoxt+) o5 oxm o x+) —q
where X = (p(¢;4) | ¢ € Hom(g;4, X)) = Xe;Afor 1 <i < n.

In particular, we have a canonical filtration of the algebra (4,e) by the
idempotent (two-sided) ideals Ae; A, and the respective sequence of K-algebras

Bi:A/AEH.]_A, 1525”

Given an A-module X 4, denote thie B;-module X¢;4/Xe; 11 A by @ x(¢). Notice
that, for each 1 <4 < n, A(i) = As(i) = Ap,(4) is a projective B;-module and
that there is an epimorphism

(+) P AG) — 2x(i).

finitie

In particular, as A-modules, By = A(1).

The central definition of a quasi-hereditary algebra reflects the fact that for
X = A4 and for each 1 < i < n, there is an isomorphism (#), and that all A(3)’s
are Schurian ([PS], [DR1]).

Definition 1.4. The algebra (A, e) is said to be quasi-hereditary (with respect
to the order e!) if ®(i) = Ae; A/ Ae;114 is a projective A/Ag;1 A-module and
e;rad Ae;y rad Ae; = e;rad de; forall 1 <i < n.

In other words, (A4, e) is quasi-hereditary if and only if A4 has a A-filtration
and all A(4)’s are Schurian. Furthermore, since for any algebra (4,e), each
trace factor ®(7) contains a B;-projective direct summand A(7), (4, ) is quasi-
hereditary if and only if Endg, ®(¢) is a simple K-algebra for all 1 <7 < n.

Let us refer to [DK], for a number of other important characterizations of
quasi-hereditary algebras. In the following Section 2, we will offer yet another
description of these algebras.
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2. A-FILTERED ALGEBRAS

In this section, we shall characterize a class of K-algebras which contains the
class of quasi-hereditary algebras, in terms of their K-dimension. In turn, we
shall obtain a new characterizations of quasi-hereditary algebras. Let us start
with a simple lemma. Recall that we deal with a K-algebra (4, e) with a fixed
order of the simple A-modules, the canonical trace filtration of A, the respective
factors ®(1) and factor algebras B;, as well as the standard and proper standard
A-modules.

Lemma 2.1. Always
dimg AenA < didimxz"(n) dimg A(n).
T
The equality

(x%) dimg Ae, 4 = didimxzo(n) dimg A(n)

holds if and only if the right A-module (Aen, A) 4 is projective, i.e. if (Ae,A)a
1s filtered by A(n). In turn, this is equivalent to the fact that the left A-module
A(Ae, A) is filtered by Ko(n). Moreover, the number of factors Ko(n) in Ae, Ae;
1 equal to d—ln—dimx ende; for every 1 < i < n; in particular, the number of
factors A°(n) in A°(n) is equal to 4 dimg enAey,.

Proof. Given an A-module X, we have [X : S(i)] = di'_ dimz Xe; for every
1 < ¢ < n. Thus, in particular,

1 1 —o
[A/Ae,rad Ae, A - S(n)] = d—dimKAen/Aen rad de, = d—dimKA {n).

Now,
dimg Ae, A < [A/Ae, rad Ae, A : S(n)] - dimg e, 4,
and thus )
dimg Ae, A < T dimg A°(n) - dim A(n).

Obviously, the equality (x) is equivalent to the fact that (dend)a is a di-
rect sum of copies of A(n), and thus to the projectivity of (Ae,A)4. In fact,
analyzing the isomorphism

(xx%) A°(n) @ An) — dend

given by the multiplication map, we obtain a filtration of 4(A4e,, A) by Zo(n) On
the other hand, the existence of such a filtration implies that the multiglication
map (% * %) is a monomorphism. Furthermore, the number of factors Ao(n) in
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the direct summand Ae, Ae; of 4(Ae,A) is clearly equal to dl dimg e, Ae; for
every 1 <1< n.

Remark. Infact, one can show, for a given 1 < 1 < n, that the right B;-module
&(i) = Ae;4/4g;1 4 is filtered by A(q) if and only if the left B;-module &(3)
is filtered by A" (i), and express the number of factors A°(4) in ®(i)e; for each
1 < j <i. We hope that the reader will find this to be a useful exercise.

Lemma 2.2. Every right projective A-module has a A-filtration if and only if
every left projective A-module has a & -filtration. The number of factors Zo(i)
in A°(1) equals d% dimg e;Ae;/e;Aei1 Ae; for each 1 < i < n.

Proof. Every right projective A-module has a A-filtration if and only if A4 has
a A-filtration. Applying induction to the trace filtration of A4, Lemma 2.1
yields a A°-filtration of 4A. Lemma 2.2 follows.

Definjtion 2.3. The algebra (A4,e) is said to be A-filtered if all right B;-
modules $(i) = Ae; A/Ag; 1 A are projective. Equivalently, (A, e) is A-filtered
if A4 has a A-filtration.

Theorem 2.4. The algebra (A, e) is A-filtered if and only if

"1 o
dimg A=) 7 dimsc A7) - dimg AG3).
i=1

Proof. This is an immediate consequence of Lemma 2.1 when applied inductively
to the trace filtration of A4.

Remark. If (4,e) is quasi-hereditary, then both (A, e) and (A°P e) are A-
filtered. Observe that if (4,e) is A-filtered, then (A°?,e) does not have to be
A-filtered:
Consider the path algebra of the quiver -
a N
12 v
v/
6

modulo the ideal {Ba, v8,7v?).
On the other hand, even if both (A4, e) and (4°?,e) are A-filtered, (4, e) does
not have to be quasi-hereditary:
Consider the path algebra of the quiver
oY
1—2

/-

modulo the ideal (8afBa).
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However, we have the following simple characterizations of quasi-hereditary
algebras.

Theorem 2.5. The algebra (4, e) is quasi-hereditary if and only if (A, e) is A-
filtered and, for every 1 <i<n, A(i) = A(i) (and thus also Zo(i) = A°(3)).

Proof. Clearly, A(i) = A(3) if and only if [A(5) : S(i)] = 1, i.e. if and only if
A(4) is Schurian.

Corollary 2.6. (see [D], also [W]). The algebra (A, e) is quasi-hereditary if and
only if (4,e) is A-filtered and gl.dim A < oo.

Proof. If (4, e) is A-filtered and not quasi-hereditary, then there is i, 1 < i < n,
such that [A°(3) Zo{z)] > 2. But then obviously

proj.dimp, Zo(z) = 0,

and thus gl.dim A > gl.dim B; = co (cf. [DR1]).

Corollary 2.7. The algebra (4,e) is quasi-hereditary if and only if

n

dimg A=) E}dimx A°(3) dimg A(3).

i=1

Remark. One can derive the last Corollary 2.7 directly. E.g., the necessity
of the equality can be obtained by using the Bernstein—Gelfand-Gelfand reci-
procity law
° . d ofs o
[P(k) : AG)] = E’%[A (3) : S°(k)]

for quasi-hereditary algebras (see [DK]). We get immediately

dimg A = Y Y > d;[P(k): AG)] [AG): SG)] =

i=1 j=1 k=1

=YYy d’;_ifj [A°G) : S°(k)] [AG) : S(5)] =

i=1 j=1 k=1

Y dldim,{ A° (i) dimg AH).
=1
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3. BASIC FACTS

If (A,e) is quasi-bereditary, then gl.dimA < 2(n — 1) and Loewy length of
A < 2™ — 1; both bounds are optimal [DK]. Moreover, as already mentioned,
the (Bernstein-Gelfand-Gelfand) reciprocity law holds:

d; [P(3) : A(5)] = d; [A°(5) : S°(4)] forall 1 <i,5 <n.

Thus, denoting by C = (c;;) the n xn Cartan matrix of A (i.e. ¢;; = [P (%) : S(j)])
and defining the nilpotent lower triangular n X n matrices A = (u;;) and A° =
(vij) by ui; = [A(F) : S(J)] and v;; = [A°(3) : S°(j)], respectively, we have
C = DA°*D-'A, where D = (d;;) is the diagonal matrix d;; = d;. Consequently
the determinant | C |=1.

For the sake of further references, denote the kernel of the canonical epimor-
phism P(¢) = A(i) by V (3), and write U(é) = rad A(z). Thus, for each 1 < ¢ < n,
we have a short exact sequence

0= V(i) —rad P(i) 2> U(7) = 0.
Of course, there are similar canonical short exact sequences
0—=>V°(i) = rad P°(z) > U°(i) > 0.

of left A—modules.

The quasi-hereditary algebras which appear in the applications have addi-
tional special properties. One of such distinguished property is to be lean (see
[ADL1]). Recall that X is a top submodule of Y if rad X = X NradY. A top
filtration of a module is a filtration whose members are all top submodules.

Definition 3.1 The algebra (A,e) is said to be lean (with respect to the
order €) if, for each 1 < i < m, V(i) is a top submodule of rad P({) and all
U(i) = rad A(i) have top A—filtrations. Equivalently, {4, e} is lean if

e; rad? Ae 4 = eirad Aey, rad Ae;
forall1 <i,5 <nand m=min{i,j}.
In fact, there are very important homological characterizations of lean alge-

bras (see [ADL2]). The following two classes of lean quasi-hereditary algebras
are of fundamental importance.

Definition 3.2 A quasi-hereditary algebra is said to be shallow, or replete if
all rad P(i),1 < 7 < n, have top filtrations with factors S(j),1 < j <i-1, and
A(f),i1+1 < j <n,or with factors A(j),1 < j<i—1,and P(j),i+1<j<n,
respectively.

Let us point out that rad® A = 0 for a shallow algebra A and gl.dim4 < 2
for a replete algebra A.
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Given an ordered K —species § = (D, ;W;;1 < 4,5 < n), there is a canonical
construction of a shallow algebra Ss and a replete algebra Rg over S:
Ss = T(S)/ < ,-Wj ® jWk |_’[ < ma:v{i,k} >
and
Rs =T(S)] <W;® ;W |j <min{i,k} > .
Theorem 3.3 Denote S = 84 the (ordered) K —species of a lean quasi-hereditary
algebra A. Then
“dimg Ss < dimg A < dimg Rg.
In fact, if dimg Sg = dimg A, then A is shallow and if dimg A = dimg Rg,
then A is replete.
As an illustration, consider the ”total” ordered species

S§=8,=(D; =K, ;W; = Kforalll <4,j <n, i#}j).

Then dimg Ss = in(n+1)(2n+1), dimx Rs = 3(2**—1), gl.dimSs = 2(n—1)
and Loewy length of Rg = 2n — 1.

Recently, Lakatos [L] characterized the lean, shallow and replete algebras in
terms of the construction A(y) [DR3].

4. HOMOLOGICAL DUALITY

The Kazhdan-Lusztig theory of Cline, Parshall and Scott [CPS2] leads to
quasi-hereditary algebras A whose homological dual A* = Ext —algebra of 4 is
again a quasi-hereditary algebra. One of the objectives of [ADL3] is to find a
natural class of such algebras:

Definition 4.1 The algebra (4, e) is said to be solid if the following conditions
are satisfied for all 1 <1 < n:

(1) A(4) is Schurian;

(2) V(i) a top submodule of rad P(3);

(3) U(%) has a top filtration by S(j)’s and A(j)’s for j < ¢;

(4) V(i) has a top filtration by A(j)’s and P(j)’s for j > 1.

Proposition 4.2. ([ADL3]). A solid algebra (A,e) is a lean quasi-hereditary
algebra. Moreover, all S(i), A(1) and U(3) belong to a subcategory C4 C mod—A
defined as follows: X 4 € C4 if and only if its minimal projective resolution

BRSSP0 BP0 B X0

satisfies the condition that all Kerd; are top submodules of rad P;(X).
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Recall the concept of the Ext —algebra A* of an algebra A. It is, by definition,
the K —algebra whose underlying vector space is

D D Extl (5(),50))

k>0 i,jel

and the multiplication is defined by the Yoneda product of extensions.
One of the main results of [ADL3] is the following

Theorem 4.3. Let (A, e) be a solid algebra. Then: ((A*)OP,f), where £ denotes
the "reverse” order to e, is solid. Moreover, the species S(A*) is dual to the
species of S(A) and dimg A** = dimg A.

Remark. Here, it is worthwhile pointing out that, in general, A** ~ A does
not hold for a solid algebra A (see [ADL3]).

Corollary 4.4. If the algebra (A,e) is shallow, or replete, then (A*,f) is
replete, or shallow over the dual species, respectively.

Remark. Let us point out that for the monomial algebras A4, the connection
between (4,e) and (A*,f) can be described explicitly and that it results in a
relationship between leanness and quasi-heredity. In particular, it turns out
that the homological dual of a lean quasi-hereditary monomial algebra is again
a lean quasi-hereditary algebra (see [ADL3]).

5. TWO CONSTRUCTIONS

For the sake of reference in the next section, let-us formulate the following
two theorems.

Theorem 5.1. (CONSTRUCTION 1, see [DR2]). Let R be an arbitrary finite-
dimensional K-algebra. Then the endomorphism algebra Endg X, where X =
d

@ R/(rad R)! with (rad R)® = 0, is a quasi-hereditary algebra with an idempo-
t=1

tent e = €2 € A such that eAe ~ R.

Theorem 5.2. (CONSTRUCTION 2, see [DHM)]). Let R be a commutative local
selfinjective K~ algebra over a splitting field K; let dimg R = n. Let
{X, = R, Xs,..., X} be a sequence of local zdeals such that X; C X; im-.

pliesi > j. Then A = End(@ Xt) is quasi-hereditary (with respect to the order

of the summands) if and only ifn =m and rad X; = Zx cx; Xj- In fact,
under these conditions, A is lean, each A(i) has a stmple socle isomorphic to
S(1), all [A(i) : S(§)] < 1 and there is a duality D : mod—A4 — mod—A such
that DS(i) = S(i) for all 1 <i < n, and thus dimg A =Y, (dimg A(7))%
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Let us point out that the Construction 2 has been recently instrumental in

a major study of Cline-Parshall-Scott on stratification of endomorphism rings
[CPS3].

6. WELL-FILTERED ALGEBRAS

Yet another additional characteristic of the quasi-hereditary algebras which
appear in the applications is the property that their filtrations behave well in
the sense of [ADL4]. Let us briefly present some of the results of [ADL4].

Definition 6.1. The quasi-hereditary algebra (A4, e) is said to be right well-

filtered if €D V°(3) is a (two-sided) ideal of A4; denote this ideal by I and define
=1

At =A/IT.

Remark. Left well-filtered algebras are defined similarly. Observe that shal-
low algebras are both right and left well-filtered. Clearly, (4, e) is right well-
n
filtered if and only if 4AT =~ @ A°(3).
i=1

The well-filtered algebras are characterized by the property that the quotient
algebra AT = A/IT describes the filtration of A4 by standard modules, i.e. the
image of every standard filtration A4 under the canonical map A = A* gives a
composition series of AZ+ with composition factors corresponding to the tops
of the respective standard modules. Note that the algebras which are both right
and left well-filtered are necessary lean.

If A is a replete well-filtered algebra or one of the quasi-hereditary endo-
morphism algebras described by Construction I or Construction II (these are
necessarily right well-filtered), then there is a section A* —+ A with respect to
01" — A~ AT = 0. Moreover, the image of this section coincides with the
subalgebra defined earlier by Dyer [Dy] and Koénig [K1].

In fact, if A is a replete well-filtered algebra, then A%t is hereditary and
(AT)* =~ (A)T, where A* denotes, as before, the Ext —algebra of A.

If A is the endomorphism algebra defined by Construction I, then At is a
uniserial hereditary subalgebra.

Both Construction I and Construction IT were illustrated on typical examples.
In particular, the basic algebra to the principal block of si(3) was presented by
Construction II with 6-dimensional selfinjective algebra

R=Klz,y]/ <z -¢* 2% >.
(see also [K2]). In this case,

dimg A =12 422 422 4 4% + 4% 1 62 =77,
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P(1) contains a copy of every P(i),1<i<n,and A is homologxcally selfdual.
Explicitly, the structure of P(1) is as follows:

(A]

[ADL1]
[ADL2|
[ADL3)

(ADL4]
[CPS1]

[CPS2)

[CPS3]
(D]

[DHM]
[DK]

[DR1]

M
oA ST
U<

REFERENCES

Agoston, L., Quasi-hereditary algebras, C.Sc.Thesis, Budapest 1995.

Agoston, I., Dlab, V., Lukdcs, E., Lean quasi-hereditary algebras, Representations of
Algebras. Sizth International Conference, 1992, Ottawe. CMS Conference Proceed-
ings 14, 1-14.

Agoston, I., Dlab, V., Lukdcs, E., Homological characterization of lean algebras,
Manuscripta Mathematica 81 (1993) 141-147.

Agoston, ., Dlab, V., Lukics, E., Homological duality and quasi-heredity, Can. J.
Math. (to appear).

Agoston, L., Dlab, V., Luk4cs, E., Wel-filtered algebras (to appear).

Cline, E., Parshall, B.J., Scott, L.L., Finite dimensional algebras and highest weight
categories, J. Reine Angew. Math. 391 (1988), 85-99.

Cline, E., Parshall, B.J., Scott, L.L., The homological dual of a highest weight cate-
gory, Proc. London Math. Soc. 88 (1994), 294-316.

Cline, B, Parshall, B.J., Scott, L.L., Stratifying endomorphism algebras (preprint).
Dlab, V., On quasi-hereditary algebras, Abstract, AMS Arcata Meeting, June 12,
1989 (unpublished).

Dlab, V., Heath, P., Marko, F., Quasi-hereditary endomorphism algebras, Can. Math.
Bull. 38 (1995), 421-428.

Drozd, Yu.A., Kirichenko, V.V., Finite dimensional algebras, Appendix on Quasi-
hereditary algebras by V. Dlab, Springer-Verlag 1994.

Dlab, V., Ringel, C.M., Quasi-hereditary algebras, fllinois J. of Math. 35 (1989),
280-291.



54

[DR2]

[DR3]

[Dy]

(K1]

(K2]
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The integral representation thieory of a finite group G is the study of the
representations of G on finitely generated abelian groups, or equivalently, the
study of finitely generated Z(G-modules. Such representations occur, of course,
within abstract group theory, but also in algebraic topology and algebraic num-
ber theory. We shall look at an example of such an occurrence in each of these
three fields.

A word of warning about the: three stories that follow. I decided not to
burden the account with chapter and verse for all the unproved statements.
These vary from the elementary fo the rather deep. The interested reader will
find all the relevant details in the: references at the end of each section.

1. (GroUP THEORY

We work with a given fixed fintte group G. The natural augmentation
e : ZG — Z (ie., e(g) = 1 for all g in G) is a ring homomorphism with
kernel the augmentation ideal AG = g. For any ZG-module A, homologi-
cal algebra provides a natural ismmorphism H?(G, 4) ~ Ext§(AG,A); and we
know that H2(G, A) classifies group extensions of the form A — H -» G, while
Ext§(AG, A) classifies ZG-moduile extensions A — M — g. We begin by
explaining a down-to-earth proce:ss of obtaining this homological isomorphism.

Start with the group extensiom

(i) 1—A—H i 1.

This yields a ring homomorphism 7 : Z H — ZG whose kernel is Ha (the ideal of
Z H generated by a = AA). Moreover, 7 induces j - g and hence we have the
exact sequence 0 =& Ha/ah — h/ah — g — 0, which is one of (left) ZG-modules.
{Observe that for any ZH-module M, M/aM ~ ZG ®@zu M).

Received by the editors Nov. 1995.
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Now a +— (a—1) +ab defines a Z-homomorphism 4 — Ha/ah which is easily
seen to be a Z-isomorphism. It is even a G-isomorphism: if w(h) = g, then
ga = hah™! and hah™! — 1 = h(a — 1) mod ah.

Thus from (i) we have constructed the module extension

(ii) 0 A h/ah g 0.

Let (—]G) be the category of all group extensions like (i) but with varying A
and where morphism means a commutative diagram of groups

A—H —~G

o

A'—H — G .

Similarly, let (—|g) be the category of all module extensions like (ii) with varying
A. Then (i) — (ii) defines a translation functor @ : (~|G) — (—|g).

There is also a functor ¥ in the opposite direction. Given 4 — M 5 gin
(—|g), define a multiplication on M by z.y = 7(z)y + ¢ +y. This makes M into
a multiplicative semigroup with identity element 0; and A is the subsemigroup
whose product is the given addition on A. f E = {z e M | 7(z) = g1
some g € G}, then E is a subgroup of M (z7! = ~g~'z) and 7' : E — G via
7'(z) = g is a surjective group homomorphism with kernel 4. So A — E — G is
in (—|G). It is easy to check that ®¥ and ¥ are equivalent to the appropriate
identity functors and so we have an equivalence of categories: (—|G) ~ (—|g).

Let R <+ F — @ be a free presentation of G. So F is a free group and we al-
ways assume F is finitely generated, say F is free on z1,...,zq4. If R = R/[R, R],
then the conjugation action of F' on R induces an action on R for which R acts
trivially. Hence G acts on R, making R into a ZG-module. This is the relation
module determined by the given free presentation. Note that R is a finitely
generated free additive group and thus R is a ZG-lattice.

Applying the translation functor gives 0 — R — §/tf - g — 0. Here §/tf is

ZG-freeon z; — 1,...,z4 — 1. Hook this sequence onto 0 -+ g =+ ZG -+ Z — 0
to obtain '
(1) 03 R—-(ZG)¥ -ZG—-Z -0,

thus exhibiting R as the second kernel in a projective (even free) ZG-resolution
of Z.

Some notation: if H is a group, d(H) denotes the minimum number of el-
ements needed to generate H; if M is a ZG-module, dg{M) is the minimum
number of elements needed to generate M as ZG-module.
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Group theorists are interested in R and its properties. General questions
about R are very difficult to handle. Until the development of integral repre-
sentation theory, people often had to be content with a very weak form of R,
viz., R/[R, F], the largest image on which the action of G is completely lost.
Now R/[R,F| ~ F/F' @ Hy(G,Z) (recall that G is finite!). It follows that
d(R/[R, F]) — d(F) = d(H2(G,Z)) and so the left hand side is a constant: it is
independent of the choice of free presentation.

Here is a generalization of this fact.

(2) Theorem. dg(R) — d(F) is constant.

We sketch the proof, which is a good illustration of the use of integral repre-
sentation theory.

Let Z(gy = ﬂP/|G[ Zipy = {a/be Q] (b|G|) =1}. This is a semilocal ring:
the only primes are those that divide |G|. If A is a ZG-lattice, then A(g) means
Z(c)® A. We shall use the following facts.

(8)- (i) AV B (A and B are in the same genus) if, and only if, Ay ~ B(g);
(ii) P is projective if, and only if, Pgy 18 Z(g)G-free;

(ii)) Ay =U @V implies A =B & C with Big) = U, Cic) = V; and hence
(iv) A has a non-zero projective direct summand if, and only if, Ay has one.

If A= A’ ® P, where P is projective and A’ has no non-zero projective
summand, then A’ is called a core of A. The decomposition need not be unique,
but by (3) and semi-local cancellation, A’ and P are both determined to within
their genus. Thus if Pg) =~ (Z(g)G)", then 7 is an invariant of A, called the
projective rank and written prA.

(4). The cores of A lie in a single genus and l—é—l dimg(Q ® P) is the projective
rank of A. ‘

Let 0 > A - P — g — 0 be a minimal projective presentation of g.
This means that dg(P(¢)) = da(g(c)), or equivalently, that A is core-equal. If
another minimal presentation 0 -+ A’ - P’ — g — 0 is given, then Schanuel’s
Lemma, (3) (ii) and semi-local cancellation show A(g) ~ A’(G), whence dg(4(¢))
is an invariant of G. Schanuel also gives (cf. (1))

(5) Ao (ZG)Y¥F)~Ra P

and so dG(R(G)) - d(F) = dg(A(@) — dc(9(c)): the right hand side here
is obviously an invariant of G and so therefore is the left hand side. But
dc(R(g)) = da(R), whence (2) follows. [



58 K. VWW. GRUENBERG

Let P, = (P,C) be a projective: resolution of Z with all terms finitely gener-
ated:

P; Poy—s P ——=Z—0

Ci
The n-th partial Euler characteris:tic of P, is defined as
L]
Xn(P) =) (-1)""*rankP;,
i=0
where rankP; = dimg(Q ® P;). Wie may also view x,(P) as the ordinary Euler
characteristic x(,P) of ,P, the t:runcated complex P, — --- — P;. The set
{xn(P)|VP.} is bounded below wvith minimum value written x,(Z).

(6). xn(Z)= xn(P) for any min:imal projective resolution of Z.

Thus x1(Z) = (de(8(e)) — 1)|G7| = (de(g) — 1)IG| since da(g(6)) = da(s).

Further, (5) shows that A beliongs to the genus of a core of R (actually it
is a core of R), whence prR = d('F) — dg(g). If d(F) = d(G) (the chosen free
presentation is “minimal”), then prR = d(G) — dg(g). We call the right hand
side here the generation gap of G'. I is a remarkable fact that this number can
be non-zero.

Finally, (5) and (6) show x2(Z:) = d(R) — d(F) + 1.

REFERENCES ,

For general background cf. K.W. Gruenberg, Relation modules of finite groups,
CBMS Monograph 25 (American. Mathematical Society, 1976) and K. W. Rog-
genkamp, ‘Integral representatioms and presentations of finite groups’, pp.145-
275, Springer Lecture Notes in Miathematics 744 (1979).

Also K.W. Gruenberg, ‘Free abelianised extensions of finite groups’, Homo-
logical group theory (ed. C.T.C. Wall), London Math. Soc. Lecture Notes 36
(1979), pp.71-104; and ‘Partial Euer characteristics of finite groups and the
decomposition of lattices’, Proc. London, Math. Soc. 48 (1984) 91-107.

2. TOPOLOGY

Topologists compare projectivre resolutions by chain homotopies. If (P, C),
(P',C") are projective resolution:s of Z (over a finite group G, as always), then
to say the truncated complexes P, ,,P' are homotopically equivalent (write
mP ~ »P') means that there ex:sts chain maps (of degree 0) a: P — P/,
B: mP' — P such that B and. a3 are chain homotopically equivalent to the
appropriate identity maps. Cleaurly, ,P ~ P’ implies that « restricts to an
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isomorphism Cpqy — C}, ., (whose inverse is the restriction of 8 to C,,,);
and thus xm (P) = xm(P’').

Let [, P] denote the equivalence class of all ,, P' ~ ,, P and write P(m; ¢) for
the set of all [,,P] with xa(P) = £.

(7). If [mP), [mP'] are any elements in P(m;¢), then Cryr VCp 4.

Now let X be a finite, connected 2-dimensional CW-complex. Thus X has
finitely many cells and only cells in dimensions 0, 1 and 2. The universal cover
X of X is also a connected 2-dimensional CW-complex and its cellular chain
complex C(X) has the form E, — Ey — Ep, where E; is a free 71 (X)-module
with basis all i-cells. The homology of C(X) is Z in dimension 0, 0 in dimension
1 and 72(X) in dimension 2. :

The following theorem was proved 45 years ago by Saunders Mac Lane and
Henry Whitehead:

(8). IfY is another space like X, then X,Y are homotopically equivalent if,
and only if, there ezists a group isomorphism (X) =5 7 (Y) under which

C(X), C(Y) are homotopically and equivariantly equivalent as augmented chain
complezes.

This result translates a topological problem into an algebraic one. Progress
with the algebraic problem hinges on understanding the relevant integral repre-
sentation theory of the fundamental groups. Assume now that the fundamental
groups are isomorphic to our finite group G. Given Ox: m(X) = G and
fy: m(Y) = G, wesay X, Y are G-linked homotopically equivalent spaces if
there exists a homotopy equivalence f: X — Y such that 0y fi1 = 0x, where f;
is the homomorphism on fundamental groups induced by f.

Let us say that an element [; P] in P(2; ) is free if there exists o P’ ~ 2 P such
that P, Py, P; are G-free.

The essential content of (8) can now be rephrased as

(8'). The set of all G-linked homotopy classes of 2-dimensional CW-complezes

with Euler characteristic £ is bijective with a subset of the free elements in
P(2;¢).

It may be that the G-linked homotopy classes are bijective with all free
elements, but this is not known at present for general (finite) G.

To understand P(2;£) we use the Grothendieck group Ko(ZG). Let {P}
denote the isomorphism class of the projective module P (recall again that we
only consider finitely generated modules) and form the free abelian group A
on all {P}. Let B be the subgroup generated by all {P & Q} — {P} — {Q}
and set Ko(ZG) = A/B, with the image of {P} in Ko(ZG) written [P]. Then
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[P] — rankP is a well-defined homomorphism K¢{ZG) —» Z and the kernel is
CUZG), the projective class group of ZG.
Given o P, we define its Euler class to be

€ [2P] = [P] = [P1] + [Po}

This is an element in K¢(ZG). Now 2P ~ 3P’ implies € [ P] = € [2P’] and so ¢
is well-defined on P(2; £). _
Choose and fix some 2§ of Euler characteristic £. Then

(9). (i) There exists a map P(2;£) = CUZG) via [2P) = e[2P] — e[2Q].
(i) If 2Q is free, then the set of all free elements in P(2;£) %is bijective with
the inverse tmage of 0 under the map of part (i).
(iil) If 2Q 14s free and £ 1s non-manimal (i.e., £ > x2(Z)), then [2Q] is the only
free element.

(10) Corollary. Two connected, finite 2-dimensional CW -complezes, with iso-
morphic fundamental groups and equal non-minimal Euler characteristics, are
homotopically equivalent spaces.

REFERENCES
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3. NUMBER THEORY

Let K/k be a finite Galois extension of algebraic number fields. Our friend
G now plays the role of the Galois group Gal(K/k). The ring O g of algebraic
integers in K is a ZG-lattice. Its structure has been the subject of intense
investigation during the last twenty years, principally by A. Fréhlich and his
school. This is additive theory. The multiplicative theory concerns the ZG-
module structure of U = O, the group of units in K. Interest in U is actually
older than that in O but far less is known. This and related material is
collectively known as Galois module theory.

We shall look here only at the local situation, which means that k is a finite
extension of Qp, the field of rational p-adic numbers. This case is considerably
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easier than the global one. What follows is a report on joint work with Alfred
Weiss.!

The ring of integers Ok in K is here a discrete valuation ring with unique
maximal ideal 3 and U; = 1 + P is a G-invariant subgroup of U, called the
group of principal units. Now U = U; x u(p'), where u(p’) is the subgroup of all
elements whose order is prime to p, and the decomposition is one of G-modules.
Thus, in order to understand U wre only need to understand U;. Since U is
the pro-p~completion of U, U is a Zymodule (any abelian pro-p-group is, in a
natural way, a Zmodule) and in fact,

(11) Th is a finitely generated Z ,G-module.

(By contrast, U is not finitely generated as ZG-module.)
The proof of (11) uses the p-adic logarithm
(-1
log : A" .
og l+z +— Z pa z€P
n>1
This gives a homomorphism of the multiplicative group U; into the additive
group K with kernel p(p), the group of p-power roots of unity. If U, = 14 B",
then for n. large enough, log U, = P", whence logU, is a Z,G-lattice. Now
the finiteness of |U; : Uy | establishies (11).

The aim is to extract enough algebraic data from the arithmetic situation to
enable us to construct a Z,G-module M that can be shown to be isomorphic
to U;. We already possess one algebraic fact about U, its torsion submodule
u(p). There is a second easy one, its character. For

QolU; ~Q, dloglU, ~Q, ® Ox 2 K
and K ~ (Q,G)¥ %I by the normal basis theorem. So
(12) Qo @ Up ~ (Q,G)[FQ],

" The third algebraic fact involves cohomology. We shall use Tate cohomology
throughout. Thus, for all positive dimensions we have the usual cohomology
groups; however HO(G, A) ~ AG,/@A, where A ={a € A|ga=aVgecG}
and G = S4ec 95 H (G, A) = 54/(AG)A, where 3A = {a € A | Ga = 0};
and H (G, A) = H_;_1(G, A) for all i < -2.

If v is the normalized valuation on K, then 0 - U — KX —+ Z — 0
is an exact.sequence of ZG-modules with v(II) = 1 where IO = P. If
p = PNk = 7O and v(n) = e, then e is the ramification indezx of K/k.
If K =9Ok/P, k=9Ok/p, then K /k is a finite Galois extension of finite fields,
whose Galois group G is cyclic of order f, the inertial degree of K/k, and

11 have learned that Anatoly Yakoviev and Alexandra Yakovleva have quite recently ob-
tained similar results.
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ef = [K : k]. The unique generator F of G given by F(z) = !l (z € K)is
called the Frobenius automorphism of K /k. The natural homomorphism G — G
is surjective and has kernel Gy, the inertial subgroup of G.

There exists a homomorphism (the Hasse invariant) invg: H*(G,K*) = Q/Z
which is one-one and has image |é—|Z /Z. Let ukyi (the fundamental class) be
the unique element in H2(G, K*) whose invariant image is ﬁ +7Z. Use ugyy
to construct a group extension Gy and take the push-out along v:

KX »— Gy — G

1]

If x = vug/, then x is the cohomology class of the extension Gw and x may
be viewed as a homomorphism G/[G,G] — Q/Z via the isomorphism

H*(G,Z) < Hom(G/[G, Cl, Q/Z)

induced by integral duality. Taking the cup-product with ug/r produces an
isomorphism H?(G,Z) —~—~ HY%G,K*) (by a theorem of Tate) and
H%(G,K*) ~ k*/N K* (where we have abbreviated the norm N, as N).
Now v(k*) = eZ and v(N K*) = |G| Z since v(gz) = v(z) for all g € G.
Hence v induces a surjection k*/NK* —» %Z/Z. f¢:G > %Z/Z is the

isomorphism given by ¢(F) = % + Z, then we have the square
G/G,G] — G
Ux/k-'—l l¢>
R INK* 2177,

where both vertical maps are isomorphisms. Local classfield theory ensures that
this square is commutative. Hence  is also the composite G/[G,G] — G — %Z/Z.

Take a minimal free presentation of G and pull back along G — G:

Z— H——C(CG

|

Z——C——G

Here C = (c) is infinite cyclic, c+» F and s0 Z -+ C is 1 = ¢f. The cohomol-
ogy class of the free extension is ¢ € Hom(G,(Q/Z) and so the pull-back has
cohomology class x. Hence H and Gw are equivalent group extensions, which
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gives us the commutative diagram
K* — Gy — G

o

Z— Gy — G

I

Z —C ——G .
Applying the translation functor (cf. the group theory section of this essay)
produces the ZG-module diagram

U =—=——=

.

Z — W — AG

|

Z— ZG — AG
where ZG = AG is 1— F — 1.

The point is that the top two rows determine W arithmetically while the
lower two rows determine W in a totally explicit algebraic manner. We call W
the inertial lattice of K/k. The crucial part of the diagram is the exact sequence
(13) 02UV W0

The first bonus for translating is that, while there seemed nothing special about
the group Gy, the module V has a remarkable cohomological property: it is
cohomologically trivial. This means that H™(H,V) = 0 for all subgroups H of
G and all 7 € Z. (A cohomologically trivial torsion-free module is projective.
But V is usually not torsion-free.)

The pro-p-completion of (13) is the exact sequence of finitely generated Z ,G-
modules

05U, »V W0
Here W is a Z.,G-lattice and V is still cohomologically trivial.
Thus we have an explicitly known Z ,G-lattice W and we require a cohomo-

logically trivial presentation of W whose kernel has given torsion (namely p(p))
and given character (by (12)).

(14) How do we construct such a presentation and how unique is it?
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Suppose for the moment u(p) = 1. Thus V is torsion-free, hence Z,G-
prolectlve andif 0 > M - P > W = 0is any projective presentation then
MoV ~U, e P. QoM = QP®U1,thenQp®V~Qp®Pfrom

which it follows {(by a theorem of Swan) that V ~ P, whence M ~ U, (by the
Krull-Schmidt Theorem).

It will be useful to work with an abstract copy 7" of u(p) and an embedding
j: T = Uy with j(T) = p(p). Our third algebraic invariant is the kernel 14, of

HY(G,Hom(W,j)) : HY(G,Hom(W,T)) = H(G, Hom(W,U,)).

(18). The Z,G-module U, is determined up to isomorphism by [k : Qp], T and
U.
Thus, if M is a Z,G-module with
() @ ® M = (Q,6)F),
{11) its torsion module isomorphic to T via an embedding j’', and
(iii) the kernel of H' (G, Hom(W,j ") equal to U,
then M ~ U;.

It looks as though U; involves a knowledge of U;. This is an illusion.
One observes that U is (easily seen to be) the kernel of the homomorphism
H'(G,Hom(W,T)) - H*(G,Hom(W,U)) and any cohomology class z in the
image of H'(G,Hom(W,T)) can be represented by an explicit cocycle. So what
is needed is a test whether z is zero. There is such a test, because there ex-
ists a character t: H*(G,Hom(W,U)) — Q/Z whose calculation involves only
Hilbert’s Theorem 90 and the Hasse invariant; and there is a particular ZG-
module endomorphism w of W with the property that z = 0 if, and only if,
t(z) = t(zw) = 0.

If W denotes the finite ring H%(G,Hom(W, W)), then clearly H{(G,Hom(W, T))
is a right W-module. Now t determines a unique (right) W-module homomor-
phism H'(G,Hom(W,T)) —+ W whose kernel is our U;.

Question (14) is solved by the following purely module-theoretic result.

(16) The Recognition Theorem. Given a Z,G-lattice L, a finite Z ,G-mod-
ule T and the kernel M of some L-module homomorphism
HY(G,Hom(L,T)) — L, where L= H°(G,Hom(L,L)).
Then
(i) (construction) there exists an exact sequence 0 — M->C—>L=>o0
with C cohomologically trivial, M a finitely generated Z,G-module with

torsion isomorphic to T wvia an embedding j and M is the kernel of
HY(G, Hom(L, j));
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(ii) (uniqueness) if 0 = M’ — C' — L — 0 is another such sequence, then
there exist projective modules P, P’ so that M @ P~ M' & P'.

The conclusion in part (ii) becomes M ~ M' if Q@ @ M ~ Q, ® M'. To
obtain (15) we apply (16) with L = W and M = U;.

The Recognition Theorem remains true if Z, is replaced by Z. In this form
it becomes the first step on the road to understanding the structure of global
units.
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ABSTRACT. We will survey some results on perpendicular categories to ex-
ceptional modules over Artin algebras. Since their introduction by Geigle,
Lenzing and Schofield, perpendicular categories have become a powerful
tool in the representation theory of Artin algebras. They inherit essential
properties from mod A, furnish a reduction procedure and open the possi-
bility for proofs by induction. We will illustrate this in several instances.
Moreover we pose several problems.

1. EXCEPTIONAL MODULES

Let A be an Artin algebra over a commutative Artin ring E. The category
of finitely generated A-modules will be denoted by mod A. For a A-module X
we denote by pdy X (resp. idy X)) the projective (resp. injective) dimension of
X. We denote by gl.dim A the global dimension of A. A A-module X is called
selforthogonal if Ext? (X, X) = 0 for all i > 0 and is called ezceptional if it is
selforthogonal and pd, X < 0.

Given any A-module X we may decompose it X ~ @, X:-i" where X;
is indecomposable and d; > 0 for all ¢ and moreover X; 2 X; for i # j.
We call X multiplicity-free or basic in case d; = 1 for all 4. The uniquely
determined number m occuring in the direct sum decomposition above will
be denoted by 6(Z). The classical Nakayama conjecture or a version thereof
[Na], [AR], (see also [H5]) states that 6(X) < n for a selforthogonal A-module
X, with n = rk Ko(A), where Ko(A) denotes the Grothendieck group of A.
Equivalently n coincides with the number of isomorphism classes of simple A-
modules. Unfortunately there is not much known in general at the present stage
about the validity of this conjecture. We point cut that this applies even to the
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case of A being local (i.e. 6(oA) = 1). Also the question remains open under
the very restrictive extra assumption that X is exceptional. The only general
result in this direction is a result due to Bongartz [Bo] which states that an
exceptional A-module X with pdy X < 1 satisfies 6(X) < n. For further details
in this direction we refer to [H3].

Of some interest seems to be the following problem. Given an exceptional A-
module X then study the endomorphism algebra End X of X. We recall that a
A-module X is called a brick if End X is a division ring. The question is under
which conditions an indecomposable selforthogonal A-module is a brick. Of
course this will only hold under very restrictive assumptions. In fact, let A be a
non-simple local algebra. Then the indecomposable projective is selforthogonal
but not a brick. It was shown in [HR] (compare also [H1}), that for a hereditary
Artin algebra A any indecomposable selforthogonal module is a brick. It also
follows that this holds for the more general class of quasitilted algebras [HRS).
Clearly this easily follows from the following result in [HU].

Theorem. Let A be an Artin algebra with gl.dimA < 3. Let Z be an
indecomposable A-module with pdyZ < 1 aend idpaZ < 2. If Z is not a brick
and Ext'(Z,Z) = 0, then there erxists an indecomposable subfactor V of Z with
Ext*(V,V) # 0.

The problem mentioned above is related to studying exceptional sequences of
A-modules or exceptional sequences of coherent sheaves on projectives varieties.
For details we refer to [CB], [Ri2] and the literature given there.

There are examples of Artin algebras A with gl.dim A = 2 where all indecom-
posable A-modules X satisfy Ext?>(X,X) = 0 but there exist indecomposable
exceptional modules which are not bricks. For details we refer to [HU]. These
algebras are necessarily of infinite representation type (i.e. there exist infinitely
many pairwise non-isomorphic indecomposable A-modules) as the following re-
sult from [HU] shows. ’

Theorem. Let A be a representation-finite Artin algebra with gl.dimA < 3.
Let Z be an indecomposable A-module with pd,Z < 2 and idpZ < 2. If Z is not
a brick and Ext'(Z,Z) = 0, then there ezists an indecomposable subfactor V of
Z with Ext*(V,V) # 0.

In the next section we will study perpendicular categories to modules of
projective dimension at most one. This can be done for arbitrary modules but
only in case of exceptional modules we will remain in the class of Artin algebras.
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2. PERPENDICULAR CATEGORIES

For a A-module X we denote by X1 the right perpendicular category of
X. It is by definition the full subcategory of mod A consisting of those A-
modules Y satisfying Ext} (X,Y) = 0 for all > 0. Of particular interest is the
perpendicular category of a A-module X which satisfies pdaX < 1. This has
been introduced and studied in [GL] and [S].

It is straightforward to see that in this case X+ is an abelian category, which
is closed under extensions and that the inclusion functor X+ — mod A is exact.

The next theorem states some fundamental properties of the perpendicular
category determined by X. This is a slight generalisation of a result in [GL] and
is contained in [H4].

Theorem. Let X € mod A with pd, X <1 and Ext}(X,X) =0, then there
exists AQ € X+ such that X+ ~ mod Ay, with Ag = EndpQ. If X is indecom-
posable, then rk Ko(Ao) = rk Ko{A) — 1, where Ko(A) denotes the Grothendieck
group of A.

For the convenience of the reader we will recall the construction of Q.

There exists an exact sequence

02 paA2E—>X°>0
such that the connecting homomorphism 8 : Homa (X, X?®) — Exty (X, sA) is
surjective. Let r = rkgHom, (X, E) and let fy,..., fr be an R-basis. Consider
f=(f,..,f): X" — E, where (f1,..., f-)t denotes the transpose of the
row vector {fi,..., fr}. This yields two exact sequences, where f = wu denotes
the canonical factorization:
0> K=kerf - X" — B=imf—>0
0B—DE—Q=cokf—0

Then Q is a projective generator of X . ‘

Before stating some further properties of perpendicular categories we will
consider some examples. The proof of the assertions on the perpendicular cate-
gory in examples (b) and (¢} needs some knowledge of the representation theory
of hereditary algebras which can be found in [ARS] and [Ril].

Examples:

(a) Let A be an Artin algebra and let P be an indecomposable projective

A-module, say P = Ae for some primitive idempotent e. Then clearly we have
that P+ ~ mod (A/AeA).

(b) Let & be a field and let A be the Kronecker algebra. So

k k2
A=<0 k)'
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Let X be an indecomposable A-module whose dimension vector is given as
dim X = (1,1). Then X+ ~ mod™ k[T, the polynomial ring in one variable
over k and mod® denotes the finite-dimensional modules. Note that X is not
exceptional.

(c) Again let k be a field and let A be the following 8-dimensional k-algebra

kE k k*
A=]0 k k*
0 0 k

Let X be an indecomposable A-module whose dimension vector is given as
dim X = (5,5,4). It is not hard to see that such an exceptional indecomposable
module exists. Then the perpendicular category of X is isomorphic to

L k k4
X_mod<D % .

We now return to the general situation. The following proposition from [H4]
contains some relevant homological information.

Proposition. Let X € modA with pdpX < 1 and Exti(X,X) = 0.
Let X+ ~ mod Ag, where Ag = EndaQ. If Ext} (Q,Q) = 0 for i > 1, then
gl.dimAg < gl.dimA and pdyZ — pd,Q < pdy Z forall Z € X+

We will provide some situations where the extra assumption of the last propo-
sition is satisfied.

Lemma. Let S € modA be a simple module with pdyS < 1. Let Q be a
projective generator of S+. Then Q satisfies Ext} (Q,Q) = 0 for i > 1.

Proof. Observe that S satisfies Ext} (S, S) = 0 since pd,S < 1. Recall
that the projective generator @) was constructed before as the cokernel of a
map f: 8" — E, where r = dimgHoma (S, £) and the components of f form
an R-basis of Homy (S, E) and E was constructed as middle term of an exact
sequence 0 — aA = E — S — 0. If S is simple, then the map f clearly is
injective. In particular we see that pd, Q@ < 2. So it is enough to show that
Ext3 (Q, Q) = 0. But this follows since Ext} (S, Q) = 0 and pd,E < 1.

Recall that it was shown in [Z] that a k-algebra A of gl.dim A < 2 always has
a simple module S with pd,S < 1.

It is easily seen that for quasi-hereditary algebras there exists an indecom-
posable projective module P such that the progenerator Q of P+ satisfies
Extj\(Q, Q@) = 0 for 1 > 0. For the definition and further properties of quasi-
hereditary algebras we refer to [CPS] and [PS].
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Let A be a finite-dimensional algebra over an algebraically closed field k. It is
also easily seen that a A-module X € mod A satisfying the following conditions:
pdpX < 1, Extj(X,X) = 0, EndaX =~ k and Homa (X, sA) = 0 allows the
conclusion of the proposition above. In this case we infer that a projective
generator AQ of X1 even satisfies pd,@ < 1 and coincides with the middle
term of the exact sequence 0 — AA — E — X* — 0 with ¢ = dim;Ext} (X, A A).
Moreover we infer that in this case Homa (X, 2Q) = 0. Note that this is the
situation described in [GL].

We will now give an example to show that some assumptions are necessary
to obtain a bound as in the proposition above. Consider the algebra A given by
the following quiver

(01 84
— > —
o o 0
B )

bound by
ay=068=éy=PBa—-~v5=0.
So A is given as the quotient of the path-algebra over the field k by the two-sided
ideal generated by av, 88,67, Ba — 6.

So the indecomposable projective modules associated with the vertices of the
quiver have the following Loewy series:

1 2 3
PQ) = 2 ; P2 = 1 3 P(3) = 2
1 2

Then one may easily compute that gl.dim A < 4. In fact, we have the following
minimal projective resolutions of the simple A-modules:

0—-P3)—>P(2)- P(1)»S(1)—=0
0 P(3Y— P((2) » P(1)® P(3) = P(2) = S(2) = 0
0— P(3) = P(2) =» P(1) ® P(3) - P(2) = P(3) = S(3) = 0.
Let X = P(1). So X does not satisfy the last two conditions above.

Then the indecomposable summands of the progenerator of X are easily
computed and have the following Loewy series:

2 3
3 2

An easy computation also shows that gl.dim X+ = co. For this note that X+ ~
mod Ag, where Ag is given by the following quiver :
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bound by v6 = éy =0.

But if we choose Y = P(3) then one obtains that gl.dimY+ = 2. In this case
the Loewy series of the indecomposable summands of the progenerator of Y+
are givén as follows:

1 2
2 1
1

Thus Y+ ~ mod Ay, where Ay is given by the following quiver
a -

O O
~

B
bound by a8 = 0.

It seems to be an interesting question to determine conditions for algebras of
finite global dimension to admit an indecomposable A-module X withpd, X <1
and Ext} (X, X) = 0 such that gl.dim X+ < co.

It is not hard to see that for an algebra A of finite global dimension there
always exists an indecomposable exceptional module X with pdy X < 1. In
fact, let m = gl.dim A, then there exists a simple A-module S with ids .S = m.
Then we may choose X = 7, 5, where 7 is the inverse of the Auslander-Reiten
tranpslation. It is easy to verify that X satisfies our claim.

Note that perpendicular categories are related to the notion of strong idem-
potents in the sense of [APT].

We also point out that perpendicular categories may be used to show that the
bounded derived category of A may admit a recollement in certain situations.
For details we refer to [BBD] and [H4]. This then may be used to reduce certain
questions to problems for algebras with fewer simple modules [H5).

In general it is a difficult problem to compute the perpendicular category. to
a given module. The situation is somewhat easier in case of hereditary algebras.
Moreover most of the recent investigations deal with this particular case. This
will be outlined in the next section.

3. HEREDITARY ALGEBRAS

For some réleva.nt background in the representation theory of hereditary al-
gebras we refer to [ARS] and [Ril].

Let A be a finite connected qﬁiver without oriented cycle and let k& be some
field. Let A = kA be the path algebra of A. Then A is a finite-dimensional
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hereditary k-algebra. Let X be an indecomposable exceptional A-module. In
this section we will present some results about the structure of X+. If X is
a preprojective or preinjective A-module the determination of X+ is straight-
forward, compare for example [HHKU]. If X is regular and A is tame the
computation of X+ can be read off the results in [Ril].

Given this we may assume that A is representation-infinite or equivalently
that A is not a Dynkin diagram, where A denotes the underlying graph of
A. Recall that an indecomposable A-module X is called quasi-simple if X is
regular and the middle term M of the Auslander-Reiten sequence ending at
X is indecomposable. We are interested in indecomposable regular A-modules
X with Exti(X,X) = 0. It follows that such a module X is a brick, compare
section 1. It even holds that it satisfies Endy X ~ k, compare [Ri2]. Note that
these modules are uniquely determined by their dimension vector and that there
exist at most countably many such modules up to isomorphism. If A is wild (i.e.
properly contains an affine diagram) and has at least three vertices then there
are infinitely many indecomposable exceptional A-modules up to isomorphism.

Observe that for a quasi-simple module X with Ext} (X, X) = 0 the middle
term M of the Auslander-Reiten sequence ending at X still satisfies Endy M ~
k. It is also easily seen that in this case we have an isomorphism Ext} (M, M) ~
Homy(X,72X). Also note that X' is again hereditary by the results of the
previous section for a module X with Ext} (X, X) = 0 and that X is equivalent
to the module category over a finite-dimensional connected hereditary k-algebra
Ao if X is a quasi-simple module with Ext} (X, X) = 0, see [St]. Moreover if A
is wild also Ag will be wild in this situation [St]. We point out that in this case
Ag will not be a full subgraph of A, see [HHKU].

First we will determine necessary and sufficient conditions such that Ag is a
tree-algebra (i.e. Ag is a tree). The result shows that this will be rarely the
case.

Proposition. Let X be a quasi-simple module with Ext} (X, X) = 0 and
let M be the middle term of the Auslander-Reiten sequence ending at X. Let
X+~ modk&o for some finite and connected quiver 50. Then A, is a tree if
and only if A is a tree and Exty (M, M) = 0.

For a proof we refer to [H4]. We point cut that this follows from computations
of Hochschild cohomology as established in [H2].

Given an arbitrary Artin algebra A we may define the Coxeter transformation
®,. This is an isomorphism of the Grothendieck group uniquely defined by the
property that ®,(P) = —I for each indecomposable projective A-module P with
simple top S and [ is the indecomposable injective A-module with simple socle
S. Note that we do not distinguish between modules and their isomorphism
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class. The matrix representation of &4 with respect to the basis of the simple
A-modules will also be denoted by ®4. Let py be the spectral radius of &,.

If A = kA for a wild quiver A then pa > 1 and actually is a simple eigenvalue
(Ri3]. The following is a result in [K1]. Using these and some computations in
[X] one may deduce that certain wild quiver algebras will not occur as perpen-
dicular categories. This has been formalized into the concept of domination and
is used for establishing natural bijections (Kerner-bijections) between the sets
of regular components of a given pair of wild hereditary algebras. For details
we refer to [K2].

Theorem. Let A = kA be a wild hereditary algebra and let X be a quasi-
simple exceptional A-module. Let Ay be wild hereditary with X+ ~ mod A,.
Then PAg > pA-

A typical example of a graph Ag such that there is no quiver A and no
exceptional quasi-simple kA-module X with X+ ~ kA is given by the following
graph:

oO—O0— O -0

We will now discuss some results from [HHKU]. For this let A be a wild
quiver and Ao a quiver such that there exists an exceptional quasi-simple kA-
module X with X+ ~ modkA,. Note that Ag has to be wild again. We will say
that A dominates Ag. The main problem dealt with in [HHKU] is the question
how many such modules X exist with X ~ mod kAo. 1t is easily seen that
with X also 7*X for ¢ an integer will have this property. Up to this there will
be only finitely many exceptions as the following result from [HHKU] shows.

Theorem. Given A and Ay as above. Then there exist only ﬁmtely many
7-orbits of exceptional quasi-simple modules Y with Y+ ~ mod kX,.

The main idea of the proof is to show first that this assertion is independent
of the base field. So it will hold for any field if it holds for some field. For
this the theory and results for exceptional sequences are used. In a second step
the result is proved for a finite field. For this one uses heavily the fact that
the automorphism group of the bounded derived category of a wild hereditary
algebra is quite 'small’. For details we refer to [HHKU].

The theorem above has the following corollary. It is shown in [HHKU] that
a stronger form is actually equivalent to the theorem above.
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Corollary. Let A be a wild quiver. Then there exist only finitely many

regular components of the Auslander-Reiten quiver of kA containing exceptional
modules of gquasi-length 2.

[APT]
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ABSTRACT. Classification problems of vector bundles on smooth projective
varieties over an algebraically closed field k and classification problems of
modules over finite dimensional k—-algebras are closely related via derived
equivalences of the corresponding bounded derived categories. We review
known results and provide an introduction to the concept of moduli spaces
for a certain class of representations of quivers.

In order to classify vector bundles on algebraic varieties over an algebraically
closed field k& or modules over finite dimensional k-algebras it is an impor-
tant problem to classify the so called exceptional objects either in the category
Coh(X') of coherent sheaves of Oy ~modules on a smooth projective algebraic
variety X [Hal] or-in the category A—mod of finitely generated right modules
over a finite dimensional algebra A. An object M is exceptional if the endo-
morphism ring is the field and Ext'(M, M) = 0 for all [ > 0. There are several
connections between these two classification problems. If 7 is a tilting sheaf on
X (page 78), then the right derived functor of Hom(7, —) is an equivalence of
the corresponding bounded derived categories [Ba|

RHom(T, =) : D*(Coh(X)) — D°(A-mod).

For further information on derived categories and derived functors we refer to
{Ha2] or (GM]. At present there are only a few examples of tilting sheaves
known, and so it is of some interest to construct them.

There is a method to construct partial tilting bundles, which includes direct
summands of tilting bundles. For this we consider fine moduli spaces of finite
dimensional representations of modules over hereditary algebras [Ki]. A fine
moduli space is a vector bundle U on a variety M which is an A ® O y—module
parametrising the stable modules of a given dimension vector d. So in particular

Received by the editors Jan. 2, 1996, revised March 14, 1996.
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each fibre of U is a finitely generated A-module. It is conjectured, that the
bundle I is a partial tilting bundie (page 80). In the case that A is hereditary,
there is a unique derived equivalence of the above form, in which X is the
projective line and A is the Kronecker algebra. Thus, for hereditary A we are
forced to consider partial tilting bundles. If A is not hereditary, the construction
to be described for partial tilting bundles does not in general work. Already for
the dimension vector d = (1,..., 1) one can get any projective variety as the
moduli space of modules with this dimension vector (page 81). However, most
varieties do not admit a tilting bundle. In particular, there is no such bundle if
the canonical divisor admits a section.

Assume that d = (1,...,1) and A is hereditary. By Morita equivalence we
may assume that A is the path algebra k@ of some finite quiver Q. In [Hi2]
a construction is outlined for any of the moduli spaces M?(Q) of modules of
dimension vector d = (1,...,1) over A = kQ, depending on some weight 6. All
these moduli spaces are toric varieties which are well understood. In particular
the Picard group, the Grothendieck group and formulas for the cohomology of
line bundles are known. This allows us to check in any explicit situation whether
a direct sum of line bundles is a partial tilting bundle. Moreover the universal
family U is a direct sum of line bundles. If the cohomology groups of this family
vanish, then it is also an exceptional sequence (page 78).

The aim of this paper is to provide an introduction to the concepts mentioned
above. The theory of tilting bundles and derived equivalences started with
papers of Beilinson [Be] and Bernstein, Gelfand and Gelfand [BGG]. Later
Kapranov constructed exceptional sequences on homogeneous varieties and cer-
tain intersections of quadrics [K1],K2]. The notion of an exceptional object
was introduced by Drezet and le Portier [DP] in order to classify vector bundles
on the projective plane P?. Another approach to this problem was introduced
by Rudakov [R1],[R2], who classified exceptional bundles on P? and P* x P!
by making use of the solutions of the Markov equation 22 + y? + 22 = 3zyz for
P2, and the Diophantine equation 2z% + y? + 22 = 4zyz for P! x P'. Later
Rudakov extended his classification for del Pezzo surfaces. The approach via
derived equivalences simplifies parts of his proof substantially. Further Bondal
considered exceptional sequences with n members, where n — 1 is the dimension
of X, in more detail [Bo] and obtained some remarkable vanishing statement
for the extension groups of the simple A—modules. Algebras satisfying these
vanishing conditions are called Koszul algebras. Bondal’s exceptional sequences
can be generalized to so called distinguished tilting sequences. These allow us
to obtain the analogue of the result of Bernstein, Gelfand and Gelfand [Hil], an
equivalence of the derived category of coherent sheaves with the stable module
category over the repetitive algebra. For further results on derived categories
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of module categories over finite dimensional algebras and on stable module cat-
egories we refer the reader to the book of Happel [Hap]. For an introduction to
this subject we also mention [SR].

1. TiLTING OBJECTS AND EXCEPTIONAL SEQUENCES

Tilting Objects Let A be an abelian k—category with finite dimensional
homomorphism spaces, and of finite global dimension. Let C be a triangulated
k—category (for example the bounded derived category of A) with the property
that

€P Hom(M, N[i])
3
is always a finite dimensional vector space where [i] denotes the i-th shift in
the triangulated category C. For definitions we refer to [Ha2] or [GM]. The
assumptions are fullfiled in case .4 is the category of coberant sheaves on a
smooth projective variety or the category of finitely generated modules over a
directed finite dimensional algebra.

Definition An object T € C is called tilting object if it satisfies the following
properties:

1.) Ext!(T,7) =0 for all [ # 0;
2.) the direct summands of 7 generate the triangulated category C;
3.) the global dimension of End(7) is finite.

If C is the bounded derived category of A—modules and 7 is a module we call
T tilting module (respectively tilting sheafif T is a sheaf and C is the bounded
derived category of coherent sheaves).

The importance of the notion is due to the fact that by the Lemma of Beilinson
[Be] the functor

RHom(T, -) : ¢ — D°(A-mod),
where A := End(7), is an equivalence of triangulated categories.

Definition Let ¢ = (Eg, E1, ..., Fp) be a sequence of dbjects in A4 or C. The
object. E; is called exceptional ifExtl(E,', E;) =0foralll > 0 and End(E;) = k.
The sequence € together with a surjective monotonic function's : {0,... ,D} —
{0,...,d} is called leveled exceptional if E; is exceptional for ¢ =0,...,D and
for i # j and s(i) > s(j) we have Ext!(E;, E;) = 0 for all I. The sequence ¢ is
called leveled strong exceptional if in addition Ext'(E;, E;) = 0 for alll > 0 and
all4,7 =0,...,D. A sequence is full, if it generates the triangulated category C
or the bounded derived category of A respectively in the sense, that the smallest
full triangulated subcategory which contains all objects E; fori =0,..., Disthe
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whole category. A full leveled strong exceptional sequence of coherent sheaves
on X with d = dim X is called distinguished tilting sequence. In particular the
sheaf £ := @io E; is a tilting sheaf and the endomorphism algebra is a Koszul
algebra [Hil].

Each tilting line bundle 7 (the direct summands of 7 are line bundles) is a
strong exceptional sequence in a natural way, ordered by the partial ordering

given by £ < L' if and only if Hom(L, £) # 0 for any indecomposable direct
summands £, L of T.

One of the most important problems we wish to tackle is the construction of
1ilting bundles or exceptional sequences on a variety X. Further one would like
to classify all varieties X which admit a tilting bundle or a (full) exceptional
sequence. If the variety is one-dimensional, then only the projective line admits
a tilting bundle or an exceptional sequence.

The first examples of tilting bundles were found by Beilinson on the projective
space P™, T = @, (i), the shifted exterior powers of the cotangent bundle
and T = @}, O(:) the tilting line bundle of the shifted structure sheaves
[Be]. Later Kapranov [K1], [K2] constructed tilting bundles on homogeneous
spaces and intersections of quadrics. It is known that exceptional sequences
in the derived category exist on projective space bundles, if the basis admits
an exceptional sequence, and under certain conditions also on blowing ups. In
general the problems above are unsolved and seem to be very difficult. So the
next conjecture is surprising. In contrast the problem to find an exceptional
sequence is easy for a finite dimensional directed algebra. For example the
sequence of indecomposable projective modules is full strong exceptional. Thus
it is a powerful technic to use the derived equivalence to obtain informations on
both categories.

" 2. MoDULI SPACES OF REPRESENTATIONS OF QUIVERS

It would be desirable to exhibit a canonical geometric structure on the set
of isomorphism classes of representations of a quivers ). Such a canonical
structure is called a moduli space. If we restrict ourself to stable representations,
then such a geometric structure exists. This was worked out in [Ki]. On the
other hand it can not exist in general because any moduli space is a quotient
of the space of representations and this quotient does in general not exist in
the category of varieties. For further definitions and properties of moduli space
we refer also to [N]. Let us recall some results. Assume @ is a fixed quiver
without oriented cycles, so the path algebra Q) is finite dimensional. We fix a
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dimension vector d and consider the space R{Q, d) of all representations

R(Q,d) := P Hom(k(e)), galtie))
a€Q

(in other words the set of all matrices indexed over the arrows @y of @ of size
given by the dimension vector d) and the natural group action of

d):= [] GLag,

1€Qo

acting by conjugation. The space of all representations is an affine space and
we consider the Z—graded ring of semi-invariants

DHR R(Q,d))°X = D {1 € HR(Q.A)] | /35) =9} (@)

with respect to some character x(g) = [ det(g;)~% : G — k*. This defines a
projective algebraic variety

M8(Q,d) := Proj (@ k[R(Q,d)]G’x'> .
1

Definition Let 6 : Ko(A-mod) ~ Z9° — R be an additive function on the
Grothendieck group of the category of finite dimensional modules of A. We
call 8 a weight of the category. A module M is called §-stable (#—semi-stable)
if (M) = 0 and for all proper submodules N C M §(N) < 0 (8(N) < 0
respectively). We remark, that we use a different sign convention than King.
Any semi-stable module has a Jordan Hélder filtration with stable quotients.
Then two modules are S—equivalent if they have the same Jordan Hélder factors.

The points of the space M?(Q, d) are exactly the §—semi-stable representations
up to S—equivalence [Ki] and M%(Q,d) is the moduli space of f-semi-stable
modules up to S—equivalence. If d is indivisible and all §-semi-stable represen-
tations are also f—stable, then there exists a universal family I/ on this moduli
space, which parametrises the §-stable representations of @ with dimension
vector d. If we forget the structure as a representation of @), this family is just
a vector bundle, the universal bundle i = U(d) of this moduli space, and it
decomposes into a direct sum U = @, Ui, where rank(l(;) = d;. The bundle

U — M®(Q,d) is the fine moduli space.

Conjecture Let U — M?(Q,d)® be the fine moduli space of #-stable modules
of dimension vector d over the finite dimensional quiver algebra kQ (so we
assume @ has no oriented cycle) and assume M%(Q,d)* = M%(Q,d), so it is
a smooth projective algebraic variety. Then U/ is a partial tilting bundle on
MPO(Q,d). This was first conjectured by Schofield. Even he conjectured more,
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that there exists always a completion of U to a tilting bundle I/ by adding
certain direct summands to U.

In general it is very hard to compute these moduli spaces M?(Q,d). If d =
(1,...,1), then there is an inductive way to compute all by starting with some
moduli space over a smaller quiver (so it is in particular of smaller dimension)
and using projective space bundles and so called simple flip diagrams. Fur-
thermore we obtain an explicit cover of these varieties by open subvarieties U,
which are isomorphic to the affine space. The index set {T'} we can completely
describe in the combinatoric of the quiver @, it consists of certain subquivers,
which are trees. Furthermore also the change of the moduli space (which means
the projective space bundles and the flips) we can understand locally in terms
of this covering as well as globally [Hi2]. Of particular interest are further in-
formations about the moduli space like the rank of the Grothendieck group, the
structure of the cohomology ring, the Picard group and the cohomology of the
line bundles. In the special case d = (1,...,1) the moduli space is a toric vari-
ety, thus we know the Picard group and the Grothendieck group [O],[F]. Further-
results in [KW] show, that the Chowring of any moduli space of representations
of a quiver is isomorphic to its cohomology ring.

Example We will show, that any projective variety X is a fine moduli space
of modules of dimension vector d = (1,...,1), even all these modules are unis-
erial. So assume X is the zero set of homogeneous polynomials fi,..., fr €
k[zo,... ,xn] of degree r1 < ... < r,. We consider the quiver § with points
Qo = {0,...,7¢} and arrows {xq,... ,Z,} from i —1toiforalli=1,...,r.
Here we use the same symbol for possibly different arrows, but we may dif-
fer them by their starting or ending point. We consider the finite dimensional
algebra A = kQ/I, where I is generated by all possible relations defined by
the polynomials fi,..., fr and all commutativity relations z;z,, — z,,zi. It is
an easy exercise to show, that set of f—stable modules coincides with the set
of indecomposable modules for any § with §;_; > 8; foralli = 1,... ,r and
Tt o 0i = 0. We conclude, that also all moduli spaces are the same for those 6
and isomorphic to the quotient, 7?,(62)md /G of the subset of the indecomposable
modules. This quotient exists and is isomorphic to X, because X is the subva-

riety in the product of r, projective spaces defined by the equations fi,..., f.
intersected with the diagonal.
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ON THE EXPONENT OF LATTICES OVER GROUP RINGS
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1. PRELIMINARIES

Let R be a complete, discrete, rank one valuation ring with maximal ideal 7R
and residue class field k = R/nR, and let G be a finite group. Let |G|R = n"R,
and let p be the rational prime belonging to #E. We want to consider RG-
lattices, that is R-free finitely generated RG-modules, from the point of view of
their exponents. Recall that for RG-lattices L and M and ¢ € Hompgg (L, M),
the exponent of ¢ is 7 if a is the least exponent of 7w such that m%¢ factors
through a projective, while the exponent of an RG-lattice M is defined as the
exponent of the identity endomorphism of M. Since |G|y always factors through
a projective, the exponent 7¢ of any RG-lattice satisfles 0 < a < n. Whena < b
we write 7@ < 0.

The lattices with exponent 1 are the projective RG-lattices. The indecom-
posable lattices with maximum exponent 7™, as shown in ([2] Corollary 2.9),
are the splitting trace lattices studied by Auslander and Carlson in [1]. These
lattices can be characterized by the property that tensoring the almost split
sequence of the trivial module R with an indecomposable splitting trace lattice

"M gives the almost split sequence of M, modulo projective summands. The
almost split sequence of R tensored with any other indecomposable splits (see
[1], Theorem 3.6).

The splitting trace lattices have the exponential property considered in [2].
An indecomposable non-projective lattice M has property E when the middle
term B{M) of the almost split sequence of M satisfies expB(M) < expM.
Among other equivalent statements we mention that M has property F if and
only if every homomorphism ¢ : L — M, that is not a split epimorphism
satisfies expy < expM. The absolutely indecomposable lattices with property
E coincide with the virtually irreducible lattices introduced by Knérr in [6] (see
also [8] and [9]).

‘We thank the organizers of the meeting and our romanian colleagues for their kind hospi-
tality in Constanta. We are also grateful to Prof. Yuri A. Drozd for helpful comments.
Received by the editors Feb. 13, 1996, revised March 7, 1996.
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By QM we denote as usual the Heller translate of the RG-lattice M, then
expQM = expM (see [2]). In order to obtain lattices of a given exponent we
also have to consider (R/7? R)G-modules V, as RG-modules. Then we denote
by §};V the RG-lattice which is the kernel of an essential epimorphism P — V,
with P a projective RG-lattice.

2. MAIN RESULT

Theorem 2.1. Let M be a non-projective RG-lattice with expM = w°, and for
j>1let B; = Bj(M) =Q; (M/x’M).
(a) For every j there is an ezact sequence

&(M):0— QM - B; B Mo,

which splits if and only if § > a.

) Bj/7IB; = M/mIM & QM /miQM for all j.

) expBj=nf for 1 <j<a.

) For every homomorphism ¢ : L — M with expyp < 7, there ezists a
homomorphism ¢’ : L — B; such that Sy’ = ¢.

(e) QB;(M) = B;(QM) for all j.

(f) For all j and every RG-lattice L the sequence ;(L) tensored with M

coincides with the sequence £;(L ® M) modulo projective summands.

Proof

(a). Let 8 : P — M be a projective cover and let £;(M) be the pullback
of the pair (§,n7Idps). Then it is well known that &;(M) splits if and only if
n91dyr factors through a projective, that is if and only if j > a. It follows from
the diagram that the middle term of this sequence is B; = Q; (M/nIM).

0 0
&(M):0 — QM — B, — P . g
|,
| 9
0 —> QM - P - M - 0

.
M/mM = M/r'M
L

0 0
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Bj ~ QM +miP

™B;, wiQM +n%P

QM + 7% P TP+ 7iQM ~
TIQM + w2 P miQM + 2P
QM P - QM M

oM @ P raM - waM @ T

(c) 771d g, factors through a projective because 77 B; C 7/ P C B; and 7/ P & P,
so expB; < w/. Suppose now that 7r’IdB factors through a projective. Since
expm®~Ildy = w7, by (d) there exists ¢’ : M — B; such that 7% 9ldy =
By'. Therefore 7r°_j+‘IdM = fr'ldp, ¢’ factors through a projective, hence
a—j+i>a,s0j <1

(d) If expp < 7/ then n9¢p factors through a projective, so there exists
% : L — P such that n/ldpre = 6¢. But from the diagram it is clear that ¢

lifts to ¢' : L — B;.
L
s
B

@
B; M
i vr"
P M
l l
M/mM —— M/7'M

(e) Since expB; = nJ:

B 008, =9, (1 )ugj (—].\LEBQ—M)%B,»GBBJ-(QM)

i B; oM T aiQM

(f) It suffices to observe that, modulo projective summands,

L L M

As an example we determine the sequences &;(R) of the trivial lattice R over
the cyclic group of order p”, C =< g >, when R is the ring of p-adic integers.
We know expR = p", s0 1 < j <n. From RC/(g — 1)RC = R we get:

’ _RX]
(¢1 ¢n)

where ¢; is the cyclotomic polynomial of order p' and where g acts on E,, by
multiplication by X.

QR = (g — 1)RC = = E,,
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Now
RC R

pIRC+ (g —~1)RC ~ p/R’
hence B; = B;(R) = pj.RC’ +(g—1)RC = ¢1(g)...¢;(g)RC + (g — 1)RC.

This is so because p? = (X ~1)f + ¢ ... ¢; for some f € Z[X].

In this example the Bj, for 1 < j < n — 1, are indecomposable because
B;/pB; = R/pR & E;/pE; as kC-modules, but E;/pE; = k[X]/(X — 1)’ 1,
which is an indecomposable kC-module, so if B; were decomposable it would
have at most two indecomposable summands, and one of them would have to
be R, but then p/ = exp B; > expR = p”.

In the next section we will see examples of indecomposables kG-modules V such
that the RG-lattice 0, V decomposes.

3. APPLICATIONS

Corollary 3.1. If L and M are indecomposables RG-lattices with expl <
expM = 7%, such that L/7°L = M/%*M, then either L % M or L = QM
and 2M = M.

Proof. This follows from the Krull-Schmidt theorem because:
L@QLEQ“wa gna% =Me QM.
We remark that for R the p-adic integers there are indecomposables RC 2~
lattices X and Y with exponent p such that X/pX =2 Y/pY, and X = QY, but
X 2Y (see [5)).

By a theorem proved by Maranda in 1953, for all RG-lattices L/a"*1L =
M/t M implies L = M. (See [3], theorem 30.4 and also [4] for another
proof). The same proof shows that if expL < expM = 7°, then L/no+1L =
M /7%t M implies L = M. From Corollary 3.1, we conclude that Maranda’s
theorem is the best possible result of this type.

Corollary 3.2. If the p-Sylow subgroups of G are cyclic the number of inde-
composable RG-lattices of exponent p is findte.

Proof. We write M|L when M is a direct summand of L. If expM = =°®
then M|Q, (M/moM), so M|,V for some indecomposable (R/7® R)G-module
V such that V|M/x°M. But for a = 1, if the p-Sylow subgroups of G are cyclic
then the number of indecomposable kG-modules is finite.

As an example we determine the indecomposable RC-lattices of exponent p
when R is the ring of p-adic integers. We use the same notation as in section 1
and we write ¢ = ¢n.

Let V; = k[X]/(X = 1)',i=1,...p" — 1, then

Y: = Vi = pRC + (g - 1)'RC,
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and we know from the proof of (¢) of theorem 2.1, that expY; < p.
Assume first i < p"~!(p — 1), then since ¢(g) = (g — 1) =1 (mod p)
and p= (g — l)P"_l(P“l)u (mod ¢(g)) where u is invertible,
Y; = ¢(9)RC + (g — 1)'RC.
Note that as RC-modules ¢(g)RC = RCpn-1 and
;i . (X -1 RIX]
$(9)RC ¢

where ¢ is a root of 1 of order p”. Thus Y; is an extension:

~(e—-1)"R, = R, = R[],

0= RCypr-1 5 Y; > R, = 0.
If p"~! < ¢ < p™'(p — 1) this sequence splits and Y; = RCpn-2 & R,. This
follows from the fact that the idempotent e = %d)(g) verifies eY; C Y;, because
epRC = ¢(g)RC and

et 009
efg-—1)F € s

(¢®" ~1) + ¢(9)RC = $(g)RC.

For p"~Y(p — 1) < < p", if Q is the Heller operator on kC-modules, then
Q:Vi = Q(QVpn ) = QQiVpn =) = QY ;.

Now for 1 < i < p™~! the Y; are indecomposable (and therefore also the QY;)
because otherwise a direct summand of Y; would have exponent p, but neither
RCyn-1 nor R, are direct summands of ¥}, and all other indecomposable lattices
of exponent p have rank p?.

From results of Nazarova (see [7]) it follows that for R the p-adic integers,
there exist infinitely many indecomposable RCps-lattices of rank prime to p.
These are all splitting trace lattices, therefore have exponent p. Since these
lattices have property E the middle terms of their almost split sequences have
exponent p2, which requires the existence of infinitely many indecomposables
of exponent p?. _

In [2] it was shown that an RG-lattice M with exponent 7* has property
E if and only if §,_1 (M) is the almost split sequence of M. This also follows
from (d) of theorem 2.1. Thus from (a) and (f) of theorem 2.1 we immediately
obtain Corollary 3.3 which extends Theorem 3.6 of [1].

Corollary 3.3. For every RG-lattice M with ezponent n® the sequence ¢;(R)
tensored with M splits if and only if § > a—1. M has the property E if and only

if £a—1{R) tensored with M 1is the almost split sequence of M modulo projective
summands.
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ABSTRACT. The paper is devoted to the study of quivers of semi-perfect
rings from the point of view of structural ring theory. It contains an
overview of the results of the author and his students.

1. INTRODUCTION

All rings considered in the paper are associative with 1 # 0. Saying a noe-
therian (etc.) ring we assume that it is a two-sided noetherian (etc.) ring. A
ring is called decomposable if it decomposes in to a direct product of two rings,
otherwise the ring is indecomposable.

Recall some basic facts on the semi-perfect rings introduced by Bass in 1960
[1]. Let R be the Jacobson radical of ring A. The ring A is called semi-perfect
if the factor-ring A/R is artinian and the idempotents can be lifted modulo R.
An idempotent e is called local if the ring eAe is local.

Theorem 1.1. [21] A ring A is semi-perfect if and only if the unity of A can
be decomposed into a sum of mutually orthogonal local idempotents.

Theorem 1.2. A ring A is semi-perfect if and only if it decomposes into direct
sum of right 1deals, each of which has ezactly one mazimal submodule.

Proof. The proof can be found for example in [13, §7] (see also [11]).
Therefore, a semi-perfect ring A can be represented as a direct sum of right
ideals :
A=PM@..-@ PP,
where Pi,..., P; are pairwise nonisomorphic modules and U; = P;/F;R, i =
1,...,s are simple. The modules Py,..., P, exhaust up to isomorphism all

Received by the editors Dec. 21, 1995, revised June 12, 1996.
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indecomposable projective A-modules, while U, ... ,U, exhaust all nonisomor-
phic simple A-modules [12, §1]. (X™ denotes a direct sum of n copies of module
X and X°=0.)

Every projective module over a semi-perfect ring A decomposes into a di-
rect sum of indecomposable projective A-modules. There is a Krull-Schmidt
Theorem for projective A-modules [11].

Let 1 = fi +---+ f; be a decomposition of the unity of A into a sum of
mutually orthogonal idempotents such that f;id = P (i = 1,...,s). Put
Ai; = fiAf;, 4,7 =1,...,s. Then A has the following Pierce decomposition:

A= @Aij, (i,jzl,...,S), (1)

3,j=1
and the multiplication is the “matrix-multiplication”.

Denote by E; the Jacobson radical of ring 4;;, ¢ =1,...,s. Then the radical
R of A has the following Pierce decomposition :

8
R= @ fiRfj, (2)
i,j=1
where fiRfi = R; and fiRf; = Ay, 1#7; 4,7=1,...,s [12].
A semi-perfect ring A is called reduced if the factor—ring A/R is a direct
product of skew-fields. Every semi-perfect ring A = P/ @ --- @ PI*» is Morita
equivalent to the reduced ring

B=Ends(PL®---®P,).

Theorem 1.3. [16] Every semi-perfect ring A has a unique decomposition into
a finite direct product of indecomposable rings, i.e. if

A=B; x---xBy;=Cy x---xCy

are two such decompositions then s = t and there exists a permutation o of
{1,...,s} such that

B; = Ca.(,-) (2 =1,... ,S).
2. QUIVERS OF SEMI-PERFECT RINGS

Following Gabriel a finite oriented graph will be called quiver. A simply
laced quiver (no multiple arrows including loops) will be called simple. Denote
by 1,...,s the vertices of the quiver ) and assume that we have t;; arrows
between points ¢ and j. Let [Q)] denotes the incidence matrix of the quiver @ :

tiy tiz o tig

tsl t32 e tss
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The results below can be found in [8, part13] and [20, part 9].

A real matrix A = (ai;) is called non - negative if all elements a;; are non-
negative.

Denote by M, (R) the set of all real matrices of order n.

Let 7 be a permutation of the numbers 1,2,... ,n and let

n
PT = Z €ir(4)
i=1
be a permutation matrix where e;; are corresponding matrix units. Clearly,

PTP. = E.

Definition 2.1. A matriz B € M,(R) s called permutationally reducible if
there exists a permutation matric P, such that

T _ Bl B12
ABE_<O B )

where By and Ba are square matrices of order less that n. Otherwise the matriz
18 permutationally irreducible.

Definition 2.2. A quiver is called strongly connected if there is an oriented
path between any two of its vertices. s

Proposition 2.3. A quiver Q is strongly connected if and only if the matriz
[Q] is permutationally irreducible [20, part 9] (see also [5]).

Note that a renumeration of the vertices of the quiver @ transforms the
matrix [Q)] into the matrix PT[Q]P.

Proposition 2.4. There exists a permutation matriz P such that

By Bi; -+ Bu
prgp=| ° B o Ba
0 0 .-+ B
where the matrices By, Ba, ... , By, are permutationally irreducible.

Proof. This is obvious.

A maximal (with respect to inclusion) strongly connected subquiver of @ is
called a strongly connected component of Q. The Proposition 2.4 immediately
implies the following well-known fact about the existence of the partition of
a set of vertices of quiver @ into non-intersecting subsets such that the sub-
quivers corresponding to those subsets are strongly connected quivers (strongly
connected components of the quiver Q).
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Definition 2.5. [6] Let Q1,...,Qm be all strongly connected components of
the quiver Q. The condensation Q* of quiver Q 1s a quiver whose vertices
g1, --- ,Qqm corresponds to strongly connected components Q1,...,Qm, and there
is an arrow between q; and q; if and only if Q@ has an arrow between Q; and Q;.

Definition 2.6. [24] A quiver without oriented cycles is called an acyclic quiver.
Proposition 2.7. [6, §63] The condensation of any quiver is an acyclic graph.

Proof. This follows from Proposition 2.3.
‘Recall that a point of quiver @ is called sink (source) if there is no arrows
with an end (beginning) at this point. ([24, §8.6])

Proposition 2.8. [24, §8.6] Every acyclic quiver has sink (source).

Proposition 2.9. [24, §8.6] Suppose that a set of points of an acyclic quiver
consists of t elements. Then we can enumerate them by numbers 1,...,t in
such ¢ way that the existence of an arrow from 1 to j implies i < j.

Let @ be a quiver. Usually the points of ¢} will be denoted by the numbers
1,2,...,s. If an arrow ¢ connects the point ¢ with the point j then ¢ is called
the beginning and j the end of the ¢. It will be denoted as o : i — j.

A path of quiver @) from a point ¢ to a point j is an ordered set of k arrows
o1, -+, 0 such that the beginning of each arrow is the end of the previous
one, the point 4 is the beginning of oy, while the point j is the end of o;. The
number k of arrows is called the length of the path.

An arrow o : i — j is called extra if there exists a path from i to j of length
- greater than 1.

Definition 2.10. Zet S = {a1,... ,a,} be a finite poset. The diagram of S is
a quiver I'(S) with set of points {1,... ,n} and an arrow betweeni and j (i # j)
if and only if a; < a; and there is no element oy such that oy < oy < «j, o #
i, Ok # Q.

Clearly, the diagram of a finite poset S is an acyclic simply laced quiver with
no extra arrows.

Proposition 2.11. Let I’ be an acyclic simply laced quiver with no extra ar-
rows. Then T' is the diagram of a finite poset. Conversely, the diagram of a
finite poset is an acyclic simply laced quiver with no extra arrows.

Proof. By Proposition 2.9 there exists a numbering of the vertices of the
quiver I" by the numbers {1,... ,t} such that ¢ < j whenever there is an arrow
from ¢ to j. Since there are no extra arrows, the existence of an arrow o : 1 — j
implies that there is no k (k # 4, k # j) such that there is a path from i to k
and an other path from k to j. It follows immediately that I' is a diagram of
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a poset consisting of its vertices. The converse statement was discussed above.
The proposition is thus proved.

Let J be an ideal of a ring A contained in the Jacobson radical R of 4 such
that the idempotents can be lifted modulo J.

Consider the factor-ring A = A/J = A; x - -- x A; where all rings 4, ... , 4;
are indecomposable and T = f; +- -+ f; € A is the corresponding decomposition
into a sum of mutually orthogonal central idempotents. Put W = J/J? and
substitute the idempotents fi, ..., f; by the corresponding points 1,...,t. We
connect the points ¢ and j by an arrow if and only if f;Wf; # 0. The obtained
finite oriented graph Q{A, J) is called the quiver associated with the ideal J.
Taking into account Theorem 1.3, one can easily see that the quiver Q(4, J) of
the semi-perfect ring A is defined uniquely up to a renumeration of the vertices
and does not change for Morita equivalent rings. Moreover,

Q(A’ J) = Q(A/Jz,W)

Since the prime radical I of a ring A is a nil-ideal, it is contained in the
Jacobson radical R of A. Using the fact that the idempotents can be lifted
modulo any nil-ideal [19, §3.6] one can consider a quiver Q(4,]) associated
with the prime radical I.

Definition 2.12. A quiver Q(A,I) of semi-perfect ring A is called prime. Fur-
ther we will denote it by PQ(A).

Let A be a right noetherian semi-perfect ring, R its Jacobson radical, and
P, ..., P, all non-isomorphic projective indecomposable modules. Let

P(PR)=(D P, i,j=1,...,s
j=1

be the projective cover of the module P,R. We establish a correspondence
between the modules Py, ..., P; and the points 1,... , s and connect the vertex
1 with the vertex

7 by ti;j arrows. The obtained graph is called the quiver of the right noetherian
semi-perfect ring A and will be denoted by Q(A). Analogously, one can define
a left quiver Q'(A) of a left noetherian semi-perfect ring A.

Note that the quiver of a semi-perfect ring does not change if we switch to a
Morita equivalent ring. Also it is obvious that Q(A) = Q(A4/R?).

Definition 2.13. Let A be a semi-perfect ring such that A/R? is a right ar-
tinian ring. The quiver of the ring A/R? will be called the quiver of A and will
be denoted by Q(A).

In the case when the factor-ring A/R? is left artinian then the left quiver
Q'(A) is defined by the formula Q'(4) = Q'(A/R?).
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3. QUIVERS OF SOME SPECIAL CLASSES OF SEMI-PERFECT RINGS

For convenience, we will consider a quiver consisting of one point only as a
strongly connected quiver.

Proposition 3.1. A strongly connected acyclic quiver is a point.

It follows from this proposition that strongly connected quivers and acyclic
quivers are polar types of quivers.

Proposition 3.2. A quiver Q is acyclic if and only if there exists a permutation
matriz P such that the matriz PT[Q]P is strictly upper triangular.

Proof. This follows from Propositions 2.3 and 2:4.
We next consider the quivers of certain types of semi-perfect rings.

(a) Semi-prime rings. A ring is called semi-prime if it has no nilpotent
ideals.

Theorem 3.3. [16] The guiver Q(A) of a two-sided noetherian semi-prime in-
decomposable semi-perfect ring A is strongly connected.

(b) Weakly prime rings.

Definition 3.4. Let R be the Jacobson radical of the ring A. The ring is called
weakly prime if the product of any two ideals that are not in R, is not zero.

Clearly, any prime ring is weakly prime.

Theorem 3.5. [3] Let 1 =e; + ez +-- -+ e, be a decomposition of the unity of
semi-perfect ring A into the sum of mutually orthogonal local idempotents and
put A;; = ejAe; (4,5 = 1,...,n). The ring A is weakly prime if and only if
Aij #0 for all ¢,j.

Theorem 3.6. [17] The quiver of a noetherian semi-perfect weakly prime ring
18 strongly connected.

(¢) Quasi-Frobenius rings (QF-rings).
The main result of this section is the following theorem.

Theorem 3.7. [18] The quiver of an indecomposable Q F-ring is strongly con-
nected. Conversely, gien a strongly connected quiver (@ there exists a finite
dimensional QF -algebra A the quiver of which coincides with Q.

Recall the basic properties of Q) F-rings needed for the proof of the theorem.
A QF-ring is a two-sided artinian ring and all the rings Morita equivalent to a
QF-ring are Q F-rings.

Let socM be a socle of an A-module M.
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Theorem 3.8. [11, 22] If A is a QF-ring then the socle of any principal A-
module is stmple. Moreover, if P, and P, are the non-isomorphic principal A-
modules * then socPy # socP,. Conversely, if these conditions hold for principal
right and left A-modules then A is a QF-ring.

In the case of finite dimensional algebras the @ F-situation is described by
theorem 9.3.7 in [4].

Theorem 3.9. An algebra A is quasi-Frobenius if and only if the socle of each
principal A-module is simple and, for any two non-isomorphic principal A-
modules Py and Py, socP; # socPs.

Let @ be a quiver, ¢ and j are two points of () and o;; is an arrow from 4
to j. A path z;; is called simple if all its points 1,2, ... , i, are different. If in
addition 7 = j§ then z;; is called a simple cycle.

Denote Q(i) = {j € @ | there exists a path z;; from ¢ to 5}.

Each arrow o;; of the quiver Q(A) of the ring A naturally corresponds to a
homomorphism ¢;; : P; = P; and every path zi; = 035,044, .. . 0i,; naturally
corresponds to a homomorphism & ;; : P; -+ P;, where ®j; = @i, Qini._, .. - @iy

A path z;; is called maximal if ®;; # 0 but pg;$;; = 0 for ¢x; corresponding
to an arrow 0. In this case j is called the end of maximal path z;; with the
beginning at <.

Let A be a QF-ring. It follows from Theorem 3.8 that the map i — = (i)
which sends every vertex i of @(A4) to the end of the maximal path with the
beginning at ¢ is permutation.

Clearly, the permutation i — (i) satisfies the following conditions :

(a): for any o;; either 7(i) = j or 7(i) € Q(j);

(8): for any vertex k of @ and any vertex ¢ € Q(k), we have =(i) € Q(k).

Lemma 3.10. Suppose that we have a permutation on the set of vertices of a
quiver @ satisfying the conditions (o) and (8). Then the quiver @ is strongly
connected. :

Proof. Assume that & is not strongly connected. Then there exist vertices
k and ! such that there is no path from & to I. Hence [ & Q(k). Let T be the
set of vertices of @ that do not belong to Q(k). Since @ is connected there
exists 7 € T and an arrow oy; such that j € Q(k). Clearly, Q(j) C Q(k).
Let Q(k) = {1,2,...,m}. Then it follows from the property (3) that Q{k) =
{m(1),7(2),... ,7(m)} and (&) implies that 7 (i) € Q(k). Therefore, 1 ¢ Q(k)
and some vertex from Q(k) is mapped to w(¢). The obtained contradiction
completes the proof.

i, e. indecomposable projective modules



96 VLADIMIR KIRICHENKO

Theorem 3.11. [23, ch.8] If there is a path from point i to point j of quiver Q
and a path from i to j then there exists a sequence of simple cycles C1,... ,Cp,
such thati € Cp, j € Cy, and any pair of neighbour cycles has a common point.

Corollary 3.12. Any vertez of a strongly connected quiver belongs to a single
cycle.

Proof of Theorem 3.7. To prove the theorem we construct a quasi-
Frobenius algebra A = K(Q)/I where K(Q) is a path algebra of ¢ with
Q =Q(4)

By Theorem 3.11 every vertex of @ belongs to a simple cycle.

Consider the ideal I in K(Q) generated by {z% — y%, z;;} for all simple
cycles z;; and y; and paths z;; not being subpaths of simple cycles. Put
A=K(@Q)/I.

The ideal I generated by the mentioned elements clearly lies between J? and
J™ for some integer n where J is the ideal of K(Q) generated by the arrows.
Thus Q(4) = Q.

Clearly, the maximal paths with the beginning at ¢ generate the socle of a
principal A-module F;.

Any subpath of a path z;; is not maximal. At the same time z%0;; = 0 since
it can not be included in xﬁj (zj; is a simple cycle) for all j. Thus all maximal
paths are z%. Since they coincide in K(Q)/I then socP; is simple and 7 () = i.
By Theorem 3.9, A = K(Q)/I is QF-algebra.
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ABSTRACT. We discuss some new results concerning the representations
of one of the simple Jordan pairs as well as some examples of special and
of exceptional varieties of Jordan pairs. These results are the Jordan pair
counterparts of the classical theorems for Jordan algebras.

Assume K is an associative and commutative ring with 1, and V = (V*,V ™) is
a pair of K-modules. Let Q,: V¢ — Hom (V~7,V?) be quadratic maps, and
set
QU(CE,Z):QG(QI—FZ)—QU(I)—Qg(z), :I:,ZEV‘T,
- the bilinear maps obtained from @, by linearizations. Define D, (z, 2), 2,2 € V°,
y € V™7 as
Qo(z,2)y = Do(z,y)z = {z,y,2}, o=+

The pair V of K-modules is called a Jordan pair if the following identities (and °
all their linearizations) hold, for o = +.

JPL: D,(z,y)Q, () = Qo(z ) ~a(y.2);
JP2: D,(Qo(z)y,y) = Dol(z,Q-0(y ) );
JP3: Q,(Qr(2)y) = Qo(c )Q ( )Qo (2).

The notion of a Jordan pair was introduced by K. Meyberg in 1969. It was
the linear approach to the theory that was developed first. Assume that V =
(V*,V ™) is a pair of K—-modules with trilinear compositions V9 x V=7 x V7 —
V7 such that (z,y, z) = {zyz}. Then V is a Jordan pair if the identities

{zy{ztz}} = {z{yat}a],
{{zyz}yz} = {z{yzy}z},
{{zyz}t{zyz}} = {z{y{ztz}y}z}

Partially supported by Bulgarian Ministry of Education, Science and Technology Grant
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and all their linearizations hold for z, 2 € V7, 4y, t € V77, ¢ = +.

If the ring K contains the element 1/2 then one can set Q(z)y = {zyz}/2 and
thus obtain a Jordan pair according to the first definition. We refer to [4] for all
facts and results concerning the basic identities and other properties of Jordan
pairs.

We shall give some of the most important examples and constructions of Jordan
pairs and related structures. First let us recall the notion of an associative pair.
The pair of K—~modules A = (A%, A™) equipped with the trilinear compositions
A% x A9 x A° — A°, (z,y,z) — (zyz) is an associative pair if the identities

({zy2)tu) = (z(yzt)u) = (zy(ztu))

hold. {We shall omit the indices + unless it may cause misunderstandings.)

1. Let 4 be an associative K—algebraand let A = AT = A~, and (z,y, 2) = zy=.
Then (A*, A7) is an associative pair.

Let * be an algebra automorphism of order two on A. In this case we can set
{z,y,2) = zy*z and thus we obtain another associative pair from A.

2. If J is a Jordan algebrathen J = J* = J~ and (J*,J ) isa Jordan pair with
respect to the Jordan triple product {z,y,2z} = (zoy)oz+(yoz)oz —(z0x) oy,
where z o y stands for the multiplication in the Jordan algebra J. (If J is a
quadratic Jordan algebra we obtain a Jordan pair from it in the following way:
Q(z) = U, where U is the quadratic map of J.)

Let us remind the reader that if R is an associative algebra then with respect to
the multiplication a o b = (ab + ba)/2 it becomes a Jordan algebra denoted by
R(+) . A Jordan algebra J is called special if it is a subalgebra of some R(*) for R
an associative algebra; otherwise J is called exceptional. The well-known result
of P. Cohn [1] states that every Jordan algebra in two generators is special.
Moreover, there exist homomorphic images of the free special Jordan algebra in
three generators that are exceptional (see [1]).

3. In a similar fashion we introduce in the associative pair A the new multipli-
cation

{z,9,2} = (1/2)((z,9, 2) + (2,9,3))

and thus we obtain a Jordan pair A(H). The pairs A(+) and their subpairs are
called special Jordan pairs; otherwise they are exceptional. Some studies of the
speciality and exceptionality of Jordan triple systems and Jordan pairs can be
found in (5], [6], [2], and [3]

4. Assume that A = A_; + Ag + A; is a 3—graded associative algebra. Then
(A_;, A;) is an assoclative pair with respect to the composition {z,y, z) = zy=.
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5. Let X = X" UXt, X~ NX* =0 be a set of symbols and K (X) be the free
associative algebra over K freely generated by the set X. The algebra K(X)
has a standard Z-grading, K(X) = Z::foo K(X),, assuming that the weights
of the elements of X+ and of X~ are +1 and —1, respectively.

Denote by I the ideal in K (X) generated by )~ K(X),, |{| > 1, and put A =
K(X)/I. Therefore the grading on K (X) induces one on A and we have 4 =
A_1 + Ag + A;. Then the subpair of the associative pair (4; + Ao, 41 +
Ap) generated by the image of the set X under the canonical homomorphism
K(X) — A is the free associative pair freely generated by the set X; it is
denoted by FA(X).

6. The free special Jordan pair FSJ(X) freely generated by the set X is the
Jordan subpair of FA(X)*) generated by X (for details, see e.g. [2]). Note
that as in the algebra case, the speciality of FSJ(X) means that every special
Jordan pair is a homomorphic image of some FSJ(X) for | X| large enough.

7. We can construct another Jordan pair from the free associative pair FA(X)
as in the algebra case. Let * be the reversal involution on K(X) i. e. z** =z
for z € X and (ab)* = b*a* for any monomials a and b. Let us denote also
by * the involution induced on FA(X). Denote H(X) the set of all symmetric
elements in F'A(X) under *, i. e.

H(X) = {(u,v) € FA(X)|u" = u,v* = v}

Then H(X) is a subpair of FA(X)). Therefore H(X) is a special Jordan pair.

For a monomial v € K(X) , u = &4,i, . .. T4, Ti; € X, we denote
[u} = (1/2) (:Eil:l:iz c iy F Ly o Ty Ty )

We shall use the same notation for the monomials in the free associative pair
FA(X).

A straightforward verification shows that subpairs and direct products of special
Jordan pairs are special. A convenient criterion due to P. Cohn [1] is used to
recognize whether a homomorphic image of a special Jordan algebra (pair, triple
system) is special or not.

Cohn’s Criterion. Let I be an ideal in the free special Jordan pair J =
FSJ(X). Then the factor pair J/I is special if and only if INJ = I where I is
the ideal in the free associative pair generated by the set I.

0. Loos and K. McCrimmon [5] gave an example of a special Jordan triple
system having some exceptional homomorphic images.

8. Now let K be a field of a characteristic not two, and W an infinite dimensional
vector space over K. Denote by B = K+ W the Jordan algebra of the symmetric
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bilinear form (, ) : W x W — K. The multiplication in B is defined in the
following way:

(a+u)o(B+v) =(af+ (u,v)) + {av + Bu)

for a, B € K, u, v e W. If the form {, ) is nondegenerate then B is a simple
Jordan algebra, and, in addition, the Jordan pair PB = (B, B) is also simple.

The Jordan algebra B is special and its associative enveloping algebra is the
Clifford algebra C of the form (, ) on the space W. Analogously the Jordan
pair PR is special and PB C (C,C)*

9. Assume again that K is a field, char K # 2, and let M,, be the n X n matrix
algebra over K, and H,, its subspace of all symmetric matrices.

Then the Jordan pairs (M,, M,) and (Hy, H,) (with respect to the multiplica-
tion {zyz} = (1/2)(zyz + zyz) are simple ones, see [4].

Now we need the concept of a variety. Let A be an associative algebra. The
variety var A consists of all associative algebras that satisfy all polynomial iden-
tities of A. (Note that the polynomial f € K(X) is called a polynomial identity
of A if f vanishes when one substitutes the variables in f with arbitrary ele-
ments of A.) The set of all polynomial identities of A forms an ideal in the free
associative algebra K(X) that is invariant under all endomorphisms of K(X).
This ideal is called the T-ideal of the algebra A (and of the variety var A).

Similar notation will be used for Jordan algebras, pairs, etc.

S. Sverchkov [7] showed that the variety of Jordan algebras var B is special (i.e.
every algebra in var B is special) in the case when the field X is of characteris-
tic 0.

1. REPRESENTATIONS

Let A be a unitary associative algebra with an idempotent e, , and set e_ =
1—e;. Then A = ®A°", 0, 7 = £, is the Peirce decomposition of A with
respect to the orthogonal idempotents ey and e_; here A°” = e, Ae,. Assume
that V is a Jordan pair. Let d, : V7 x V™9 — A9“ be bilinear maps, and let
s : V7 — A%77 be quadratic maps. We say that (d,q) is a representation of
V in A if the following identities (and their linearizations) hold, for ¢, (z,z) =
0o (T + 2) = ¢ (T) — go (2)-

d(z,y)q(z) =g y,z) = q(z, Q(2)y),
q(z)d(y, z) + d(z,y)q(z) = q(z, {zyz}),
d(z,y)d(z,2) = )y, z) + q(z)q(y, 2),
d(z,z)d(y,z) = d(z,Q(z)y) + q(y, z)a(z),
q(Q(z)y) = q(z)q(y)q(z)-

(Here we omitted the corresponding indices +.)



102 PLAMEN KOSHLUKOV

Let M = (M*,M~) be a pair of K-modules, and let A be the algebra of the
endomorphisms of the module M+ & M ~. Then we can consider the elements
of this direct sum as column vectors, and e,, e_ € A as the identity maps of
M™ and of M, respectively. In other words e, is the identity map on M7, and
it kills M 79, 0 = £. Thus the elements of A can be viewed as 2 x 2 matrices.
Then we say that M is a V-module (and that a representation of V on M is
given).

Therefore we can consider the regular representation of V' (onto itself). It is
defined via the equalities ,

w@= () P9 =% o)

= (50 0 awa= () p o)

Then the subalgebra of the endomorphisms of V* @ V'~ generated by ey and
by all d’s and all ¢’s is the multiplication algebra M (V) of V.

Denote U(V) the universal representation algebra of V' (see, e.g. [4]), then the
following decomposition holds: U(V) = Ke, @ Ke_@®Uq(V) where Ug(V) is the
subalgebra of U(V') generated by all d and ¢. Set Mo(V) the image of Uy(V)
under the canonical homomorphism U(V) — M (V). It can be checked that
Uo(V) and My(V) are ideals.

Proposition 1.1. Let the set X generate the Jordan pair V. Then the uni-
versal representation algebra U(V) of V 1is generated by the idempotents ex
and by all d’s and ¢’s in the elements of the set X. The same is true for the
multiplication algebra M (V) as well.

Proof. We shall prove that all ¢,(u) and d, (v, w) can be expressed by the given
elements where u, v € V7, and w € V7. We can consider the elements u, v, w
as monomials in the elements of X. Next we can make use of the identities for
the representations in [4], Section 2.3, and continue with an induction on the
degrees of these monomials.

Proposition 1.2. M(FP) = U(FP) where FP 1s the free Jordan pair freely
generated by an infinite set X.

Proof. 1t is obvious that the assertion follows from the isomorphism between
Mo(FP) and Ug{FP). We consider the restriction of the canonical homomor-
phism ¢ : U(FP) - M(FP) on Up(FP). Therefore p(Ug(FP)) = My(FP).
If f € kery is a polynomial in Up(FP) then f can be expressed by d’s and
¢'s in terms of the elements of X. Since ¢ ”capitalizes” the letters d and ¢ we
obtain an identity ¢(f) for the regular representation of FP. According to [4],
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Proposition 2.8, it is an identity for all representations of Jordan pairs. Hence
it holds for the universal representation of F P, and the Permanence Principle
for Jordan pairs shows that f = 0 as an element of U(FP). Therefore ¢ is an
isomorphism.

This proposition gives some ”standard” characteristic of the free Jordan pairs.
Note that some "unusual” properties of them were discovered by E. Zelmanov
[8]. Namely, it was proved that FP contains nontrivial zero divisors, and,
moreover, its quasiregular radical is not zero.

Now we shall describe the multiplication algebra of the Jordan pair H =
(Hn, H,). It is sufficient to describe the subalgebra M+ (H) only. Let p =
n(n +1)/2.

Theorem 1.3. MJ T (H) = M,(K).

Sketch of the proof. The crucial role in the proof plays the fact that the frame
of H (i.e. the maximal set of orthogonal idempotents) defines one dimensional
Peirce spaces in H. One can construct a collection of homomorphisms ¢} :
H — H such that fjl (H,-j) = Hy;. Here H;; are the Peirce spaces of H, and
¢% Xills all H,, with {r, s} # {i,7}. Thus all elementary matrices Ej; belong
to MG+ (H), and this yields the isomorphism M (H) = M,(K).

2. SPECIALITY AND EXCEPTIONALITY

It was proved in [5] that every Jordan triple system in one generator is special.
{The algebra case was dealt with in [1], and the result states that every Jordan
algebra in two generators is special.) This comes to show that the Jordan
structures are not so close to the associative ones. In fact, there does not exist
an analog of the theorem of Poincare — Birkhoff — Witt in the case of Jordan
algebras, pairs, and triple systems.

Proposition 2.1. Every Jordan pair in two generators is special.

Proof. It is sufficient to prove that the free Jordan pair J = FP(X) is special
where X = XT U X, Xt = {2}, and X~ = {y}. Let JZ be the submodule
of J? generated by all monomials of degrees 2n — 1, 0 = +. Then J; = Kz,
J; = Ky. We use the notation given in [4], Section 1.9, for the homotopes
and for the Jordan algebras connected to a Jordan pair. Then J/ and J are
Jordan algebras. One can easily check that J,' = K{z,y,z} = Kz®¥), and
analogously J; = Ky(®2),

An induction argument shows that J;¥ = Kz(®¥ and J; = Ky®*=). Therefore
the Jordan pair J is embedded into the matrices of order two over the polynomial
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ring K[z] in the following way.

0 ZZt—l
(I(t,y)’y(s,:)) - <z2s—-1 0 ) .

Thus the free Jordan pair in two generators, and hence every Jordan pair in
two generators is special.

Theorem 2.2. LetJ = (J*,J7) be the free special Jordan pair freely generated
by the sets X* = {z,y} and X~ = {z,t}. Denote I its ideal generated by the
element (u,v) where u = {zzx} — {yty}, and v = {zzz} — {tyt}. Then the
Jordan pair J/I is exceptional.

Sketch of the proof. According to Cohn’s Criterion it suffices to prove that the

element
w = {{{zzz}zz}ty} — {y{t{yzz}t}y}
belongs to the ideal T but w ¢ I.

First compute the multidegrees of the homogeneous components of the elemet
w. Then find which linear combinations of multiplication operators must be
applied to u and to v in order to obtain w. This yields a system of (linear)
equations for the coeflicients of these multiplication operators. The last system
has no solution. '

Corollary 2.3. Let K be a field of zero characteristic. Then the varieties of
Jordan pairs generated by the matriz pairs (M,, M,;) and by (H,, H,), respec-
tively, are not special when n > 2.

Proof. This corollary follows from the above theorem since one can prove that
the Jordan pair (H,, H,) does not satisfy multilinear polynomial identities of
degrees less than or equal to 7 when n > 2. The argument is similar to that
of the well-known Staircase Lemma for the associative algebras M,(K), and
therefore omitted. (The Staircase Lemma is used in order to show that the
matrix algebra M, (K) does not satisfy any polynomial identities of degrees less
than 2n.)

Remark 2.4. It should be noted that the relatively free pairs in these varieties
are spectal.

Corollary 2.5. The variety of all nilpotent of a degree > 7 Jordan pairs is not
special.

Proof. Let Np be a relatively free pair in the variety of the Jordan pairs that are
nilpotent of degree p. Then N, is the quotient pair of the free Jordan pair by
the ideal of all elements of degrees > p. Thus the Corollary follows immediately
from the above theorem since deg(w) = 7.
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It would be interesting to find some special varieties of Jordan pairs. It is an
open problem whether the above matrix varieties are special when n = 2. In
order to find an example of a special variety we need the notion of a weak
polynomial identity. Assume that 4 = (AT, A7) is an associative pair, W =
(W+*,W ™) a pair of subspaces of A such that the set W generates A as an
assoclative pair. The polynomial f(z1,y1,.-- ,¥x-1,%k) € FA(X)? is called a
wedk polynomial identity for the pair (4, W) if f(a1,b1,... ,bg—1,ax) = 0 for
each a,...,ar € W7 and by,... ,bp_; € W=7, It is obvious that the weak
polynomial identities for (4, W) form an ideal in FA(X). Denote PC = (C,C)
the associative pair consisting of two copies of the Clifford algebra on the space
W equipped with a symmetric bilinear form. Let T be the ideal of all weak
identities of (PC, PW) where PW = (W, W).

In the algebra case P. Cohn [1] described the connection between the free special
Jordan algebra, and the set of the reversible elements in the free associative
algebra when the element 2 is invertible in K (i.e. 1/2 € X).

The connection between the free special Jordan pair FSJ{X) and the Jordan
pair of the symmetric elements in the free associative pair H{X) played a crucial
role in several applications, see e.g. [3]. A-system of generators of H(X) was
found in [8], and subsequently in (3] it was shown that the above system of
generators cannot be reduced significantly. All these results hold for the case
1/2€ K.

It is obvious that FSJ(X) C H(X).
Theorem 2.6. FSJ(X) = H(X) if and only 1f | X| < 5.

Sketch of the proof. First we consider the case |X| = 4. If |[XT| = 3 then a
homotopy argument reduces the case to that of a Jordan algebra. Therefore
we can apply the description of the symmetric elements in the free associative
pair given in [1]. The case |X*| = 2 consists of a straightforward computation
similar to that of the algebra case, see [1]. The main point in the proof of
the rest of the theorem is to establish that the pentad [zyztu] does not belong
to FSJ(X) when ¢, y, 2, t, and u are different free generators. One can use
methods similar to those of the theorem for the exceptional images of a special
Jordan pair (Theorem 2) in order to prove the last statement.

Theorem 2.7. The variety of Jordan pairs defined by all weak polynomial iden-
tities from the ideal T (where T is the ideal of all weak identities of (PC, PW)
where PW = (W, W)) is special.

The technique used in the proof of this theorem relies on an explicit construction
of a closing module for this variety, see [7] for details. In addition one needs
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the description of the set of the symmetric elements in the free associative pair
given in the preceding parts.
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This paper is an extended version of a talk given at the Constanta conference.
Our aim is to present some results obtained in [M1] and [M2] concerning the
reduction of Broué’s conjecture to the case of simple groups. This reduction
involves an investigation of Morita equivalences, derived equivalences and stable
equivalences of Morita type between two G-graded algebras R and S, which are
induced by G-graded R, S-bimodules or complexes of G-graded bimodules.

1. INTRODUCTION AND PRELIMINARIES

Let G be a finite group, O a complete discrete valuation ring with residue
field & = of characteristic p > 0. for all the finite groups considered here. An
OG-module will be a unitary, finitely generated, O-free, and (unless otherwise
stated) left OG-module. We denote by OG-mod (respectively mod-OG) the
category of left (respectively right) OG-modules.

In [Brl] and [Br2], the following conjectures were stated:

1.1. If D is an abelian Sylow p-subgroup of G and H = Ng(D), then the
principal blocks of OG and OH are isotypic.

1.2. If D 1s an abelian Sylow p-subgroup of G and H

Ng(D), then the
principal blocks of OG and OH are Rickard equivalent. .

A Rickard equivalence is a derived equivalence that takes into account the
presence of groups. Similarly, a Morita equivalence “with groups” is called a
Puig equivalence. We shall give later the precise definitions.

In [FH], Conjecture 1.1 was reduced, by using the classification of finite simple
groups, and by developing a Clifford theory for isometries and isotypies, to the
case of simple components of GG,and the conjecture was proved in the case p = 2.
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By [Br2] and [R3, Section 6], conjecture (1.2) implies conjecture (1.1), and
we have shown in [M1] that it also can be reduced to the case of the simple
components of G. The reduction steps are similar to those of [FH], and may be
considered as a Clifford theory for tilting complexes.

In Section 2 we present, following [FH], the structure of groups with abelian
Sylow p-subgroups. This structure gives the motivation for the reduction steps.

The main step is the lifting of an equivalence (Morita or derived) between
the blocks e and f of normal subgroups of two groups with isomorphic quotient
groups, to equivalences between the blocks lying over e and f.

Let us introduce some notation. Let X and Y be finite groups with normal
subgroups X and Y respectively, such there is an isomorphism «: X’/X -
Y /Y. We identify via o these two quotient groups and denote them by G.
Assume further that e and f are G-invariant blocks of OX and OY, and consider
the fully G-graded O-algebras R = e®X and S = fOY. The blocks of R,
respectively S, are precisely the blocks of @X, respectively OY, covering e,
respectively f.

We shall regard here the opposite algebra S°? as a G-graded algebra with
components SoP = Sy-1, for g € G. Then A = R®0 S is a fully G x G-graded
algebra, and let A = P c(Ry ®o S;P) = As(c) be the diagonal subalgebra
of A, where §(G) = {(9,9) | g € G}, so A may be regarded as a fully G-
graded algebra. Many of our results will be stated in this more general setting.
Assume further that M; (respectively C}) is an R;, S;-bimodule (respectively a
bounded complex of Ry, S;-bimodules) inducing a Morita (respectively derived)
equivalence between R; and S;. Then by [M1, Theorem 3.4], this equivalence
can be lifted to an equivalence between R and S provided that M; (respectively
C:) extends to A. This condition is similar to the condition imposed in [FH]
on perfect isometries.

The above equivalences between R and S are induced by G-graded bimodules
(respectively complexes of G-graded bimodules). One simple, but important
observation is that a G-graded R,.S-bimodule is the same thing as a left A-
module graded by the G X G set G x G/§(G). We develop in Section 3 the
relationship between graded bimodules and modules graded by G-sets.

Section 3 the relationship between graded bimodules and modules graded by
G-sets.

In Section 4 we study Morita equivalences induced by graded bimodules. In
Section 5 we obtain similar results for derived equivalences induced by complexes
of G-graded bimodules, and in Section 6, for stable equivalences of Morita
type which are induced by graded bimodules. We shall also find some “graded
invariants” and other properties of graded equivalences. For example, we show
that if R and S are graded derived equivalent, then the centralizers Cr(R;) and
Cs(S1) are isomorphic as G-algebras and as G-graded algebras.
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We look to some peculiarities of symmetric algebras in Section 7, and in
Section 8 we come back to the case of blocks and we discuss Puig and Rickard
equivalences. In Section 9 we deal with wreath products. We show that a
Rickard or a Puig equivalence between the principal blocks of the base groups of
two wreath products can always be lifted. The problem is making the symmetric
group to act on a tensor power of a complex. Finally, the conclusions which
follow from these reduction steps are drawn in Section 10. We also give here
some examples in which the lifting conditions are satisfied.

In this paper, rings will always be associative with unity, and modules are
unitary and left, unless otherwise stated. We denote by R-Mod, Mod-S and
R-Mod-S the category of all R-modules, right S-modules and R, S-bimodules
respectively. If k is a commutative ring, then by a G-graded k-algebra we mean
that the elements of k have degree 1. If R and S are k-algebras, then an R, S-
bimodule is a module over R®j, 5°P. Beginning with Section 4, K and S will be
G-graded k-algebras which are projective as k-modules. We refer to [D1], [D2]
and [NRV] for general facts on graded rings and modules, to [Gr] for derived
categories, and to [Brl, Section 5] and [Li] for stable equivalences of Morita
type.

2. MOTIVATION: GROUPS WITH ABELIAN SYLOW p-SUBGROUPS

Consider a finite group G and let D be an abelian Sylow p-subgroup of G.
Assume now that Op (G) = 1. We shall see that this is no loss in the context
of Broué’s conjectures. By the results of [FH, Section 5] (obtained by using at
certain stages the classification of finite simple groups), there is an embedding
¢ of G such that:

(2.1) [Timo X% < UG) < [Ti—o(XKi1 Z4)

where:

- X = Op(G), the maximal normal p-subgroup of G,

- X, is a split extension of X, by a p’-subgroup of Aut(Xj),

= 0] =% =1,

- Xi,...,X, is a complete system of representatives for the isomorphism
classes of simple components of G,

- X; is a normal subgroup of X; and Xi/X,- is a Hall p/-subgroup of
Aut(X )/X,,for1<i<s,

- ,...,8, are disjoint finite sets,

- %; is a p'-subgroup of the symmetric group S( ), for1<i<s.

We change now the notations setting G’ = «(G), G = []i, X% G =
[Ti_o(X: %), H= Ng(D), H' = Ng:(D) and H = Ng(D). If D; = X; n
then D; is a Sylow p-subgroup of X; and D = [[{_, D;. Denote Y;
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and Y; = Ng (D;), s0 H = []'_ V™ and H = [J{_,(¥i1 ;). (Remark that for
i =0 we have Dy = 0,(G) = Xo =Y and X, = Y,.) By the Frattini argument
we have X; = Y;X;, hence the map o;: X; /Xi — Y/Y,, o;(yiX;) = ;Y is an
isomorphism. Moreover, a;, 1 < ¢ < s, induce the isomorphism

8 8

a= Ha CIIE xS - [0S, (X, 00) = (Y, 03)
=0 i=1

such that a(G'/G) = H'/H.

In the next sections we shall give conditions under which Broué’s Conjecture
1.2 holds for G’ provided that it holds for the simple components X; of G'.
The reduction steps are motivated by the structure theorem above. For each
i, an equivalence between the principal blocks of OX; and OY; has to be lifted
to an equivalence between the principal blocks of OX; and O?,, then to an
equivalence between the principal blocks of O[X;1%;] and O[ %;], then to an
equivalence for the direct products [];_,(Xi1£;) and [[;_, (¥ Z} i), and finally
to an equivalence for subgroups of these direct products (corresponding under
the isomorphism «). We shall see that restrictive conditions have to be imposed
only at the first step.

3. GRADED BIMODULES AND MODULES GRADED BY (G-SETS

Let G be a group, R = Qagec R, a G-graded ring, and X a left G-set. An
R-module M is called X-graded if M D.cx M. (as additive subgroups), and
RyMy, C My forallz e X,9g€G. IfY 1sasubset of X, we denote My =
@zey M. The category of X—graded R-modules and grade-preserving R-homo-
morphisms is denoted (G, X, R)-Gr. We are interested in the special case when
X ~ G/H, where H is a subgroup of G, and then we denote (G/H, R)-Gr =
(G,G/H, R)-Gr. This is a Grothendieck category with a projective generator.
Notice that for H = G we obtain the category R-Mod and for H = {1}, the
category R-Gr of G-graded R-modules.

We recall from [NRV] some basic results results.

3.1. A G/H-graded R module is a projective object of (G/H, R)-Gr if and only
if it is projective when regarded as an R-module. If G is finite, then the same
holds for injectives.

3.2. If Ris fully graded (that is, RyRp = Rgp for all g, h € R), then the functors
R ®g,, —: Rg-Mod — (G/H, R)-Gr and (—)g: (G/H,R)-Gr — Rg-Mod are
inverse equivalences of categories. Notice also that in this case, for all g € G,
R, is a progenerator of R;-Mod.

Modules graded in this way arise naturally when we consider G-graded bi-
modules.
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Assume that k is a commutative ring, and that R and S are fully G-graded
k-algebras. By an E, S-bimodule we always mean a module over the k-algebra
A = R ®; 5°P. We regard S°? as a (G-graded k-algebra with components
SgP = Sg-1, and A as a G x G-graded k-algebra with A s = Ry ®; SgP.
Let 6(G) = {(g,9) | ¢ € G} be the diagonal subgroup of G x G, and let
A = D,cq By ®x SgP = As(c), which is a fully §(G)-graded (or G-graded)
k-subalgebra of A.

Multiplication in A gives the following bimodule isomorphisms.

(3.3.2) A~R®g A~A®g, R
(3.3.b) A~ 5° Rger A~ A.®5;’p Sep,

where A 1s an R;-bimodule and an $; bimodule in an obvious way. For instance,
the first isomorphism comes from the decomposition G x G = ¢5(9,1)8(G),
and it is graded in the sense that it respects the bijection G x 6(G) = G x G,
(9, (2,2)) = (g2, ).

Let now M be a G-graded R, S-bimodule, that is, M = @ ., M, and
RyM;S), = Mg,y for all g, h,z € G. We denote by R-Gr-S the category of G-
graded R, S-bimodules and graded preserving R, S-linear maps. In other words,
regarding G as a left G x G- set M is an object of (G x G,G, A)-Gr. Using
the isomorphism G ~ G x G/6(G) of G x G-sets, we obtain the equivalence of
categories F: R-Gr-S — (G x G/§(G), A)-Gr, where F(M) = M regarded as
above. _

If N is in turn a A-module, then (3.3) provides the isomorphisms

(3.4.2) ARAN~(R®r, A)@aA N ~RQ®gp, N (of R, S1-bimodules)
(3.4.b) A®aAN = (5P®5» A)@AN ~N®s, S (of Ry, S-bimodules),
and these isomorphisms preserve the gradings via the isomorphism GxG/§(G) ~

G of G x G-sets.
By making suitable transport of structure, we conclude:

Lemma 3.5. The functors F*o(A®a—), R®g, —, —®s, S: A-Mod = R-Gr-S
are naturally isomorphic equivalences of categories, and their inverse is
(=)sayo F = (—h-

We analyse further tensor products and homomorphisms of graded bimod-
ules, so let R, S and T be fully G-graded k-algebras. We need to introduce the
notations A(R,S) = R®; S and A(R, S) = A(R, S)s(a)-

Let first M be a G-graded R, S-bimodule and N a G-graded S, 7-bimodule.
Then M®gsN is a G-graded R, T-bimodule with (MQsN); =, M,®sN,,
and we have the isomorphisms

(3.6.a) M@s N~M®s(S®s, N)~ R®g, (M, ®s, N)

yz=2
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Let now M be a G-graded S,T-bimodule, N a G-graded S, B-bimodule, and
assume that G is finite or that M is a finitely generated S-module. Then, using
[D1, Corollary 3.10], one can easily verify that Homg(M, N) is a G-graded R, T~
bimodule, where for g € G, Homs(M, N)y = {f € Homs (M, N) | f(M;) C Ngq
for all z € G}, and {rft})(m) = f(mt)r forallr € R, t € T, m € M and
f € Homg(M, N). Again, we have the isomorphisms

(3.6.b) Homg(M, N) ~ Homg(S ®g, M1, N) ~ R®g, Homg, (M7, Ny ).

Observe that the isomorphisms (3.6) suggest that the l-component of
M®gN can be identified with M, ®s, N1, and the 1-component of Homg(M, N)
can be identified with Homg, (M, N1). Let us state this precisely.

Recall that since S is fully graded, for all g € G, S§;-1S, = S;, hence there
are elements s} € Sy-1, 8; € g, 1 <@ <! such that

(3.7.) Ei:l sisi =1

Lemma 3.8. Let g € G, ry € Ry, ty-1 € Ty-1 = TJP, and let s}, s; chosen as
in (3.7).

a) Assume that M is a graded R, S-bimodule and N is a G-graded S,T-
bimodule. Then My ®g, N1 is a A(R,T)-module with multiplication

i
re(m ®g, N)tg—1 = ngms’i ®s, sintg-1,

. i=1

form € My, n € Ni. This definition does not depend on the choice made
in (3.7), and the map M; @s, N1 =+ (M ®s N)1, m ®s, n = m Qg n 15 an
tsomorphism of A(R,T)-modules. Moreover we have that

M ®@s N =~ A(R,T) ®a(r,T) (M1 ®s, N1).

b) Assume that M is a G-graded S,T-bimodule, N is a G-graded S, R-
bimodule, and that G 1is finite or M is a finitely generated S-module. Then
Homg, (M1, N1} is a A(T, R)-module with multiplication

i

(tg-1 fro)(m) = sif (simtg-s)r

i=1

for m € M and f € Homg, (M;, N1). Again this definition 1s independent on
the choice made in (3.7), and the map Homg{M,N) — Homg, {(M;,N;), f =
f1 is a A(R,T)-isomorphism. Moreover, if G is finite, then Homg{M,N) ~
A(T, R) ®a(r,r) Homg, (M1, Ny ).
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The explicit R, S-bimodule structure of R ® g, M and M ®g, S in Lemma
3.5, where M is a A(R, S)-module, is given by

q
(Tg ®r, m)sh = ngrj ®R, (T_", Bk Sh)m,
=1

wherefor 1 < j < q,r; € Ry andr; € Ry-1 are chosen such that Z‘;:l riry =1,
and
: !
ro(m ®s, sn) = Y _(rg ®k $))m ®s, sish,

=1

, .
where s;, s} are as in (3.7).

4. MORITA EQUIVALENCES

Let G be a finite group, kK a commutative ring, and let R and S be two G-
graded k algebras, projective over k. These assumptions will also be in force in
the next sections (although we do not need them everywhere). We shall use the
notations 4 = A{R,S) and A = A(R, S) introduced in the previous section,
and denote A(R) = A(R, R) and A(R) = A(R, R) = A(R)s(c)-

We shall say that R and S are graded Morita equivalent, if there is a G-
graded R, S-bimodule M and a G-graded S, R-bimodule N inducing a Morita
equivalence between R and S such that the bimodule isomorphisms a: M ®g
N — Rand B: NQrM — S are grade preserving (that is, a(M,; ® s Ny) C Ry,
and B(N, ®r My) C Sz, for all z,y € G).

There are examples which show that it is possible to have a Morita equiva-
lence between R; and S; (and hence an equivalence between R-Gr and S-Gr)
without R and S being Morita equivalent.

The constructions presented in Section 3 are the main ingredients in the proof
of the following theorem.

Theorem 4.1. Let M; be an Ry, S,-bimodule, N, an S1, R;-bimodule, and de-
note M = RQg, M, and N = N1 ®g,.S The following statements are equivalent:

(i) There is a structure of a G-graded R, S-bimodule on M and a structure
of a G-graded S, R-btmodule on N (extending the given structures), such that
M and N induce a graded Morita equivalence between R and S.

(ii) M1 and N, induce a Morita equivalence between Ry, and Si, and M;
extends to a A-module.

Certainly, graded Morita equivalences have some specific properties. In order
to state them as consequences of the above theorem, we need to recall some well-
known facts.
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4.2.a. Assume that M is a G-graded R, S-bimodule, H is a subgroup of G and
that V is a G/H-graded S-module. Then M sV is a G/H-graded R-module
with components (M ®s Vg = 3, yeou(Mz ®s Vyn) forall z,y,g € G.

4.2,b. If U is a G/H-graded R-module, then Homgp(M,U) is a G/H-graded
S-module with Homg(M,U),uy = {f € Homg(M,U) | f(M;) C Uggn for all
z € G}. In particular, E = Endgr(M)°? is a G-graded k-algebra and M is a
G-graded R, E-bimodule.

4.3.a. Let now U an V be R-modules and H < G. Then by [D2, Theorem
2.1], Homg, (U, V) is a kG-module, and Homg,, (U, V) = Homg, (U, V)¥, where
for f € Homg,(U,V) and g € G, if r; € Ry, 75 € Ry, 1 < j < g are
chosen such that E;=1 rjr; = 1, then 9f(u) = Z;:I i f(riu), for allu € U,
and this action is compatible with the composition. If we start with G-graded
bimodules, then we obtain modules with suitable G-gradings. For example,
Cr(R,) = Endpg, r(R) is a G-algebra and a G-graded algebra, and Cr(R;)¢ =
Z(R) is a graded subalgebra of R.

4.3.b. An R-module W is called relatively Ry-projective if it is a direct sum-
mand of a G/H-graded R-module, or equivalently, by Higman’s criterion [D2,
Proposition 3.3], if idw € T (Endg, (W)). An R-linear map f: U — V is
called relatively Ry-projective if it factorises through a relatively Ry-projective
R-module, or equivalently, if f € Tr$ Hompg, (U, V). Denote by Homp (U, V)
the set of R;-linear maps which factorise through a projective R;-module. Then
it is not difficult to see that HomY; (U, V) is a kG-submodule of Hompg, (U, V')
(invariant under composition too), and T1P1G(Hom’;{1 (U,V)) = Hom} (U,V).
The G-invariant graded ideal C¥ (R;) of Cr(R:) is defined analogously, and we
have C¥ (R:)€ = ZP"(R).

Corollary 4.4. Assume that the equivalent conditions of Theorem 8.4 hold.
Then we have:

a) For each subgroup H of G, Ry and Sy are graded Morita equivalent, and
the categories (G/H, R)-Gr and (G/H, S)-Gr are equivalent.

b) If U and V are R-modules, then there is an isomorphism between the kG-
modules Hompg, (U, V) and Homs, (N, ®r, U, N1 ®r, V'), which restricts to an
isomorphism Homy (U,V) ~ Homg (N1 ®g, U, N1 ®g, V).

¢) For any subgroups H, K of G, the categories Rg-Mod-Ry and Sy-Mod-Sk
are equivalent.

d) There is an isomorphism Cgr(R1) ~ Cs(S1) of G-algebras and G-graded
algebras, which restricts to an isomorphism C¥ (Ry) ~ C% (S1).
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5. DERIVED EQUIVALENCES

If A is an abelian category, we denote by D®(A) the derived category of
bounded complexes of objects of A, and notice that the constructions given in
Sections 3 and 4, (especially (3.2), (3.5), (3.8), {4.2) and (4.3) extend to the
derived categories.

The algebras R and S are said to be derived equivalent if the categories
D®(R-Mod) and D*(S-Mod) are equivalent as triangulated categories. By the
results of [Ri2, Sections 3,4], R and S are derived equivalent if and only if there
is an object C € D®(R-Mod-8) and an object D € D®(S-Mod-R) such that

L
C ®s D ~ R in D*(R-Mod-R) and D &g C ~ S in D*(S-Mod-S). In this case,

the equivalence is given by the functors D én — ~ RHompg(C,-) and C gs -
and we also have that D ~ RHomg(C, R) in D?(S-Mod-R). Then C is called a
two-sided tilting complex for R and S, and D is an inverse of C.
The purpose of this section is to show that results similar to those of Section
4 hold for derived equivalences induced by complexes of G-graded bimodules.
We say that R and S are graded dertved eguivalent if there are objects
. C € D°(R-Gr-S) and D € D%(S-Gr-R) inducing a derived equivalence between

R and S such that a: C és D — Rand 8: D ég C — § are isomorphisms
in- D°(R-Gr-R), respectively in D®(S-Gr-S). We have first a rather straightfor-
ward consequence of the fact that the categories D®(R-Gr-S) and D°(A-Mod)
are equivalent.
Theorem 5.1. The following statements are equivalent:

i) R and 8 are graded derived equivalent, and D € D®(S-Gr-R).

it) There are objects C1 € D°(A(R, S)-Mod), D; € D*(A(S, R)-Mod), and

L L
isomorphisms a1: C1 ®s, D1 — Ry in D*(A(R)-Mod) and B;: D1 ®g, C1 = Si
in DY(A(S)-Mod).

If we only know that a two-sided tilting complex for R; and 81 extends to
A(R,S), then additional hypotheses are needed.

Theorem 5.2. Assume that the order of G is invertible in k. Then the follow-
ing statements are equivalent:

(i) R and S are graded derived equivalent.

(ii) There is an object C; € DP(A-Mod) which, regarded as an object of
D¥(R;-Mod-S,), is a two-sided tilting complez for Ry and S;.

Corollary 5.3. If the equivalent conditions. of Theorem 5.1 hold, then:
a) For each subgroup H of G, Ry and Sy are graded derived egquivalent, and
the categories D*((G/H, R)-Gr) and D*((G/H, S)-Gr) are equivalent.



116 ANDREI MARCUS
b) If X,Y € D*(R-Mod), then

L L
RHompg, (X,Y) ~ RHoms, (C; ®r, X,C: ®r, Y) in D*(kG-Mod) .

¢) For any H,K < G, the categories D°(Ry-Mod-Rk) and D*(Sy-Mod-Sk)
are equivalent. )

d) There is an isomorphism Cr(R:) ~ Cs(S;) of G-algebras and G-graded
algebras which restricts to an isomorphism C¥ (Ry) ~ C% (S1).

Assume that k is a field of characteristic p > 0 or a complete discrete val-
uation ring with residue field of characteristic p. Then vertices of R-modules
and defect groups of blocks of R can be defined (see [D2] and [B, Section 3]).
It follows by our results that a graded derived equivalence between R and S
preserve vertices of modules and induces a bijection between the blocks of R
and S such the defect groups are preserved.

6. STABLE EQUIVALENCES OF MORITA TYPE

In order to simplify the statements of our results, we shall assume in this
section that k is a field, and that R,S are finite dimensional fully G-graded
k-algebras. We denote by R-mod the category of finitely generated R-modules
(in general, by a module we shall understand a finitely generated module), and
by R-mod its stable category. Analogously, (G/H, R)-gr is the stable category
of (G/H, R)-gr.

Since in geperal there is no obvious relation between M and N, the following
theorem is an easy consequence of the results of Section 3.

Theorem 6.1. Let M, be an Ky, S;-bimodule, N1 an S;, Ri-bimodule, both
projective as left and right modules, and denote M = R@gr, M1, N = N; ®s, S.
The following statements are equivalent:

(1) M extends to a G-graded R,S-bimodule and N eztends to a G-graded
S, R-bimodule such that M and N induce a graded stable equivalence of Morita
type between R and S. ,

(ii) M; extends to a A(R, S)-module, N, extends to a A(S, R)-module, and
there are isomorphisms M; ®g, Ny ~ Ry ® U1 tn A(R)-mod and N; g, M; ~
S1 @ V1 in A(S)-mod, where Uy 1s a projective A(R)-module and V1 is a pro-
jective A(S)-module.

Corollary 6.2. If the equivalent conditions of Theorem 5.4 hold, then

a) For each subgroup H of G, Ry and Su are graded stably equivalent, and
the categories (G/H, R)-gx and (G/H, S)-gF are equivalent.

b) If U and V are R-modules, then the map f + Hompg, (N1, f) induces an
isomorphism between Hompg, (U, V) and Homg, (N, ®r, U,N; ®g, V) as kG-
modules.
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¢) For all subgroups H, K of G, the categories Ry -mod’ -Rk and Sy-mod” -
Sk are equivalent, where the objects of Ry-mod” -Rx are bimodules which are
projective as left and as right modules.

d) Cr(R1)/C¥ (R:1) and Cs(S1)/C% (S1) are isomorphic as G-algebras and
as G-graded algebras.

We discuss further a particular case of stable equivalences of Morita type
~ equivalences which are induced by adjoint functors at the level of module
categories. This situation frequently occurs (see [R2, Corollary 5.5] and [Brl,
Section 5 and Example 6.4]).

Let M be a G-graded R, S-bimodule, Homgp(M, -): R-mod — S-mod and
M ®s —: S-mod — R-mod. The adjunction induces the natural maps

o: M ®s Homp(M,R) = R of G-graded R-bimodules, and

B: S — Homgr(M,M Qs S) of G-graded S-bimodules.

Denote N = Hompg(M, R), which is an object of S-gr-R. Then we have a
natural homomorphism of G-graded S-bimodulesy: N®g M — Homg(M, M).

Taking now the 1-components of these maps, by the results of Section 3, we
deduce that

ar: M; ®s, Ny — R, is A(R)-linea,r,
B1: 81 = Homp, (M1, M1 ®g, S1) is A(S)-linear, and

v: N1 ®g, M; — Hompg, (M;, M) is A(S)-linear.

Notice also that if M is projective in K-mod and in mod-S, then « is an
isomorphism and the functors Homg (M, ~) and N ® g — are isomorphic.

The next proposition can now be deduced without difficulty from the above
remarks and from the following well-known consequences of (3.1), {3.2) and
(4.3).

6.3. The k-algebra R is selfinjective if and only if R; is selfinjective.
6.4. If the order of G is invertible in k, then an R-module U is projective if
and only if U is projective as an E;-module.

Assume that M is a G-graded R, S-bimodule and N is a G-graded S, R-
bimodule, both projective as left and right modules. We say that M and N
induce a graded stable equivalence of Morita type between R and S, if there are
isomorphisms M ®g N ~ R@U in R-Gr-R, where U is a projective R-bimodule,
and N®g M ~ S @V in S-Gr-S, where V is a projective S-bimodule.

Proposition 6.5. Assume that R and S are selfinjective algebras and that the
order of G 1is invertible in k. Let M, be an R;,S;-bimodule, projective in
Ri-mod aend in mod-S;, and denote M = R ®g, M. The following condi-
tions are equivalent:
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(i) M extends to a G-graded R, S-bimodule, a is an epimorphism with Ker «
projective R-bimodule, and B is a monomorphism with Coker 8 projective S -
bitmodule.

(ii) M, extends to a A-module, oy is an epimorphism with Ker o projective
R; -bimodule, and B is a monomorphism with Coker 8; projective S;-bimodule.

7. A REMARK ON SYMMETRIC ALGEBRAS

We return to our original situation: R = eOX and § = fOY, wheree € OX
and f € OY are G-invariant block idempotents. Then R is a symmetric crossed
product algebra with symmetrizing form A: B — O (where A(}] oz @z%) =
a1), and the restriction A;: B; — O of A to R; is a symmetrizing form for R;.
Moreover, for all 7 € R; and g € G, we have that A\;(grg~") = A1 (r). Similar
statements hold for S too, where we denote by u: S — O the symmetrizing
form. The following statements are true under these more general assumptions.

Let M be an (R;, S;)-bimodule. Then its O-dual M™* is an (S;, R;)-bimodule,
and Homp(R®g, M,0) ~ Homgp(R®g, M,R) ~ M*Qpg, R as G-graded (S, R)-
bimodules.

Let (C,d) be a bounded complex of (Ri,S;)-bimodules. Then C* is a
complex of (S;,R:)-bimodules, naturally isomorphic to Homg, (C, R;), and
(R ®g, C)* ~ Hompg(R ®g, C,R) ~ C* ®g, R as complexes of G-graded
(S, R)-bimodules.

8. LOCAL STRUCTURE

The Frobenius category Frp(G) of a finite group G has as objects the p-
subgroups of G, and the morphisms between two p-subgroups are those group-
homomorphisms which are induced by inner automorphisms of G. Then two
finite groups G and H are said to have the same p-local structure if they have a
common Sylow p-subgroup D, and the embedding of D in G and H induce an
equivalence of the categories §t,(G) and Fr,(H). This means that:

(8.1) For any subgroups P, @ of D and any isomorphism ¢: P — @, there is
an element g € G such that ¢(z) = gzg~?, for z € P, if and only if there is an
element & € H such ¢(z) = hah™! for z € P.

It is well-known that in the situation of Broué’s conjecture (when D is abelian
and H = Ng(D)), the groups G and H do have the same p-local structure.

Let e € Z(OG) and f € Z(OH) be the principal block idempotents. By a
Rickard equivalence between OGe and OH f we mean that it is given a bounded
complex (C,d) of (OGe, OH f)-bimodules such that:
(8.2.a) For each integer i, C* is projective in OGe-mod and in mod-OHf.
(8.2.b) If we denote C* = Home(C, O), then there are homotopy equivalences
of complexes of bimodules C ® ouy C* ~ OGe and C* Qpg. C ~ OHf.
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(8.2.c)  For each integer i, C* is a p-permutation O[G x H°P]-module with
vertex contained in §(D) = {(z,27!) |z € P} C G x HP.

If these conditions hold, then C will be called a Rickard tilting complez for
OGe-mod and OH f-mod. These complexes were called “splendid” in [R3], and
their main feature is that they induce derived equivalences between the principal
blocks of the local subgroups Cz(P) and Cy(P) for all subgroups P of D. The
local tilting complexes are obtained in the following way (see [R3, Sections 4
and 5)):

{(8.3.a) Apply to C the Brauer functor

Brist' (=) = (=)(6(P)): O[G x H?-mod — k[Ngxzer (§(P))]-mod.
(Recall that for an OG-module M,

BrE(M) = M(P) = MP /(D Trg(M?)+pMF) = k@o(MT/ > TrH (M),
Q<P Q<P

where M7 is the set of points fixed by P, and Trg: M@ — MPF is the trace
map.)

(8.3.b) Regard C(6(P)), by restriction, as a complex of p-permutation k[C¢ (P)
x Cy (P)°P]-modules.

(8.3.c) Finally, lift C(8(P)) to obtain a complex Cp of p-permutation O[Cs (P)
x Cg (P)°Pl-modules, which will be a Rickard tilting complex for the principal
blocks of O[Cs(P)] and O[Cyx(P)].

Similarly, the blocks OGe and OH f are said to be Puig equivalent if there is a
Morita equivalence between them defined by an {(OGe, OH f)-bimodule M (and
by its O-dual M*) such that M is a relatively §(D)-projective p-permutation
O[G x H°P]-module.

In particular, if OGe and OH f are Puig equivalent, then they are Rickard
equivalent and moreover, one obtains Morita equivalences between the principal
blocks of the local subgroups Cg(P) and Cy{P), where P < D, by applying to
the bimodule M the same algorithm as in (8.3).

We point out that we may assume that Op (G) = 1, where O, (G) is the
maximal normal p’-subgroup of G. Denote G = G/ Op(G), and let 7: G — G,
m(g) = § be the caponical map. Then D may be viewed as a common Sylow
p-subgroup of G and G. By [FH, Proposition 7.C], = induces an equivalence
between Ft,(G) and Fr,(G), and it is not difficult to see that the principal
blocks of OG and OG are Puig equivalent. Denote by OGe the principal block
of OG and OGE the principal block of OG.

Therefore, if H is another group having D as a Sylow p-subgroup, OH f the
principal block of OH, and H = H/Op (H), then G and H have the same p-
local structure if and only if G and H have the same p-local structure; further if
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OGé and OH f are Puig (respectively Rickard equivalent), then OGe and OH f
are Puig (respectively Rickard) equivalent.

We shall refine the conclusions of the preceding sections by showing the
relationship between the different local equivalences which are obtained applying
the Brauer functor. In view of [R3, Section 5], it is no loss to consider only
modules over k. We need to know the behaviour of the Brauer functor with
respect to induction.

Lemma 8.4. Assume that H < G and that P < D are p-subgroups of H. Let
M be a relatively D-projective p-permutation kH -module. If Cq(P)Ty(P,D) =
TG(P, D), then there 1s a natural isomorphism of k[Cg(P)]-modules
c N
Indge (7 (Resg(£) (Brf (M))) ~ Resp (1) (Brf (IndF (M))).

We return now to the original situation, and assume that e € Z(kX) and
f € Z(kY) are the principal block idempotents. Let R = ekX, Ry =ekX, §=
fkY, S1 = fkY, A = R® S°° and A = Asg). We also denote for short
5(G) = {(z,y™1) € X x 7o | afaX) = y¥'}.

We shall make the following additional assumptions:
(8.5.a) G is a p'-group.
(8.5.b) D is a common Sylow p-subgroup of X and Y, and X, Y have the same
p-local structure in a way compatible with the isomorphism a: X/X — f’/ Y,
that is, (see(8.1)): for any subgroup P,Q of D and any ¢ € Hom(P, @), there
is ¢ € X such that o(u) = zuz~! for u € P if and only if there is y € ¥ such
that o(u) = yuy~* for u € P, and z,y are related by a(a:X) =yY.

(8.5.c)  For any subgroup P of D, a(C; (P)X/X) = Cy(P)Y/Y.
IfP is a subgroup of D, we denote Xp = Cx(P), Yp = Cy(P),XP = Cgx(P),
Yp = Cy(P). Then ep = Bry(e) € Z(kXp) and fp = Brb(f) € Z(kYp) are

the prmcxpal block idempotents. The condition (8.5.¢) imply that o induces
the isomorphism ap: Xp/Xp - Yp/Yp, ap(zX)N Yp for z € Xp. Denote by
G p these two isomorphic groups, and consider the fully Gp-graded k-algebras
RP = epkXp and SP = fpk¥p with RF = epkXp and S = fpkYp. Then
AP = RP ®, SPP is a fully Gp x G¥-graded k-algebra, and let AF = Af(cp)»
where we also identify Gp = {(z,y7') € Xp xYp | ap(zXp) = yYp}. Denote
finally 6: D — X x Y7, §(u) = (u,u"!), and notice that Cxxye»(6(P)) =
Xp x Yf;”, C,S(G)(CS(P)) = (5(Gp) and Cj(xf/op(a(P)) = X-p X YI‘,"’.

Corollary 8.6. With the above notations, assume that conditions (8.5) hold.
a) Let M be a relatively §(D)-projective p-permutation (Ry, Sy )-bimodule such
that (M, M*) defines a Puig equivalence between R, and S;. Assume that M
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extends to a A-module AM = M. Then M = A®a M is a relatively §(D)-
projective p-permutation A-module and (M, M *} defines a Puig equivalence be-
tween R and S. Moreover, the modules inducing the local equivalences are re-
lated in the following way (where P < D):

Brf(;)’-’” (M) ~ AF ®@4» Brj‘(;)”” (M) (as AP-modules).

b) Let C be a Rickard tilting complex for Rl_ and Sy. Assume that C extends
to a complezx AC = C of A-modules. Then C = A®pa C is a Rickard tilting
complez for R and S. Moreover, we have:

Brg((;)?” (C) ~ A” ®@4r Brf(}’;)yop(C') (as complexes of A¥-modules).

Observe also that Brf(;)}-m (M) is actually a G p-graded (A7, BF)-bimodule,

and Brf(;)?op (C) is a complex of Gp-graded (A7, BF)-bimodules.

9. EQUIVALENCES FOR, WREATH PRODUCTS

Let € = {1,...,n} and ¥ a subgroup of the symmetric group S(f2). We will
show in this section that equivalences between two blocks of OX and OY lift
to an equivalence between blocks of O[X Y] and O[Y 1 Z]. ‘

If M is an (O-free) O-module, denote M®® = M ® --- ® M (n times), and
if (C,d) is a (bounded) complex of O-modules, let again C®? =C®...® C
(n times) with the differential defined by: :

dlei, ®...@ci,) =Y (-1 HIng @ ®dey ®. .. ®c,,
=1
where ¢;, belongs to the [-th factor C of C®% and has degree 1, € Z. We shall
denote for short ¢;; ® ... ®¢i, = cj; ... cj, € (COF)itFin,

The next lemma shows that S() acts naturally on M®® and on C®%,
Lemma 9.1. a) Let M be an O-module. Then M®® becomes a left O[S(Q)]-
module by defining, foroc € S(Q) andm=m; ® ...®@m, € M®Y,

O TM = M- @ Q@ M-t (py-
b) Let (C,d) be a complex of O-modules. Then there 1s a function
€: S(R) x Z§ = Zy such that by defining:

o (Ciy .- Cin) = (—1)6"(1'1""’i“)cz‘,~x<x) s Ci 1y

C®9 becomes a complez of O[S(Q)]-modules.

Frm=m®..0m,c M®? ¢c=¢;, ®...®@c¢;, € C®® and o € T, we
shall also denote ‘m = o0 -m, %c=0-¢,m° =o¢ > - mand¢® =~ 1-¢c If
X is a group and A is an O-algebra such that aré given group-homomorphisms
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L — Aut X and ¥ — Aut A, then we denote by X xZ = {z0 |z € X, ¢ € T},
AxY = {ac | a € A, o € T} with multiplications (zc)(yr) = 2-% - o7 in
X %X, and (ao)(br) =a-% o1 in Ax Z.

We return now to our basic situation. Let X, Y be two groups and e € Z(0X),
f € Z(OY) be block idempotents. Then &€ = e®?? =e® ---® e € (0X)®9 ~

O[X% and f = 2 € (OY)®® ~ O[Y?] are T-invariant block idempo-
" tents. Denote R; = e0[X?] =~ (eOX)®% 5, = fO[Y?] ~ (fOY)®?, and
let R=R, *L ~E0[X1X]and § = S; * % =~ fO[Y 1 £]. Then R is a fully
Y-graded O-algebra, and its elements are of the form ro = (r; ® ... ® )0,
where r; € e0X and the multiplication is given by

(ro)(r'dY=r %" 00’ = (7‘17‘;_x(1) ®. ..rnr(’,_,(n))aa',

and similar statements hold for S.

We may apply the results of the preceding section with €, f in the place of
e, f, with X2 Y% in place of X, Y, with X2, Y1 in place of X, Y and with £
in place of G. Since T is naturally isomorphic to (X 1)/ X% and to (Y13)/Y9,
the isomorphism o may be regarded to be just the identity. Denote again A =
R®0S5° and A = A4(x), where §(2) = {(0,067") | o € £} C Tx Z°P. There are
isomorphisms A ~ (R1 ®0 S;F)*(E X L) and A ~ (B; ®0 S;7)*6(Z) ~ A1%Z,
so we may write A = {(r® s)o | r € Ry, s € S{¥, ¢ € £}, with multiplication
defined by

(r@s)e-(r'®s) =(r -7 ®% -s)os'.
Let now M be an (eOX, fOY)-bimodule. Then M®? is an R; ®¢ S{P-

module. The point is that due to Lemma 9.1, M®¢ extends to a A-module by
defining

(r@sje-m=(r® s) TN = TIMe-1(1)81 ® -+ @ TaMg—1(n)Sny

hence we may talk about the (R, S)-bimodule M) X = A ®a M. As we have

seen in Section 3, M ! ¥ is naturally isomorphic to R ® g, M and to M ®g, S.
If C is a complex of (eOX, fOY)-bimodules, we define similarly, using Lemma

9.1, the complex of (R, S)-bimodules C1¥ = AQAC = 0L ®p C =~ C Qp OL.
The following theorem is just a particular case of the previous results.

Theorem 9.2. a) Assume that (M, M*) defines a Morita equivalence between
eOX and fOY. Then (MZ, (M 12)*) defines a Morita equivalence between R
and S, inducing Morita equivalences between the corresponding blocks of O[X1Z]
and OY 1 %] covering & and f.

b) Assume that £ 1s a p’-group and that (C, C*) defines a derived equivalence
between eOX and fOY. Then (CU1E,(C15)*) defines a derived equivalence
between R and S, inducing derived equivalences between the corresponding blocks
of O[X 1Z] and O[Y 1 T] covering & and f.



GRADED EQUIVALENCES AND BROUE'S CONJECTURE 123

Assume in addition that: T is a p'-group, eOX and fOY are the principal’
blocks, D is a common Sylow p-subgroup of X and Y and X, Y have the same
p-local structure, M is a relatively 6(D)-projective p-permutation O[X x Y °P]-
module and C is a bounded complex of relatively §(D)-projective p-permutation
O[X x Y°P]-modules. Then, in Theorem 9.2, the expression “Morita equiv-
alence” can be replaced by “Puig equivalence” and “derived equivalence” by
“Rickard equivalence”. Indeed, it is easy to verify that the following statements
are true: @9 € (0OX)®? and f®9 € (OY)®% are the principal block idempo-
tents; D? is a common Sylow p-subgroup of X¢ and Y and X9, Y9, respec-
tively X1, Y1 have the same p-local structure as required in (8 5.b); for any
subgroup P of D%, the obvious isomorphism a: X 12/X% — Y1 Z/T* has the
property a(Cx = (P)XY/X?Y) = Cyx(P)Y?/Y? (as required in (8.5.c)); M®®
and C®9 are relatively 6(D®)-projective and p-permutation over k[ X ? x Y P],
and apply Corollary 8.6.

10. CONCLUSIONS AND EXAMPLES

In this section we put the things together in order to obtain equivalences
between blocks in the situation presented in Section 2.

For 0 < ¢ < s let X; be a normal subgroup of X; and Y; a normal subgroup
of ¥;, such that there is an isomorphism o;: X;/X; — Y;/Y;. We identify
these two factor groups and we denote them by G;. Let further §,...,€,
be disjoint finite sets, and let ¥; < S(£;). Then «; induces the isomorphism
ol X x® 5 YR /Y™ and these factor groups may be identified with
G, a; also induces the isomorphism o™ : X1 Z;/ X — V12,/Y, and we
identify these factor groups with G; 1 £;. Consider the isomorphism

a_Ha, HO /HX“ %HO i)/l_I()Xf’*,

and let G = [[°_,G:15;. Denote X = [[L X,V = [[L, ¥, X =
ITi-o X%,V = H;Of/i ! &;, and consider the subgroups X < X' < X,
Y <Y’ <Y such that o(X’/X) = Y'/Y. Finally, identify X'/X =Y'/Y =G’
via the restriction of a.

Let e; € OX; and f; € OY; be block idempotents, and denote R} =
e®HO[XaT), §F = fEHOYIE), Ri = e0X, S1 = fOY (where e = ®7_,e®%
and f = ®%Lof®%), R=eOX ~ [}, R and S = fOY ~TJ]}_, S* (where the
isomorphisms are of G-graded rings).

Furthermore, let A = R ®p S% ~ [];_o A® (where A* = R* ® S* °P), and
let A = A&(G) ~ H:zo(Ai)®Q (where At = (eiOX,' R0 in?'-op)(;(Gl.)). We
shall also consider the G'-components R’ = Rg = 69966, R,, 5" =8¢, A =
AG'xG"’” = R’ ®O S'Op and AN = A’ 5(G")"
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For 0 <1 < s, let M; be an (e;0X;, fi0Y;)-bimodule and C; a (bounded)
complex of (e;0X;, f;OY;)-bimodules, and denote M = ®Z_ M®% and C" =
®f:001 R .

Theorem 10.1. Assume that for 0 < i < s, M; extends to a Ai-module and
C; extends to a complez of A*-modules.

a) If for 0 < i@ < 5, (Mi, M}) (respectively (C;,C;*) ) defines a Morita
(respectively derived) equivalence between ¢;0X; and f;OY;, then M (respec-
tively C') extends to A, and (A’ @a' M, (4’ ®ar M)*) (respectively (A’ @a: C-,
(A®ar C')*), provided that G; and ; are p'-groups ) defines a Morita (respec-
tively derived) equivalence between R’ and S'.

by Assume in addition that for each i, the conditions (3.8.a,b,c) are satisfied
by Xi,Y;, X, Y, G and o, and that £; is a p'-group. If for 0 < i < s, M;
(respectively C;) defines a Puig (respectively Rickard) equivalence between e;OX;
and f;0Y;, then A’ ®ar M (respectively A’ ®a: C*) defines a Puig (respectively
Rickard) equivalence between R’ and S'.

The hypothesis if Theorem 5.1 has to be verified for each 0 < 7 < s. We
discuss here two situations when this checking is easy.

10.2. With the notations of Section 2, the case i = 0 is trivial. Suppose
that X =Y, X = ¥, D is a Sylow p-subgroup of X and that G = X/X is
a p'-group. Let eOX be the principal block, and denote By = S; = eO0X,
R =25 =eOX, and let M = eOX regarded as an R;, S;-bimodule. Then M
is in fact a A-module simply because X is normal in X, and it is clearly a
relatively 6(D)-projective p-permutation A -module. It follows that M defines
a Puig autoequivalence of eOX and M = A®a M ~ R®p, M ~ R defines a
- Puig autoequivalence of eOX.

10.3. Another nice situation which may occur for 1 < 7 < s is that of
isomorphic blocks. Let X be a normal subgroup of X such that X = Cy(D)X
where D is a Sylow p-subgroup of X and G = X/X is a p/-group. Let e and
Then the principal blocks eOX and é0X are Puig equivalent.

Let now Y be a normal subgroup of another group ¥ such that D is also a
Sylow p-subgroup of Y, ¥ = Cy(D)Y and X/X ~Y/Y, and let f, f be the
principal block idempotents of OY and OY, respectively. It follows that if e® X
and fOY are Puig (respectively Rickard) equivalent, then é0X and FOY are
Puig (respectively Rickard) equivalent. '

Remark that if X, X and D are as above, and ¥ = N3z(D), Y = Nx(D),
then ¥ = Cy(D)Y, so these observations apply.

10.4. Examples a) The principal 3-block of As. Although this example fits
into the situation of [P] (see also [Br2, p.14]), we shall deal with permutations
instead of regarding As ~ SL3(4). So let X = A5, D = ((1 2 3)) a Sylow
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3-subgroup of X, Y = Nx(D) = D x (y), where y = (1 2)g, ¢ = (4 5),
and let U = {e, (1 2)(3 4),(1 4)(2 3),(1 3)(4 2)} be a Sylow 2-subgroup of X.
If M = k[X/U] is the k-space with basis X/U, then M is a relatively §(D)-
projective 3-permutation £[X X Y°P]-module, and defines a Puig equivalence
between the principal 3-blocks of kX and kY.

Let now X =S5 = X » G, where G = (g), g=(12),and Y = Nz(D). We
see that M extends to a A-module by defining an action of G on M: g-aU =
z9U, which is correct, since g normalizes U. Consequently, Corollary 8.6 applies.

b) Symmetric groups. This example was considered in [Roul]. Let X be the
symmetric group Sp, and let w < p so the wreath-product XS, is a subgroup
of Spy. Let D be a (cyclic) Sylow p-subgroup of X and let e (respectively f) be
the principal block idempotents of OX (respectively OY, where Y = Nx(D)).
Then by [Rou2, Theorem 10] and the results of Section 9 above, we deduce that
e®?O[X 1 Sy] and f®YO[Y 1 S, are Rickard equivalent.

¢) In [Rou2], several examples of derived equivalences between the principal
blocks e and f of the groups X and Y = Nx (D) respectively (where D is an
abelian Sylow p-subgroup of X) coming from stable equivalences between eOX
and fOY were constructed. All of them satisfy the liftability conditions. Let
R=0X and R = fOY, where Y = N (D) and assume that G = X /X ~ Y/Y
is a p'-group. Suppose that eOX f induces a stable equivalence of Morita type
between R; and S;. By [Li, Theorem 2.1], eOX f has, up to isomorphism,
a unique indecomposable nonprojective R;,S;-direct summand. It is obvious
that eOX f extends to a A-module, and M also extends to A. Let 7: P - M
be a projective cover in A-mod of M. Since G is a p/-group, we have that
J(A) = J(A1)A = AJ(A;), hence P is a projective cover of M in A;-mod too.
Under suitable hypotheses, a tilting complex

Py

C=0—=P — M-0)
for B, and S, was constructed in [Rou2], where P’ is a A;-direct summand
of P, with the property that P’ and P/P’ have no common direct summands,
and 7' is the restriction of 7 to P’. Then P’ and P/P’ extend to A such that
P~ P'®P/P" in A-mod. Consequently, C extends to a complex of A-modules
and A ®a C is a tilting complex for R and S.
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ABSTRACT. This is an expository paper. We provide a motivation for
the study of crossed coproducts by discussing the connection between the
algebra and coalgebra structures of a Hopf algebra with an eye to its
representation theory.

It happens frequently that meaningful mathematical objects are "marriages”
between two notions or concepts, each of them having a substantial contribution
to the success of the couple.

Let us look, as an example from commutative algebra, at Cohen-Macaulay rings.
They are defined, roughly speaking, by an equality between height and depth.
Depth’s bad behaviour under localization is “repaired” by its being equal to
height. On the other hand, it can happen (in general) that the heights of two
prime ideals with none between them differ by more than 1. This is not possible
in the case of Cohen-Macaulay rings, because the equality of height and depth
doesn’t allow it to happen. In conclusion, height’s contribution is the good
behaviour under localization at a prime ideal, while depth brings catenarity.
The purpose of this note is to discuss another example of such a coexistence,
namely the one of the algebra and coalgebra structures in a Hopf algebra. For
obvious reasons, the algebra structure will play the main part, so we will try to
focus on the contribution of the coalgebra structure to a better understanding
of the algebra, and in particular of its representation theory.

We try to keep the exposition at a highly non-technical level: there will be few
rigorous definitions, no diagramis, and (perhaps the most surprising of all) no
"sigma notation” summations.

The interested reader is referred to the expository papers [4] and [25]. Many
of the results we are quoting from the original papers may be also found in S.
Montgomery’s monograph [24].

We begin by recalling a few definitions that may be found in [31] or [24, Ch. 5].
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A vector space C over the field k is called a coalgebra provided there exist k-
linear maps A : C — C® C and ¢ : C — k, making two diagrams commute:
the commutativity of the first diagram says that A is coassociative (which means
that after applying it once, it doesn’t matter on which of the components one
applies it again), while the commutativity of the second one ensures that ¢ is
a counit (meaning that after applying it on any component of a A(c) (¢ € C),
one gets ¢ again (after the standard identifications C ~ C® k >~ k® C)). A
coalgebra is said to be cocommutative if A =T o A | where T is the twist map
T:C®C —C®C,T(c®d) =d®c. A subcoalgebra of a coalgebra C is a
k-subspace C' of C such that A(C') C C' ® C'. C is simple if it has no proper
subcoalgebras, and irreducible if it has a unique simple subcoalgebra. If C is a
coalgebra, then the set of group-iike elements of C is defined by

G(C)={geClg#0and A(g) =g ®g}-
If g € G(C), then €(g) = 1, and a simple subcoalgebra of C is one-dimensional
< it is equal to kg for some g € G(C). A coalgebra is said to be pointed if all

its simple subcoalgebras are one-dimensional.
If g, h € G(C), then the set of g, h — primitive elements of C is defined by

Pin={ceC|Alc)=c®g+h®c}.
If ¢ € Py p, then €(c) = 0. The 1,1-primitive elements are called simply primi-

tive, the other ones are called skew-primitive.
For each pair g, h € G(C), let P, ; be a subspace of Py, such that

P, n=k(g—h)® Py ,.
The coradical Cy of the coalgebra C is the sum of all simple subcoalgebras of
C. If C is pointed, then Cy = kG(C). The coradical is the bottom piece of

a filtration, called the coradical filtration of the coalgebra C, which is defined
inductively as follows: for each n > 1 put

Cn = Up—-i1 A Co = A‘l(Cn_l ® C+ C ®Co)

The following important result tells us more about the coradical filtration of
a pointed coalgebra. Roughly, it says that in this case the quotients of the
coradical filtration consist of skew-primitives.

Theorem 1.2. (Taft-Wilson, [33] or [24, 5.4.1]) Let C be a pointed coalgebra,
with G = G(C). Then

1) C1 = kG ® (®g,nec Py 1)

2) for anyn > 1 and ¢ € Cy,

c= Z cg;h, where A(cgn) =cgn ® g+ h®cgn +w,
9.hEG

for some w € Cp_1 @ Cp-1.
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Let S denote the set of simple subcoalgebras of a coalgebra C.

Definition 1.3. The quiver I'c 1is the ortented graph whose vertices are the
elements of S; there exists an edge S; — S2 (S; €8) & S2AS1 #8511+ 85,. C
1s called link-indecomposable (L.I.) if T'¢ is connected. When C 1s pointed we
writex =y (z,y € G(C)) if kz — ky. By Theorem 1.2 we have that z = y &
there exists a non-trivial z,y-primitive element.

Remark 1.4. It was proved in [26] that [¢ is isomorphic (as a directed graph)
to the Ext quiver of simple (right) C-comodules.

The following dual to a classical theorem of Brauer was also proved in [26].

Theorem 1.5. Any coalgebra C decomposes as a direct sum of its link-inde-
composable components (which are the mazimal subcoalgebras with respect to
their quiver being connected).

Example 1.6. If C = U(L), then § = {kl}, PL1 =L # 0, so ¢ zsaloop
(one vertez, 1, and an arrow from it to itself).

Example 1.7. Let H = U,(sl(2)) for g not a root of 1, as described by Drinfeld
and Jimbo (see [15]). As an algebra, it is

K2 _ K—Z
)
Its coalgebra structure is given by K € G(H) and E,F € Py k. It is known
that H is pointed, with G(H) = (K), that the skew-primitives are in the kG(H)-
module spanned by 1, E, and F' and that for alln, EK™ and FK™ € Pgn-1 gn+1.

Consequently, Ty consists of two connected components (U,(sl(2)) is not link-
indecomposable):

kK(E,F,K,K' | KE=q¢*EK,KF = ¢ *FK,EF - FE =

- K3 5 K' o K — K =
- K2?2 - 1 — K? o5 K -

A k-algebra A is defined by reversing the arrows in the diagrams defining a
coalgebral: we have thus k-linear maps M : A ® A — A (multiplication), and
u:k — A (unit). A k-vector space H which is in the same time an algebra
with multiplication M and unit u, and a coalgebra with comultiplication A and
counit £ is a bialgebra if M and u are coalgebra maps, or, equivalently, A and
¢ are algebra maps (the definitions of coalgebra maps and tensor products of
coalgebras being obvious; also note that k itself is a coalgebra and an algebra
with all maps equal to the identity). A bialgebra H with an antipode S (which
is a two-sided inverse of the identity of H under an operation on Homg(H, H)

1This is an old coalgebraists joke which I quote from a W. Nichols and M. Sweedler paper,
which is ”a revision by the second author to notes taken by the first author at lectures given
by the second anthor”.
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(named convolution) determined by the algebra and coalgebra structures of H)
is called a Hopf algebra.

Let us look now at the definitions of representations of groups and Lie alge-
bras. Let G be a finite group. A representation of G is a group morphism

G — GL(V),

where V is a k-vector space, or, equivalently, a module over the group ring £G.
A representation of the Lie algebra L is a Lie map

L — gi(V),

or, equivalently, a module over the universal enveloping algebra U(L).

Both kG and U(L) have additional structures. Our main goal is now to see
how these structures help to study the representations. Let us see what these
additional structures are. First, both of them are coalgebras, and even Hopf
algebras. The coalgebra structures are given as follows:

- In the case of kG we let the elements of G be group-like, i.e. we put A(g) =
g®g,e(g) =1for all g € G. The antipode S is defined by S(g) = g~*. Now
extend all the above functions by linearity.

- In the case of U(L) we make all elements z of L primitive, i.e. A(z) =
z®1+1®z, and e(z) = 0. The antipode is given by S(z) = —z. Now extend
the above functions first on a PBW basis of U(L) by asking A and & to be
multiplicative and S to be anti-multiplicative, and then, by linearity, to the
whole of U(L). ’

Remark 1.8. Both Hopf algebras described above are cocommutative, but since
we will be interested also in dealing with some quantum groups, this property
s not relevant for us. What will be really significant in the sequel is that they
are both pointed. Note that any cocommutative coalgebra becomes pointed if we
replace the base field by an algebraic closure of it.

The first example (we shall look at more important ones later) of how the
coalgebra structures described above are being helpful is the definition of the
tensor product of representations:

Example 1.9. - In the case of kG we let V and W be kG-modules and we
define a kG-module structure on V@ W by

g-v®w)=¢g-v®g-w

forallge G,veV,weW.
- In the case of U(L) we let V and W be U(L)-modules and we define a U(L)-
module structure on V.® W by

z-(v@uw)=z - vQ@W+v®z W
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forallze LveV,weW.
Hence in both cases the correct module structure on V @ W is obtained by ap-
plying A of an element componentwise on e vQ@wWEV QW.

Let us see now what other structures do kG and U(L) have. We begin by
U(L).

Remark 1.10. U(L) is o filtered algebra, the filtration being the obuvious fil-
tration by degree. When k has characteristic 0, this filtration is ezactly the
coradical filtration of U(L).

We look next at kG, which is a G-graded k-algebra, so we can speak of
graded representations, or G-graded kG-modules. It is known from [6] that the
category of G-graded kG-modules is isomorphic to the category of modules over
the smash product kG#kG*.

Remark 1.11. Connecting graded and ungraded properties of a graded repre-
sentation 1is the same as studying the transfer of module properties between kG
and kGH#kG*. This is similar to the classical problem of studying the transfer
of module properties between kH and kG, where H is a normal subgroup of G
(the case when H is not normal has been systematically studied in [8), then more
generally in [27] and (28] and also admits a general Hopf algebraic point of view
according to [13]).

In order to explain why these problems are similar we need some more defi-
nitions.

Let A be an algebra and M a left (or right) A-module. We can write this
by defining a ”multiplication by scalars” map from A @ M (or M ® 4) to M
which makes two diagrams commute. We can then reverse the arrows in these
diagrams to obtain the definition of a comodule over a coalgebra. The category
of comodules over a coalgebra is also a Grothendieck category [29], the comodule
maps being also defined by dualizing the definition of module maps. An algebra
A which is also a left module over the Hopf algebra H is said to be a left H-
module algebra if the multiplication of A is H-linear (the H-module structure
on A® A is defined like in Example 1.9, i.e. via the comultiplication of H). If A
is a left H-module algebra, then we can form the smash product {or semidirect
product) A#H, and also define the subalgebra of invariants of A, denoted by
AH [31]. Right module algebras are defined in a similar manner.

Example 1.12. If G is a finite group and A is an algebra, then G acts on A as
automorphisms & A s a left kG-module algebra. The subalgebra of invariants
in this case is the usual invariant subalgebra of A, while the smash product is
ezactly the skew group-ring of G over A.

Example 1.13. If L is a Lie algebra and A s an algebra on which L acts as.
derivations, then A is a left U{L)-module algebra.
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If an algebra A is also a right comodule over the Hopf algebra H, then we
call it a right H-comodule algebra if the multiplication of 4 is a comodule map,
or, equivalently, if the comodule structure map of A is an algebra map. For a
right H-comodule algebra A we can define its subalgebra of coinvariants of A,
denoted by Ac°¥. If the Hopf algebra H is finite dimensional, then A is a right
H-comodule algebra <& A is a left H*-module algebra, and in this case we have
AcoH AH' .

Example 1.14. If G is a group, then the algebra A is graded by G < A is a
right kG -comodule algebra. The subalgebra of coinvariants in this case is just

the homogeneous part of A of degree the unit of G. If G is finite, we can form
in this case the smash product A#kG* as in [6].

If A is a right H-comodule algebra and with comodule structure map
pa:A—ARH,

and we denote B := A°°¥ = {a € A| pa(a) = a ® 1}, then we say that B C A
is a faithfully flat H-Galois extension if the map

A®sA— A®H, a®bws apa(b)

is bijective (i.e. the extension is Galois, see [17]) and A is faithfully flat as a
right B-module.

Example 1.15. A G-graded ring is a kG-Galois eztension of its homogeneous
part of degree unit of G & A is strongly graded (see [35] or [24]). In this case
it is a faithfully flat kG-Galois extension.

Example 1.16. G s a group, H a normal subgroup, G/H the quotient group
and B:=kH C A:=kG, H:= k(G/H).

Example 1.17. L is a (p-)Lie algebra, L' C L is a (p-)Lie ideal, L/L' the
quotient Lie algebra and B := U(L') C A .= U(L), H := U(L/L') are the
enveloping (p-enveloping) algebras.

Example 1.18. B is any algebra, H any Hopf algebra with bijective antipode
acting (weakly) on B, 0 : H ® H — B is an invertible 2-cocycle, and A =
B#,H 1s the crossed product (cf. (2], [14]). This example generalizes smash
products (hence skew group rings) and twisted group rings (hence modules over
a crossed product generalize projective representations).

Remark 1.19. Ezamples 1.16 and 1.18 make now clear that ”similar” in Re-

mark 1.11 means that both extensions considered there are faithfully flat Galois
extensions.

A study of the representation theory of faithfully flat Hopf Galois extensions
is performed by H.-J. Schneider in [30]. Several classical results from repre-
sentation theory are obtained in [30] as corollaries: Green’s indecomposability



CROSSED COPRODUCTS 133

theorem for groups, a version of Blattner’s simplicity theorem for induction
from ideals of Lie algebras, and work of Dade on strongly graded algebras.

Example 1.18 will be of particular importance in the sequel. It arises as
a natural generalization of group crossed products, which are in fact group
extensions as described by Schreier in 1926. The Hopf algebraic definition was
given in [32] for the particular case of cocommutative Hopf algebras acting on
commutative algebras, and then independently in [2] and [14] for the general
case.

We are now in a position to give our examples of how a condition on the
coalgebra structure can influence the algebra structure. The first such example
was proved in (7] using Theorem 1.2.

Theorem 1.20. Let H be a finite dimensional pointed Hopf algebra, A a left
H-module algebra and M a left A#H-module. Then:

i) aguM is Noetherian & oM is Noetherian.

i) appM is Artinian & s M is Artinian.

141) apuM has a Krull dimension & M has a Kmll dimension, and the di-
mensions are equal if either of them erxists.

Corollary 1.21. Let H be a finite dimensional pointed Hopf algebra, A a right
H-comodule algebra which is o faithfully flat Galois extension of B := A°H,
and M a left A-module. Then:

1) aM 1is Noetherian < gM is Noetherian.

1) aM is Artinian < pM is Artinian.

111) M has a Krull dimension & pM has a Krull dimension, and the dimen-
stons are equal if either of them ezists.

Qur second (and main) example will be the following beautiful result due to
S. Montgomery [26]. It extends similar results obtained in the cocommutative
case by Cartier and Gabriel and by Kostant in the early 1960’s.

Theorem 1.22. Let H be a pointed Hopf algebra, and set G = G(H). Denote
by H{yy the indecomposable component containing 1. Then:

i) H(yy ts o Hopf algebra.

i) N := G(Hqyy) is a normal subgroup of G.

i) H 1is isomorphic to a crossed product H)#sk(G/N), with cocycle o -
G/N x G/N — N.

Example 1.23. For H = Uy(sl(2)), the indecomposable component of 1 is
Hgy =k(EK,FK,K* K™?),

with the same relations as i Ezample 1.7. In this case we have N = (K?),
G/N = (K) ~Z, (here K is the coset KN ), and the cocycle

o:G/N xG/N — N
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is given by o(K,K) = K2, and 0(K,1) = o(I,K) = 0(1,1I) = 1. Then
Uy (si(2)) ~ Hay#:k(G/N) = Hy)y#okZ2.
If we set By = EK, Fy = K~'F, and K, = K2, then
Hyy = k(Ey, Fy, Ky, KT,
which is the "new version” of Uy(si(2)), used in [18], [11], [34].

Remark 1.24. By Ezample 1.18 we see that the ”old version” is a faithfully flat
Galois extension of the "new” one, so their representations are strongly related
[30]. Moreover, the extension “new”-Ug(sl(2)) C "old”-Uy(sl(2)) satisfies the
hypotheses of Corollary 1.21 (since kZs is pointed), thus all assertions there
apply in this case.

Remark 1.25. A similar decomposition holds for Uy(sl(n)), (M. Takeuchi, pri-
vate communication to S. Montgomery, following [34]).

We have seen how the coalgebra structure can affect the algebra structure. In
order to study the converse, what we need first is an object with good properties
that can be used for proving structure theorems for coalgebras. This object is
the dual of the crossed product, namely the crossed coproduct. The nice part
is that both notions arise together in a natural way when studying extensions
of Hopf algebras. We explain this in the sequel.

Let us consider first the notions which are dual to the ones for algebras
introduced above, to obtain the notions of module coalgebras and comodule
coalgebras. If C' is a left H-comodule coalgebra we can form the smash coproduct
C><H asin [23]. If the Hopf algebra H coacts weaklyon C anda: C — H®H,
then we can form the smash coproduct C'><, H. This notion was introduced in
(12] by dualizing the crossed product from {32]. Then it appeared in the general
form in several papers: [10, 16, 22, 19, 20]. The following example extends [12,
Example (5.2.2)] and appears in [9]:

Example 1.26. Let G2 be an affine algebraic group over an algebraically closed
field k, and let L be its coordinate ring. Let Gy be a closed normal subgroup of
G4 and let K be its coordinate ring. If G3 denotes the quotient algebraic group
of Gy by G1, H 1is its coordinate ring, and if the canonical map of algebraic
groups from Gy to Gz splits as a morphism of varieties, then L is a crossed
coproduct of H and K.

Let us look now at extensions of Hopf algebras.

Example 1.27. ([16, 22, 9]) Assume that K A AN H 1is a sequence of
Hopf algebras such that there ezxists A\ : C — K ® H, an isomorphism of left
K -modules and right H-comodules. Denote by ix = Idg Quy, ig = ux @Idy,
pr = Idg ® eg and py = ex ® Idy, and assume moreover that f = M ig,
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g = pu), and that k := px X and h := A" iy are invertible under convolution
(note that this condition is very natural, since any function between two groups
extends to an invertible function between their group rings).

Then L is o right H-comodule algebra and a left K-module coalgebra, and L is
isomorphic, as an algebra, to a crossed product, and, as a coalgebra, to a crossed
coproduct (of K and H). This is what is called a bicrossproduct in [20].

Crossed coproducts have properties which are dual to the ones of crossed
products proved in [3] or [14]: they are Galois coextensions (the dual notion of
a Galois extension, introduced in [30]), they have a dual property to the normal
basis property, etc. On the other hand, there is no result dual to Theorem 1.22
available yet.
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Let A be an artin algebra, for example for simplicity a finite dimensional
algebra over an algebraically closed field k. Let mod A be the category of finitely
generated (left) A-modules and let D = Homg( , k) be the ordinary duality
between mod A and mod A°?. We shall in this writeup give an introduction,
together with basic properties and connections, to the theory of quasitilted
algebras-as introduced and developed in our joint work with Smalg, with later
contributions by others. We also include some of our own recent work.

We assume the reader is familiar with the definition and basic properties of
quivers, almost split sequences and AR-quivers. On the other hand we recall
the background material we need on hereditary algebras and tilted algebras, in
order to motivate the quasitilted algebras and the properties of those which we
discuss. For the background material we refer to the books [R1],[ARS] and the
survey [A]l. Our exposition does not necessarily follow the order in which the
material was developed.

The hereditary finite dimensional algebras over an algebraically closed field
k are Morita equivalent to path algebras kT" of finite quivers. It is one of the
best understood classes of finite dimensional algebras, but nevertheless there
are still interesting open questions. For a recent survey we refer to [K2].

1. HEREDITARY ALGEBRAS

Let k be an algebraically closed field and T a finite quiver without oriented
cycles. Let kI" be the corresponding path algebra. Recall that an artin algebra
A is said to be of finite representation type if there is only a finite number of in-
decomposable objects in mod A up to isomorphism. The following classification
theorem of Gabriel from the early seventies is an important result in modern
representation theory.
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Theorem 1.1. With the above notation kI is of finite representation type if
and only if the underlying graph |I'| of T is a finite disjoint union of the Dynkin
diagrams An, D, E¢, Fq, Eg.

The k-algebras of infinite representation type fall into two main classes: tame
and wild. For the purpose of these notes we do not need the general definitions.
We just remark that for a connected quiver I' we have that kI' is tame if and
only if |I'| is one of the extended Dynkin diagrams A,, D,, Es, E; or Eg. And
kI’ is wild if it is neither tame nor of finite representation type.

From a homological point of view the path algebras kI" are simplest possible,
amongst the non semisimple algebras. For we have gl.dim kI’ < 1, so that k[ is
hereditary, and in fact each hereditary finite dimensional k-algebra is isomorphic
to some kI.

For an artin algebra A the category mod A has almost split sequences, and
consequently an associated A R-quiver. A lot of work in representation theory
has been devoted to describing possible shapes of AR-quivers for various classes
of algebras. For an indecomposable algebra of finite representation type there
is only one connected component. In the hereditary case this component is of
a particularly nice shape. It is what is called a preprojective component.

A preprojective component C of an AR-quiver has the property that there
are no oriented cycles, and for each C in C there is some projective P in C and
i > 0 with C = 7' P, where 7 is the translation on the AR-quiver induced from
the operation D Tr.

We also have the dual notion of a preinjective component. When kI is
indecomposable of finite representation type, the unique component is both
preprojective and preinjective.

Assume now that kI’ is indecomposable and of infinite representation type.
Then there is a unique preprojective component, which in this case contains
all indecomposable projective modules, and a unique preinjective component,
which contains all indecomposable injective modules.

If A = kI is tame, all other components, an infinite number, are tubes, that
is of the form Z A /(7™) for some n > 1, where n is 1 for all but a finite number
of the tubes.

If A = kT is wild, all other components are of the form ZA.

For infinite representation type we have the following picture:

P ® 2

where P denotes the preprojective component, @ the preinjective component
and R the union of the other components, which are called the regular compo-
nents. Then the triple (P,R, Q) defifies R to be a separating subcategory, in
the sense of Ringel, that is, we have the following properties:
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(i) Each indecomposable module in mod A is in P, R or Q.

(ii) Hom(R,P) = 0, Hom(2,P) =0, Hom(Q,R) = 0.

(iii) Every map f : P — @ with P in P and @ in Q factors through an object
in R.

In addition we have the following.

(iv) Each indecomposable projective module is in P and each indecomposable
injective module is in Q.

Since hereditary algebras are so well understood, it is useful to try to exploit
this fact by investigating algebras which in some way are built up from heredi-
tary algebras, by taking endomorphism rings or one-point extensions. Our aim
is twofold, and “contradictory”. We want algebras which are close enough to the
hereditary ones in order to be able to transfer information from the hereditary
case, but far enough away so that we get something as different as possible.

On the other hand, from a homological point of view, global dimension at
most two gives the next level.

The algebras we shall investigate fall into both these frames. We go on to
discuss the by now classical theory of tilting, from a point of view suitable for
the subsequent treatment of quasitilted algebras.

2. TILTED ALGEBRAS

Let A be an artin algebra, for example a finite dimensional k-algebra. A
module T in mod A is said to be a tilting module if

(i)pdT <1 :

(ii) Ext'(T,T) = 0

(iii) the number of nonisomorphic indecomposable summands of T' is equal
to the number of nonisomorphic simple A-modules.

A module U in mod A is said to be a cotilting module if D{U) is a tilting
module in mod A°P.

There is an interesting connection between tilting/cotilting modules and tor-
sion theories. Recall that a subcategory 7 of mod A is a torsion class if T is
closed under extensions and factors. A subcategory F of mod A is a torsionfree
class if F is closed under extensions and submodules.

A torsion class 7 determines a torsionfree class F by F = {C;
Hom(7,C) = 0}, and a torsionfree class F determines a torsion class 7 by
T = {C;Hom(C,F) = 0}. It is easy to see that if we start with a torsion class
T, and construct the associated torsionfree class F, then the associated torsion
class of F is again the 7 we started with. We say that (7, F) is a torsion pair
if T is a torsion class and F the associated torsionfree class. The torsion pair
is said to be split if each indecomposable A-module is in 7 or F.

If T is a tilting module, it can be shown that the category FacT, whose
objects are the factors of finite direct sums of copies of T, is closed under
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extensions. Hence 7 = FacT is a torsion class in this case, and we can associate
a torsion pair (7, F) with T.

If U is a cotilting module, then dually the category Sub U, whose objects
are submodules of finite direct sums of copies of U, is closed under extensions.
Hence Y = Sub U is a torsionfree class, and we have an associated torsion pair
(%,9).

We state the following basic result.

Theorem 2.1. Let T be a tilting module over an artin algebra A, and let I =
Endy (T)°P.

(a) rU = D(T) is a cotilting module in modT', and Endr(D(T))°P ~ A.

(b) Homa (7T, ) : modA — modI induces an equivalence of categories
Homa(T, }): T =FacT » Y =SubU.

(c) Extjy(T, ) : modA — modT induces an equivalence of categories
Exti(T, ) : F = X, where (T, F) is a torsion pair in mod A and (X,)) a
torsion pair in modT.

(d) If A is hereditary, then the torsion pair (X,Y) 1s split.

We give an example to illustrate.
EQO

b i 2) over the
field k, or equivalently, the path algebra kI" where I is the quiver -y — - — 3.
We have A = P, II P, I P5, where P; is indecomposable projective given by
the i*" column, and S; = P;/rP; is the corresponding simple module. Here 7
denotes the radical of A. Then T'= P; I §5; I S; is a tilting module, and I" =

Enda (T)°P is isomorphic to (lé E %), that is A/I where I = (§ (8) §>. Denote
the indecomposable projective I'-modules corresponding to the i*® column by
Q; and the corresponding simple module by 7;. We then have the AR-quivers

Example Let A be the 3 X 3 lower triangular matrix ring (

\\\
T2 \\ Yy
T3\
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where we have marked the corresponding torsion and torsionfree classes.

A torsion theory (7, F) in mod A is said to be hereditary if the torsion class
T is closed under submodules. It is easy to see that (7,F) is hereditary if
and only if F = Sub /[ for an injective A-module I. For let Si,...,S; be the
nonisomorphic simple modules which are not composition factors of any modules
in 7, and let I be the injective envelope of S; I --- 11 5;.

There is the following information on when the torsion theories coming from
tilting or cotilting modules are hereditary.

Proposition 2.2. Let A be an artin algebra.

(a) If T is a tilting module, then the torsion pair (T,F) with T = FacT is
hereditary if and only if T = mod A.

{b) The torsion pair (X,Y) is a hereditary torsion pair determined by a
cotilting module if and only if Y = Sub I for a faithful injective module I, that
15 I has zero annihilator.

Proof : (a) Since T is known to contain all injective modules, it would have
to contain mod A if it is closed under submodules.

(b) If Y = Sub U for a cotilting module U and (X,}) is the corresponding
torsion theory, then we have seen that )V = Sub I for an injective module I, and
it is known that ) contains A, so that I must be faithful.

If conversely YV = Sub I for a faithful injective module I, it is easy to see that
Sub [ is closed under extensions, so that it is a torsionfree class. Then there is
some X in mod A such that U = T I X is a cotilting module with the property
that SubJ = Sub U [AS]. O

An artin algebra I is a tilted algebra if T' ~ Enda (T)°P where A is hereditary
and T is a tilting A-module. It follows from Theorem 2.1 that a tilted algebra
I' = Enda(T)°P is of finite representation type if A is. That a tilted algebra is
homologically close to hereditary algebras is seen from the following.

Proposition 2.3. Let I be a tilted algebra. Then there is a split torsion pair
(X,)) satisfying the following.

(a) pdY <1 (that is, pdY <1 forY in y).

(b) idX < 1. .

(¢) T isin Y.

(d) Y =SubV for some V in modT.

(e) glldimI" < 2.
Actually, we can show the following, using [HRS1].

Proposition 2.4. An artin algebra T is a tilted algebra if end only if T’ satisfies
the properties (a), (c), (d) in Proposition 2.3.
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Also some of the properties of the AR-quiver for hereditary algebras can be
transferred to tilted algebras [St, R2].

Theorem 2.5. Let I’ be a tilted artin algebra.

(a) There is always a preprojective and a preinjective component in the AR-
quiver of .

(b) If C is a regular component, that is containing neither projective nor
injective modules, then C is of the form ZAy, or ZAx/{t™) for somen > 1
and at most one compenent is of the form ZA where A is the underlymg graph
of the original hereditary algebra.

There is then only a finite number of components left, and these have also
been described [K1, Li].

Also for tilted algebras we have natural separating subcategories.

Proposition 2.6. Let T be a tilting module over the hereditary algebra A, and
T' = Ends(T)°P the associated tilted algebra. Let D(,T) = Homa (T, DA) and
J = add D(T). Then ind J is a separating subcategory of ind A, the indecom-
posable modules in mod A.

3. QUASITILTED ALGEBRAS

We now introduce the class of quasitilted algebras, as a generalization of
tilted algebras. To avoid some technicalities we give a definition related to our
original definition. The relationship can be seen from the proof of II Theorem 2.3
in [HRS1]. We also give an indication of the definition in [HRS1].

Dropping the “finiteness” condition on Y in the characterization of tilted
algebras from the previous section, we say that an artin algebra I' is quasitilted
if there is a split torsion pair (X,)) with pdY <land I'in ).

It turns out that there is additional homological information on the torsion
class X, which is seen by using results from Chapter II in [HRS1].

Proposition 3.1. If for T there is a split torsion pair (X,Y) with pdY < 1
and T in Y, then id¥ < 1.

The following is a direct consequence of the definition and Proposition 2.4.

Proposition 3.2. IfT s a quasztzlted algebra of finite representation type, then
I is a tited algebra.

Our definition of a quasitilted algebra I in [HRS1] was that I' = Endg, ()P
where # is a hereditary abelian k-category where the morphisms are finite
dimensional k-spaces and T is a tilting object in H, with properties similar to
the properties of a tilting module.

To try to improve the understanding of what is going on, we make the follow-
ing remark. Consider first the following picture where (7, F) is a torsion pair
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for the hereditary algebra A, where T is a tilting A-module and I’ = End, (T")°°
the corresponding tilted algebra and (X,)) the induced torsion pair.

Here Y = Sub U where U is the image of the injective cogenerator DA under
the functor Homa (T, ) : mod A = mod " and I" in Y is the image of the tilting
module 7. When we drop the finiteness condition on ), that is, do not require
that Y is of the form Subl{, it is then reasonable that mod A has to be replaced
by a category which is not a module category. But since I € Y, it is reasonable
that we still have the tilting object 7.

It is actually possible to construct an appropriate hereditary category #,
starting with a quasitilted algebra I'. The construction is carried out inside the
bounded derived category D?(modT'). It is inspired from the “switch” between
torsion and torsionfree classes which occurs in tilting theory and is illustrated
by the above picture. It is the smallest abelian subcategory of D’(modT)
containing X', and Y shifted one step to the right.

In our definition of quasitilted algebras we have required that the torsion
pair (X,D) is split. Formulated as a condition on X and Y this is easily seen
to amount to the following. Denote by indI' the indecomposable modules in
modT". We say that J is closed under predecessors if whenever there is a chain
of nonzero maps Z - Y, = Y,.1 =& -+ = Y1 = Yy =Y between modules
in indT" with Y in ), then also Z is in ). The property of being closed under
successors is defined dually.

Proposition 3.3. The following are equivalent for a torsion pair (X,Y) for an
artin algebra T.

(a) The torsion pair (X,Y) splits.
(b} Y is closed under predecessors.
(c) X is closed under successors.

Proof : (a) = (b) Assume that (X,)) splits, and let ¥ and U be in indT
with Y in Y and Hom(U,Y) # 0. Then U is not in X, and is consequently in
Y since the torsion pair splits. This shows that ) is closed under predecessors.
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(b) = (a) Assume that Y is closed under predecessors, and let U be in ind T’
and not in Y. Then Hom(U,Y) = 0, so that U is in X, and consequently the
pair (X, D)) splits.

The rest of the proof is similar. O

For quasitilted algebras there are some natural choices of split torsion pairs
(X,Y) having our desired properties. For an arbitrary artin algebra A denote
by L the objects in ind A such that all predecessors have projective dimension
at most one. Denote by R the objects in ind A such that all successors have
injective dimension at most one. Let £ = add £ and R = add R be the cor-
responding additive categories. Then Lis clearly in general a torsionfree class
closed under predecessors, and hence gives rise to a split torsion pair in mod A.
Similarly R is a torsion class giving rise to a split torsion pair. Actually the only
missing condition for L to give rise to a quasitilted algebra is that L contains
the projectives. Since clearly any torsionfree class which can be used in the
definition must be contained in £, we get the following.

Proposition 3.4. An artin algebra A is quasitilted if and only if L contains

the projective modules, which is the case if and only if R contains the tnjective
modules.

For an artin algebra A the predecessors I/ of the indecomposable projective
modules give rise to a torsionfree class, but here the missing property is for
the modules to have projective dimension at most one. This is the case for
quasitilted algebras. For quasitilted algebras which are not tilted we have the
following. We here first recall that for a quasitilted algebra any indecomposable
module is either in £ or in R [HRS1].

Proposition 3.5. Let A be a quasitilted algebra which is not tilted. Then L is

the largest torsionfree class satisfying the conditions of the definition and L\ R
1s the smallest one.

Proof : The first claim is obvious from the previous remark. For the sec-
ond claim, we know from [HRS1] that £ N R contains no projectives, that is

all projectives are in m If X isin £\ R, then X has a successor Y with
idY = 2. Then we have that Hom({Tr DY, A) # 0, so that X is a predecessor of
a projective module, and we are done. O

For a tilted algebra A we always have LN R # @, but for an arbitrary
quasitilted algebra this is an open question. From the previous proposition this
question is equivalent to the question whether there is more than one torsionfree
class with the desired properties, for a quasitilted algebra which is not tilted.
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Before going on we recall some basic facts on quasitilted algebras [HRS1].

Theorem 3.6. An artin algebra A is quasitilted if and only if gl. dunA <2 and
if X is inind A, then pd X <1 oridX < 1.

Proposition 3.7. Let A be an artin algebra.

{(a) There is no oriented cycle in the quiver of a quasitilted algebra A.

(b) If A is quasitilted and P is a projective A-module, then Enda(P)°P is
quasitilted.

(c) If G is a finite group whose order is invertible in A, then A is quasitilted
if and only if AG is quasitilted, where AG is the skew group ring.

We now discuss existence of separating subcatégories for quasitilted alge-
bras. Note that we have a natural possibility of a trisection of ind A, as
(LAR,LNR,R\ L). We then have properties (i) and (ii) in the definition
for LN R to be a separating subcategory from section 1, and we have seen that
we have (iv) if A is quasitilted, and not tilted. But (iii) does not necessarily
hold. There may be objects in £\ R with no nonzero map to LN R.

It is an interesting question whether there is some other natural trisection
for quasitilted algebras such that the separation conditions (i), (ii) and (iii) are
satisfled. Note that in general a trisection (A4, B,C) with (i) and (ii) gives rise
to split torsion pairs (C, AU B) and (BUC, A). And if we in addition have (iv)
we have the following observation.

Proposition 3.8. Let (A4, B,C) be a trisection for A satisfying (i), (ii), ().
Then A is quasitilted.

Proof : If idX = 2 for X in ind A, then X is a predecessor of a projective
module, which is in A by (iv), and hence X is in A. Then idX < 1 for X in
BUC. Similarly pd X < 1for X in AU B. Since now every submodule of a
projective module then has projective dimension at most one, it follows from
Theorem 3.6 that A is quasitilted. O

As for the components of the AR-quiver it is interesting that there is a
connection with the trisection (£ \ R, LN R, R\ L) for a quasitilted algebra
which is not tilted.

Proposition 3.9. Let A be a quasitilted algebra which is not tilted.

(a) R has no Ext-projective objects and L has no Ext-injective objects.

(b) Each component of the AR-quiver of A lies entirely in L\ R, LNR or
R\ L.

Proof : (a) This is in [HRS1].

{(b) This is in [CS], but here we give a short direct version. Let X be in R.
Since X is not Ext-projective by (a), there is some Y in R with Ext'(X,Y) # 0.
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From the formula DExt'(X,Y) =~ Hom(Y,DTrX), it follows that

Hom(Y,DTrX) # 0. Then DTrX is not in the torsionfree class £\ R, and
hence DTr X is in R. Since also Tr DX is in R, we have that if one module
from a component is in R, then the whole component is. The proof for £ is
similar, and we are done. a

Further information on components is given in the following [CH].

Theorem 3.10. If A is quasttilted algebra, then there is a preprojective com-
ponent.

Tilted algebras can have many preprojective components. But it would be
interesting to know if there is exactly one preprojective component when A is an
indecomposable quasitilted algebra which is not tilted. For further information
on components, see [CS]. One interesting open question is whether the regular
components are Z Ay or tubes, when A is quasitilted and not tilted.

An interesting class of examples of quasitilted algebras is provided by the
canonical algebras. They are of the form A = (% %) where S is the path
algebra over a field k of a quiver of the form

where the images in k% of the composites along the arms are pairwise distinct.
We write ( ¥ %) = S[M], and it is called the one-point extension of S by M.

More generally it is of interest to investigate what it means for a module M
that the one-point extension S{M] is quasitilted. The most satisfying answer is
in the tame case.



AN INTRODUCTION TO QUASITILTED ALGEBRAS 147

Theorem 3.11. Let S be a tame hereditary path algebra, and let M be a regular
S-module. Then S[M] is quasitilted if and only if M is simple regular, that is,
lies at the end of a tube in the AR-quiver.

Note that some of the quasitilted algebras appearing in the above theorem are
tilted and some not (see [R1],[HRS1]), so that examples of quasitilted algebras
which are not tilted are provided. M is simple regular if and only if D Tr M is
simple regular, so that in the tame case S[D Tr M] is quasitilted when S[M] is.
In the wild case we have the following.

Proposition 3.12. Let S be an indecomposable wild hereditary algebra, and
M indecomposable regular with S[M] quasitilted. Then S[D Tr M) is quasitilted
and there is some i > 0 such that S[Tr D*M| is not quasitilted.

This picks out a particular M in a D Tr-orbit giving rise to quasitilted alge-
bras, and we point out that in the case of the canonical algebra the correspond-
ing M is the special choice.

The following property of M is intimately related with the question whether
S[M] is quasitilted.

Let M be an indecomposable regular module over a hereditary algebra 5,
and X a class of S-modules. Then M dominates X if for any right minimal
map g : M* — X with X in X, we have that ker g is projective.

There is the following basic property.

Proposition 3.13. Let M be an indecomposable regular S-module with S hered-
stary and End{(M) =~ k, such that M dominates the injective modules. Then M
dominates mod A.

We have the following.

Proposition 3.14. Let M be an indecomposable regular S-module with S hered-

ttary and End{M) ~ k. If M dominates the injective modules, then A = S[M]
18 tilted.

Proof : Since M dominates mod S, it follows that if A : M* — X is inde-
composable with ¢ > 0, then ker & is projective, which by [HRS1] means that
the projective dimension of h : M* — X as a S[M]-module is at most one.
Hence only the simple injective object k& — 0 can have projective dimension
two. Then the claim follows from [CS], since all but a finite number of inde-
composable modules have projective dimension at most one. m]

If M is indecomposable regular with End(M) ~ k and M dominates D Tr [
for each injective module I, S[M] may not be tilted. For example the canonical
algebras satisfy this property [HRS1]. But it would be interesting to know if
this implies quasitilted.



148 DIETER HAPPEL AND IDUN REITEN

We briefly mention that the concept of dominating is related to the concept
of elementary modules as studied in [KL]. For details we refer to [HRS1].

Finally we want to indicate some recent results which we are unable to cover
in detail. First recall that quasitilted algebras can be defined as endomorphism
rings of “tilting objects” for hereditary abelian k-categories. Hence one ap-
proach to the understanding of quasitilted algebras goes via these categories.
There are two main examples, namely module categories and coherent sheaves
over noncommutative projective curves in the sense of Geigle and Lenzing [GL).
An open question is if there are any which are not derived equivalent to one of
these two types. Under the additional assumption that the hereditary abelian
k-category is noetherian, Lenzing has shown that there are no more exam-
ples [Le]. Also if one restricts to tame quasitilted algebras it was shown in [LS]
that hereditary categories occurring are derived equivalent to the two known
types. We point out that special classes of quasitilted algebras have been inves-
tigated in [LP], [LM], [M], and the tame ones have been classified in [Sk].

Artin algebras A being derived equivalent to a hereditary abelian k-category
are called piecewise hereditary algebras. This generalizes the concept of qua-
sitilted algebras. The precise connection to an iteration of the tilting process is
worked out in [HRS2].
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ABSTRACT. Let k be a field and A a finite dimensional k-category which
is a hereditary length category. We are going to show that the support
algebra of any object of A without self-extension is a finite dimensional
k-algebra. An object in A is said to be exceptional provided it is inde-
composable and has no self-extensions. For an algebraically closed field &,
Schofield has exhibited an algorithm for obtaining all exceptional objects
starting from the simple ones. We will present a proof which works for
arbitrary fields %.

Let A be an abelian category. The category A is said to be hereditary pro-
vided Ext® vanishes everywhere. Also, we recall that A4 is said to be a length
category provided every object in A has finite length.

Let &k be a field. We say that A is a k-category provided k operates centrally
on all Hom-sets and such that the composition of maps is bilinear. Such a k-
category is said to be finite dimensional provided the vector spaces Hom(X,Y)
are finite dimensional, for all objects X,Y in A.

Exceptional objects have been studied in various contexts. The terminol-
ogy ‘exceptional’ was first used by Rudakov and his school [Ru] when dealing
with vector bundles. The relevance of exceptional objects in the representation
theory of finite dimensional hereditary k-algebras is well accepted; these excep-
tional modules are just the indecomposable partial tilting modules, they have
also been called stones by Kerner [K1] and Schur modules by Unger [U]. We
may refer to a recent survey of Kerner [K2] dealing with objects in hereditary
length categories, or at least with representations of wild quivers.

The aim of this report is to focus attention to some interesting developments
in the representation theory of finite dimensional hereditary algebras. This the-
ory has an apparent combinatorial flavour; one of the reasons is the role the
exceptional modules play. The existence of non-trivial finite dimensional mod-
ules without self-extensions should be considered as a feature which is peculiar
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to non-commutative representation theory. As we want to show, the existence
of such modules seems also to be a kind of finiteness condition. We will present
a proof of a very useful Theorem of Schofield [S2], for an arbitrary base field k.
This result describes certain types of filtrations of an exceptional module X us-
ing as factors exceptional modules again; it is a kind of Jordan-Holder theorem,
but the classical unicity assertion is replaced by the assertion that there are pre-
cisely s(X)—1 essentially different kinds of filtrations, where s{X) is the number
of isomorphism classes of composition factors of X. Our presentation should be
considered as a variation of the considerations by Crawley-Boevey [CB] dealing
with a braid group operation on exceptional sequences, see also [R]. Along the
way, we will focus attention to the so-called Bongartz complement of a sincere
exceptional module.

1. SUBFACTORS OF OBJECTS WITHOUT SELF-EXTENSIONS

Let A be an abelian category and 4 an object in A. Let A” C A’ C A4 be
a chain of subobjects. Then A’/A” is said to be a subfactor of A. f U is a
subcategory of A, we denote by Z({) the class of all subfactors of objects in .

Recall that for any object A of A, one denotes by add A the full subcategory
given by all direct summands of finite direct sums of copies of A.

Lemma 1.1. Let Abea hereditary abelian category, and U a subcategory which
is closed under extensions. Then T(U) is closed under extensions.

Proof. Let A, B be objects in . Let A" C A’ C A and B" C B' C B be
chains of subobjects. Thus, A'/A” and B’/B" are subfactors of objects in U,
and we consider an extension: assume that there is given an exact sequence

0+ A'/JA" - C - B'/B" —»0.
We construct stepwise the following commutative diagram with exact rows:
0— A'/JA" — C — B'/B" — 0

ol

0— A/A” —= D —+ B'/B" —~ 0

o

0 A E— B /B — 0
0 A T - B/B" 0
0 A G B 0
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First, we form the induced exact sequence with respect to the inclusion A'/A” —
AJ/A" and obtain D with an inclusion map C — D. The exact sequence with
middle term D is induced from a third exact sequence with respect to the
canonical epimorphism 4 — A/A’; here we use that .4 is hereditary. In the
diagram above, this third exact sequence has middle term E and there is an
epimorphism E — D. Again using that A is hereditary, there exists an exact
sequence with middle term F and a monomorphism # — F which induces the
third exact sequence with respect to the inclusion map B'/B" — B/B". Finally,
we form the induced sequence with respect to the canonical epimorphism B —
B/B"” and obtain an object G and an epimorphism G — F. The maps

CoD«E-SF+«@G

show that C is a subfactor of G. Since A, B belong to U, and U is closed under
extensions, the object G belongs to /. This completes the proof.

Remark 1.2. The conclusion of Lemma 1.1 may be reformulated as follows:
Z(U) is a Serre subcategory of A. Recall that a subcategory B of A is said to be
a Serre subcategory provided for any exact sequence 0 — A; — Ay = A3 = 0
in A, the object A2 belongs to B if and only if both A;, A3 belong to B.

2. THE SUPPORT OF AN OBJECT WITHOUT SELF-EXTENSION

Let A be a length category. For any object A in A, we denote its isomorphism
class by [A]. We denote by S(A) the ‘set’ of isomorphism classes of simple
objects in A (it may not be a set, for set-theoretical reasons, thus we have
used the quotation marks). Given two simple objects S, S’ in A, we draw an
arrow [S] — [S'] provided Ext' (S, S’) # 0. In this way, S(A) becomes a ‘quiver’
(again, we use quotation marks, for set-theoretical reasons).

The support supp A of an object A in 4 is the set of isomorphism classes of
composition factors of A, this is a ‘subset’ of S{A) (but since supp 4 is finite,
we now deal with a ‘subset’ which really is a set). We consider supp 4 as a full
‘subquiver’ of S(A). If &’ is a ‘subset’ of S, we denote by £(S’) the class of
objects of A with all composition factors belonging to S'.

Proposition 2.1. Let A be a hereditary length category. Let A be an object in
A with Ext' (4, A) = 0. Then the support supp A of A is a directed quiver, and
E(supp A) = Z(add A). If A is, in addition, a finite dimensional k-category, then
the k-space Ext* (S, S') is finite dimensional, for every pair S,S' of composition
factors of A.

Proof: Since Ext'(A4,A4) = 0, the subcategory add A of A is closed under
extensions. According to Lemma 1.1, the class Z({add A) is closed under ex-
tensions. The composition factors of A belong to Z(add A), thus any object in
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£(supp A4) belongs to Z(add A). Of course, conversely, the composition factors
of subfactors of objects in add A belong to supp A.
Let t be the Loewy length of A, this is the minimal length ¢ of a filtration

0=ByCB, C---CB;=A

of A with semisimple factors B;/B;_;. Note that any object in add A4, and
therefore also any any subfactor of such an object has Loewy length at most ¢.

Now assume that there is an oriented cycle in the quiver supp 4, say [Sp] —
[S1] = -+ = [Ss] = [So], with simple objects S;. Since A is hereditary, one
may construct serial objects U, in A of arbitrarily large finite length n, such
that the composition factors of U, are of the form Sg,...,Ss;—1. In particular,
U, belongs to Z(add A). But the Loewy length of U, is equal to its length n,
since U, is serial. It follows that n < ¢. This contradiction shows that there
cannot be any oriented cycle in supp A.

Let us assume now that A is, in addition, a finite dimensional k-category.
Let us start with a composition series

0=ACA C---CA, =4

of A, and let S; = A;/A;_1. Let b be the k-dimension of the endomorphism ring
of @5, Si. Clearly, b is a common bound for the k-dimension of Hom(4’, A”),
where A’, A" are subfactors of A. Let us fix 1 < 4,5 < n. The embedding
S; C AJ/A;_, yields a surjection

Ext'(A/A;_1, S;) = Ext'(S;, S;).
The exact sequence
‘ 0= Ajy = A— AJA;_, — 0
yields an exact sequence
Hom(A;_1,5;) = Ext'(A/Ai-1,S;) = Ext' (4, S;).

The epimorphism A; — §; yields a surjection

Ext' (4, 4;) — Ext'(4, S;),
and finally we consider the exact sequence

02 4; 2 A AJA; -0
it yields an exact sequence

Hom(A, A/A;) — Ext!(4, 4;) - Ext'(4, A).
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Note that the last term is zero. Altogether we see that

20.

dim Ext*(S;,S;) < dimExt'(A4/4;1,S;)
< dimHom(4;_4,5;) +dimExt!(4, S;)
< dimHom(4;-1,S;) + dim Ext' (4, 4;)
< dimHom(4;_;,S;) + dimHom(4, A/A;)
<

This completes the proof.

Corollary 2.2. Let A be a finite dimensional hereditary length k-category. Let
A be an object without self-extensions with support supp A. Then there exists
a finite dimensional hereditary k-algebra A such that the category £(supp A)
15 equivalent to the category of all A-modules of finite length. Under such an
equivalence, A corresponds to a faithful A-module.

If A is any k-algebra, a A-module X is said to be sincere provided every
simple A-module occurs as a composition factor of X.

Corollary 2.3. Let A be a hereditary k-algebra and X a finite dimensional
A-module. Assume that X is sincere and has no self-extensions. Then A is
finite dimensional and X 1s faithful. :

Proof: Apply the previous considerations to the category A of all finite di-
mensional A-modules.

It seems that finite dimensional modules without self-extensions have been
considered before mainly for k-algebras A which are finite dimensional. For A
hereditary, the corollary asserts that in essence one obtains in this way all such
modules. The fact that for a finite dimensional hereditary k-algebra, a sincere
module without self-extension is faithful, is well-known, see for example Kerner
[K2], Lemma 8.3.

Remark 2.4. Let A be a hereditary length category with an exceptional ob-
ject A whose support is S(A). If A is a finite dimensional k-category, then
Corollary 2.2 shows that A has enough projective objects and enough injec-
tive objects. In general, this may not be the case: consider a field extension
k C K of infinite degree, let A = [I)Z' IO(
(left) A-modules of finite length. The indecomposable projective A-module P of
length 2 is exceptional and satisfies supp P = §(A). The category A has enough
projective objects, but not enough injective objects.

}, and let A be the category of all
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3. SCHOFIELD’S THEOREM

Let A be a finite dimensional k-category which is a hereditary length category.
We are going to present a Theorem of Schofield which yields an inductive way
for constructing all exceptional objects A in 4. The Theorem asserts that any
exceptional object A is obtained as the middle term of a suitable exact sequence

02U 242V =0 (*)

where U, V are again exceptional objects and u,v are positive integers. More
precisely, there is such an exact sequence where U,V are exceptional objects
and where the objects U, V satisfy in addition the following conditions:

Hom(U, V) = Hom(V, U) = Ext*(U, V) = 0. (+%)

A pair (V,U) of exceptional objects satisfying these conditions (xx) is called
an orthogonal exceptional pair (the general notion of an exceptional pair will
be recalled below). Given an orthogonal exceptional pair (V,U), we want to
consider the full subcategory £(U, V) of all objects of A which have a filtration
with factors of the form U and V. Note that for any object A in £(U, V), there
exists an exact sequence of the form (x) with non-negative integers u,v.

The reduction problem to be considered is the following: Given an excep-
tiopal cbject A, we want to find orthogonal exceptional pairs (V,U) such that 4
belongs to £(U, V), but A is not one of the two simple objects of £(U, V). One
may ask for all possible pairs of this kind, and it is amazing that there exists
an intrinsic characterization of the number of such pairs.

Theorem 3.1 (Schofield). Let A be a finite dimensional k-category which is a
hereditary length category. Let A be an exceptional object in A. Then there are
precisely s(A) —1 orthogonal ezceptional pairs (V;,U;) such that A belongs to
E(U;, Vi) and is not a simple object in E(U;, V;).

Proof: We want to find exact sequences of the form (*). Note that the
objects U,V have to belong to £(supp A), thus we may assume that A is equal
to E(supp A). This means that we may assume that A is the category of all
finite length A-modules, where A is a finite dimensional hereditary k-algebra
and that we consider a faithful exceptional A-module.

Thus, let A be a finite dimensional hereditary k-algebra and X a faithful
exceptional A-module.

We will need some preliminary considerations. A pair (B, A) of exceptional
cbjects in a hereditary abelian category A is said to be an ezceptional pair
provided we have Hom(A4, B) = Ext' (4, B) =0. _

Let (Y, X) be an exceptional pair of A-modules. We define C(X,Y) to be
the closure of the full subcategory with objects X, Y under kernels, images, co-
kernels and extensions; of course, in case (Y, X) is in addition orthogonal, then
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C(X,Y)=£&(X,Y). Let us recall the following facts: This subcategory C(X,Y’)
is an exact abelian subcategory, it is the smallest exact abelian subcategory of
the category of all A-modules containing X, Y and being closed under exten-
sions. It is of importance that C(X,Y) is equivalent to the category of all finite
length modules over a finite dimensional hereditary k-algebra © with precisely
2 simple modules S, T'; these modules S, T have no self-extensions and they sat-
isfy Ext'(S,T) = 0. Under such an equivalence, the pair (Y, X) corresponds to
an exceptional pair of ©®-modules. The proofs rely on the use of perpendicular
categories as considered by Geigle-Lenzing [GL] and Schofield [S1], see Crawley-
Boevey [CB] (the latter paper assumes that k is an algebraically closed field,
but the relevant proofs needed here are valid in our more general setting).

The (finite dimensional) exceptional ©-modules are well-known: they are just
the preprojective and the preinjective ®@-modules. Also, the exceptional pairs
of ©®-modules are easy to describe: For any exceptional ©@-module X, there
is (up to isomorphism) a unique module Y such that (Y, X) is an exceptional
pair of @-modules. Finally, if (Y, X) is an exceptional pair of ©®-modules, and
Hom(Y, X) # 0, then we must have Ext' (Y, X) = 0 (so that X ®Y is a module
without self-extensions). Note that the last assertion remains valid for arbitrary
exceptional pairs of A-modules.

From now on, we fix a faithful exceptional A-module X. Let us stress the fol-
lowing conclusion: the orthogonal exceptional pairs (V,U) with X in E(U,V) and
X not simple in E(U,V) correspond bijectively to the ezceptional pairs (Y, X)
such that X is not simple in C(X,Y); at least if the pairs in question are con-
sidered as pairs of isomorphism classes, not as pairs of modules. Namely, if the
pair (V,U) is given, then there is (up to isomorphism) a unique A-module Y in
E(U,V) such that (Y, X) is an exceptional pair in £(U, V) and therefore in A.
Also, we have £(U,V) = C(X,Y). Conversely, if (Y, X) is an exceptional pair
in .4, then C(X,Y) is a hereditary length category with precisely two simple
objects, say U,V, and such that (V,U} is an (even orthogonal) exceptional se-
quence. Again we have £(U,V) = C(X,Y). If we assume that X is not simple
in £(U,V), then the pair (U, V) cannot be exceptional, thus not only the set
{V,U}, but the pair (V,U) is uniquely determined by the pair (Y, X).

Thus, our aim is to classify all exceptional pairs (Y, X) such that X is not
simple in C(X,Y). It will turn out that there is a constructive way of obtaining
these pairs.

Lemma 3.2. Let (Y, X) be an exceptional pair. Then the following assertions
are equivalent: ‘
(1) X is not simple in C(X,Y).
(ii}) Y s not injective in C(X,Y).
(iit) Y s cogenerated by X.
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Proof: This follows from an easy inspection of all the exceptional sequences
of @-modules. In order to see the implication (ii) = (iii), just use the almost
split sequence in C(X,Y') starting with Y, its left hand map is a monomorphism
of the form ¥ — X", for some n. ‘

Let X' be the universal extension of 5 A by copies of X, thus there is an exact
sequence ’

0oAA0 X' 5 X™ 50

for some m, we have Ext! (X, X') = 0, and m is chosen minimal (or, equivalently,
X does not occur as a direct summand of X'). This module X’ is called the
Bongartz complement for X. It is well-known (and easy to see) that X & X' is
a tilting module. The Bongartz complement of a module without self-extension
has been used before in many different situations, and a lot is known about its
propertiés. For the convenience of the reader, we will include proofs of all the
facts which are relevant for our consideration.

Lemma 3.3. Let X be a faithful exceptional module. The Bongartz complement
X' of X 1s cogenerated by X and therefore Hom(X, X') = 0.

Proof: Since X is faithful, there is a monomorphism a: yA — X° for some
s. We obtain a commutative diagram with exact rows

0 —pAA— X — X" —0

a‘ a’J “ ,
'

0 — X° — X' —X™ —0
The lower sequence splits, since X is exceptional, thus X" is isomorphic to
X¥+m_ With « also o' is injective, thus X’ is cogenerated by X. 7
Let us assume that there exists a non-zero homomorphism g: X — X',
Since X' is cogenerated by X, we find 8': X’ — X such that /8 # 0. Thisis a
non-zero endomorphism of the exceptional module X, thus invertible. But this
implies that £ is a split monomorphism, impossible.

As a consequence, we obtain the folloWing characterization of the indecom-
posable direct summands of the Bongartz complement of a faithful exceptional
module:

Lemma 3.4. Let X be a faithful exceptional module, let Y be indecomposable.
The following assertions are equivalent:

(1) Y is a direct summand of the Bongartz complement of X.
(ii) (Y, X) is an exceptional pair and Y 1is cogenerated by X.

Proof: Let X’ be the Bongartz complement of X. First, let us assume that
Y is a direct summand of X’. In particular, we have Ext' (X,Y) = 0. According
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to the previous Lemma, Y is cogenerated by X and Hom{X,Y) = 0. But this
also means that (Y, X) is an exceptional pair.

For the proof of the converse, we first note the following: Let Z be a module
cogenerated by X, say with a monomorphism v: Z — X¢, and let Z’ be a
module with Ext!(X, Z’) = 0. The long exact sequence for Hom(—, Z’) yields
an epimorphism Ext' (X¢, Z') — Ext'(Z, Z'), thus we see that Ext'(Z, Z') = 0.

Now, let us assume that (¥, X) is an exceptional pair and that Y is cogen-
erated by X. Since Hom(Y, X) # 0, we have Ext!(Y, X) = 0. The previous
considerations yield Ext'(X’,Y) = 0 and Ext'(Y,X’) =-0, since both mod-
ules X', Y are cogenerated by X and since they satisfy Ext' (X, X') = 0 and
Ext'(X,Y) = 0. It follows that X @ X' @Y is a tilting module. As a conse-
quence, Y is isomorphic to a direct summand of X & X’. Since Hom(X,Y) = 0,
we see that Y is isomorphic to a direct summand of X'.

Proof of Schofield’s Theorem: Since X is a faithful A-module, s = s(X) is
the number of simple A-modules. Let Yi,...,Y,_1 be pairwise non-isomorphic
direct summands of the Bongartz complement X’ of X (recall that a tilting mod-
ule has precisely s isomorphism classes of indecomposable direct summands).
Then, the pairs (Y;, X) are exceptional with Y; being cogenerated by X, thus
X is not simple in the subcategory C(Y;, X).

On the other hand, consider an exceptional pair (Y, X) with X not simple
in C(X,Y). Then Y is cogenerated by X, thus Y is isomorphic to a direct
summand of X', thus to one of the modules Y;. This completes the proof.
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ABSTRACT. In arbitrary characteristic different from 2, the singularities
with semi-quasi-homogeneous equations characterized by the condition to
have Saito-invariant 1 are the ”classical” quasi~-homogeneous ones, known
over the fleld of complex numbers as simple elliptic singularities (Saito,
[10]). Here we find them in characteristic 2 as well: In odd dimensions
and for weights £g and Eg non-quasi-homogeneous equations appear.

0. THE PROBLEM

k denotes an algebraically closed field. Let X be a finite set of indeterminates
z equipped with positive weights w(z) € @ and f € k[[X]] be a formal power
series consisting of monomials of weight > 1 such that fi (:= sum of terms
of total degree 1) defines an isolated singularity (i.e. the partial derivatives
generate an ideal which is primary for the maximal ideal in k[[X]]/(f)). Then
we associate to f the ”Saito-invariant” s 1= |X |23 .y w(z). Wesay ”f is s-
semi-quasi-homogeneous” (or short: "s-sqh”) with respect to the given weights.
For f = f1, f is said to be ”1-quasi-homogeneous”. The case of s < 1 gives the
rational double points (the simple singularities or, equivalently, the absolutely
isolated Cohen Macaulay double points, cf. [3], [6], [4]). Here the "boundary
case” of s = 1 is considered, which corresponds in the complex-analytic case
to the simple elliptic singularities ([10]). Note however, that for char k = 2
not all of those singularities arise from dimension 2, so here they better will be
referred to.only as l-semi-quasi-homogeneous. As for the simple singularities,
the case of characteristic 2 is most complicated in the sense of stable equivalence
for different dimensions. From the point of representations (considering the
Auslander-Reiten quiver of maximal Cohen-Macaulay modules over the local

Received by the editors Jan. 4, 1996, revised Feb. 28, 1996.
159



160 MARKO ROCZEN

ring of the singularity), the usual Knorrer-periodicity has to be replaced by
Solberg’s periodicity (taking dimensions mod 2), and the results of Kahn (cf.
[5]) may apply at least to some of the singularities found here.

1. THE QUASI-HOMOGENEOUS CASE

Write X = {Xo,...,Xn} and w(X;) = w;. We always assume w; < %; this is
no loss of generality (cf. e.g. [6]). Let k[X]; denote the polynomials which are
sum of monomials of weight 1 (set of "quasi-homogeneous polynomials” with
respect to the given weights). Then we have the following

Cancellation property: Let f,g € k[X], define isolated singularities, and let
¢1, g2 € k[Y] be nondegenerate quadratic forms in a finite set ¥ of new variables
of weight % Suppose f+q; can be transformed into g+ ¢ by an automorphism
& of k[X,Y] preserving the grading. Then there exists an automorphism ¥ of
k[X] which preserves the grading and such that f = go ¥.

This is a consequence of the following (cf. [6])

Proposition (Saito, Knop): Choose f € k[[X]] defining an isolated singular-

ity.

(i) XY C X, then one of the following is satisfied:
(a) There exists X< € supp(f) such that X* € k[Y], or
(b) There exists an injectivemap ¢ : Y =3 X —Y and amap ¢ :Y —
NY such that YY) .y . o(y) € supp(f) for every y € Y.
(ii) Assume f is quasi-homogeneous of degree 1. Then up to an automorphism
of k[X] which preserves the grading, f = fi + 3 .4 z¢(z), where 4 =
{z € X, wzg) > ;}and¢p: A= X ~Aisan injection, f; € k[X —
(AUg¢(A))]. Now, choose all w; < & and denote @ := {z € X| w(z) = }},
R=X-Q={zeX|w()<}}
Up to a graded automorphism?®, f is of the following form:
(a) f = fi +¢, fL € k[R], and g € k[Q] a nondegenerate quadratic
form. :
(b) char k = 2, and there exists z¢ € @ such that f = f1+ fa-zo+2z3+4q,

~ where ¢ € k[Q — {20}] (¢ nondegenerate quadratic form), f; € k[R] for
i=1,2. _

We deduce a

Ltacitly assumed to be of degree 0
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Proof of the cancellation property:

Let f+ ¢ = (g+¢2) o ®. In case of part (ii) (a) of the preceding proposition, we
may assume X = R, i.e. f,g € (Xo,...,Xn)%, w(X;) <}, thus &(X;) € k[X],
and after a linear change of coordinates in Y, &(Y;) = Y;.

Now let char k¥ = 2 and suppose f has the form (ii) of (b), f+¢1 = f» +
faXo + X2 + ¢, where f; € k[X1,...,X,) and ¢ € k[Y] is a nondegenerate
quadratic form. We may assume g+ g2 = g1 + g2Xo + X& +¢, and also g¢;, f; €
k[Y], |Y| = m even and ¢ = Y1 Y5 + -+ + Y, 1 Yo (classification of quadratic
forms in characteristic 2). Then, if f = go ®, ® graded. We obtain ®(R) C
k[R], R = {X1,...,X,}, ® induces a linear transformation in the variables
{Xo}UY mod(Xa,...,Xs)?, fixing X2 + q(Y) mod(Xi,...,Xn)%. Thus we
may assume ®(Xg) = Xo + ¢o, $(Y;) =i+ i, ¢ € k[X] of weight 3. But ¢
is nondegenerate, thus ¢; =--- = ¢, =0.

Definition: Choose f € k[[X]] and g € k[[X"]].

(i) f,g are said to be right equivalent if X = X' and there exists an auto-
morphism & of k[[X]] such that f = go @. In this case, we write f ~ g
(without loss of generality, ® can be choosen homogeneous of degree 0 if
f € k[X)1, g € k[X]: for a fixed weight w).

(ii) Assume there exist nondegenerate quadratic forms q € k[Z], ¢’ € k[Z']
respectively in finite sets Z, resp. Z' of new variables such that f +q £
g+ ¢. Then f,g are said to be stable-equivalent?. We write f ~ g. The
polynomials f + ¢, g + ¢’ respectively will be referred to as ”quadratic
suspensions” of f, g respectively.

Thus, the above cancellation property says: If f, g (as above) have the same
number of variables and f 2 g, then f ~ g

If f 2 g, then s(f) = s(g); and always 0 < s(f) < |X|. The classes of f having
s(f) < 1 are precisely the quasi-homogeneous forms of the simple singularities

ADE (cf. [6], [4]); their behavior under the canonical local resolution is studied
in (7].

For the 1-gh polynomials we have the following

Theorem: Let f € k[X] be a polynomial defining an isolated singularity such
that f is quasi-homogeneous for some weight w with s = 1.

Then w is (up to permutation) one of the weights

- 1111 1, - 111 1, = 111 1
= \ss5vavny- "yl = _’_,_y"'>'_’E =A\srzrar " n
=333 7 Gy B=Gyyp)

and f is stable-equivalent with one of the following polynomials (¢ € k& denotes

a parameter):

2Note, the condition implies that the total number of variables has to be the correct one.
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Case A: char(k) #2

Ee: f=X1(X: - Xo)(X1 —tXo) — XoX2, t#0,1
Er: f=XoX1(X) — Xo)(X1 —tXy), t#0,1
EBg: f=Xo(Xo— X2)(Xo —tX2), t#0,1

Case B: char(k) =2

1. n odd
E5(0): X3+ XX, + Xh X2 + X2
Es(t) X3 +tX3+ X2Xo + Xo X1 X2 + X3, t#0
E7(t): X()Xl(Xl + Xo) (X1 + tX,), t#0, 1
Eg(t) Xo(Xo+ X3)(Xo +tX2), t#0,1
2. n even
Es(0): X3+ XXy + X, X2
Es(t): X3 +tX3 + X2 X + Xo X, Xa, t#0
Era(t): X2+ XoX?2+ X1 X2(tX) + X2)
Era(t):  XE+ XoXaXs+ X1 Xo(tX: + Xa)?, t#0

Fg(t):  X&+ XoX: X+ X1(X, + X3)(Xy +tX2), t#0
Prooft To start with, we need the following

Lemma: With the previous notations, assume s = |X|-23  ~w(z) =1, i.e.

S wlz) = S(RI-1)
zER
and such that there exists a polynomial f € k[{X], with an isolated singularity.
Then
(i) B[ #0,1
(i) S:={z e X|;<wlx)<;}=0
(iii) |R| < 3 with equality at most if wo = wy = wp = } (up to permutation of
indices of the X}).
(iv) If |R| = 2, then wp = w; = }, or wy =
permute).

, w; = ¢ (again, indices may

W)
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Proof of the Lemma: (i) is an obvious consequence of s = 1.
To show (ii), (iii), apply (i) in the above proposition: Choose maps ¢, 1 with
the property (b) and obtain:

SIR-1) = Y u(e) =

zZER
= Y w@+y weEN+ Y,  wE
zeS z€S z€R—(SUp(S))
= Y w@+Y (I-w@) -wES*@)+ Y w)
z€S z€S zER—(SUp(S))
= > (1-wS*®)+ > wl)
z€S zER-(SUp(S))

< 81+ 51R-SUp(S)]

(note that S¥().z-p(z) € supp(f) for all z, i.e. w(S¥®)+w(z)+w(p(z)) =1,
also, ¢(S) C R). Thus

1 1 1

SIRI=1) < SIS+ IR = (SU(S)) = 5IR]
To prove (iv), we may assume wg + w; = %, Wi = % for¢ > 1, i.e. for wg = uy
we are done. Assume wo > wi, then 7 < wo < L. If X3 ¢ supp(f), then
no power of Xy is in supp(f), and (i) (a) in the Proposition implies (using
Y = X,) that one of the monomials X§*'X; (@ € N, i € {1,...,n}) is in
supp(f). This implies wy = 5= or wg = Z(TITT) (contradiction, since a € N).
Thus X§ € supp(f), i.e. wo =%, wy = ;.
Now, a detailed case by case analysis gives the
Proof of the Theorem:

Choose e.g. the case of Es in even dimension, i.e. here without loss of generality
in dimension 2. Then in coordinates (z0 : z1 : 22), the corresponding equation
f = 0 defines a smooth curve C of degree 3 in the projective plane. We obtain
the above normal form after a linear change of coordinates. In char k = 2 we
have two cases: Eg(0) if the elliptic curve is supersingular, Eg(t), with ¢ # 0
otherwise.

For the weights E:, Eg, a geometric analysis of the relevant forms is necessary,
giving different equations in even and odd dimensions for char k = 2.

We apply the proposition to obtain the list of equations; choose e.g. f of weight
E7, char k = 2:

We may assume X = {Xo,...,Xn} with
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(@ n=1 w =w =}, f= f(Xo,X1) homogeneous of degree 4 and
defining an isolated singularity, i.e. f with 4 different zeroes on P*.

(b) n = 2) Wy = %a w = w2 = iy f = $g+g$0+h7 g € k[XlaXZ]
homogeneous of degree 2, h € k[X1, X2] homogeneous of degree 4.

If (bl) g = 0, then coordinates can be choosen such that X; X3 ¢
supp h, thus V (X1, XZ + g(X1, X2)) C sing(f), i.e. the singular locus has
positive dimension. Now assume (b2) g = X7, then f = X2 + XoX? +
h(X1,X2). Write h(X1, X3) = So_ R XVX57". Then f defines an
isolated singularity if A; # 0; we may assume h; = 1. A coordinate
transformation Xy := Xo + aX? + bX; X2 + cXZ brings h into the form
h = XlX%(tX1 + X2)

The case (b3) g = X; X, is done in a similar way.

Remark: Note that also in char k = 2, the equations for FEg can be written
in a form such that E5(0) and Eg(t), t # O are in the same 1-parameter family:
Take n = 2 and let C(s) be the curve defined in the projective plane by

X3+ X3+ X3+ XX, X2=0
where s € k. For s® # 1 this is an elliptic curve with absolute invariant j =

12 .
(83371)3, and FEg(0) is the cone over an elliptic curve with invariant 0, thus
isomorphic to the cone over C(0). For fixed ¢ # 0, the equation ¢s'? + s° + 5% +
s34+ 1 = 0 has 12 different solutions s. We obtain several C(s) with invariant
=t |

Thus any 2-dimensional quasi-homogeneous singularity of type Eg is obtained
as cone over some C{s).

Corollary: Let f € k[X] be quasi-homogeneous of some weight w = w(f) and
assume s = s(f) < 1. Then w is uniquely determined up to permutation in the
class of quasi-homogeneous functions which are stable equivalent f. Especially,
the number s is well defined on the equivalence class.

Remark: In the case considered here, w (up to permutation) and therefore
5(f) depends only on the complete local ring of the singularity. It is not known
to the author, if this is generally so for s(f) > 1 (but it is always true for k = C
by [10}). :

2. NORMAL FORMS OF SEMI-QUASI-HOMOGENEOUS FUNCTIONS

Now let f = fi + fs1 be a formal power series which contains no monomials
of weight < 1 with respect to the given weight w. Put f; := sum of terms of
weight 1 in f and assume f; defines an isolated singularity.
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f is said to be contact equivalent with a power series g, if the k-algebras
k[[X]]/(f) and k[[X]]/(g) of formal power series are isomorphic.

The following result reduces the part fs; into a normal form without changing
f1 and the contact equivalence class of f. T(f1) denotes the ”Tjurina-algebra”,

.9
T() = MIXT/ (s g )
We have dimy(T(f1) < 0.

Theorem: Let (e7,...,€;) denote any maximal linear independent set of
classes in T'(f;) of monomials e; having weight > 1 ("superdiagonal monomi-
als”). Then f = fi + f51 is contact equivalent with fi+cie;+---+cses, ¢ € k.

Proof: Letw = (m?Q, ey m?ﬂ) with positive integers m;, d. Denote 0,,(h) the
total order of the initial term of a power series h € k[[Xo, ..., X,]] with respect
to (mo, v ,m,,).

If the classes of superdiagonal monomials {ej,...,es} form a basis of the sub-
space generated by all superdiagonal monomials in the Tjurina algebra 7'(f),
then the similar assertion is true for any fixed order d’, i.e. let {ei;,...,e;,}
be the subset of monomials such that on,(e;;) = d’, then this is a basis for the
subspace in T'(f1) generated by the classes of all monomials having o,, = d' (f;
is homogeneous).

Obviously, an inductive convergence argument gives the result, if we show the
following

Lemma: Let (after some permutation) ey,..., e, be the monomials of order
om(e;) =d >din {e1,...,es}. Then f is contact equivalent with a series

A+ +) ceith,
i=1
where f1, is the sum of terms of order o, < d' in fs1, ¢; € k and h €
k[[Xo,...,Xn]] has order o, (h) > d'.
(Note that the case is included, where {e1,...,e,} is the empty set.)

Proof of the Lemma: Choose ¢; € k such that
T n afl
9- i—216ie'i =q¢-fi +§U;‘6—Xi
for some ¢, v; € k[[Xo,...,Xn]] and g the sum of monomials of order d' in f5;.

Without loss of generality, ¢ and v; are quasi-homogeneous for (mg,...,my) of
order

om(g) =d' —d=:6>0
om(u;) =d — (d—m;) =86 +m; > my,
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respectively. We obtain

n

(1) fu+ ot S e = (1= )i + for) + af>1 - Zv,afl

i=0

where in the right hand term o,,(qf>1) > d, v,-g—/% is quasi-homogeneous with

om(vi%) =d, and o,,(p) > d'.

Assume ;vithout loss of generality mg > my > -+ > my,. Let X; (= X —
v;(X'), then o0, (v;) > m; = o, (X;) implies: The linear part of this coordinate
transformation has a lower triangular matrix (a;;) with ai; = 1, and a;; # 0 for
¢ > j is possible only if m; > m;. The above substitution sends

8fl ) - ] !
(%) f1(X)— AX Z (X)) ~axT + terms in X’ of order o, > d

(if we take the same weights for the X’).
By (x), we have

(x * %) (1—(]( Nf f1+zvl f>1 +Zcxz

mod terms of order 0, > d' . If we apply (**) and remember o,,(v;) > d' ~ d,
the substitution above transforms the right hand side of (x % %) into

[H(X) + (fs1(X +th €i X'),

where 0,,(h) > d’. This completes the proof.

Note that we do not need any assumption on char k. If char k = 0, by Euler’s
oh Of1 \ - - -
formula we have f; € (E_XLO’ S‘XL) i.e. the Tjurina-algebra T'(f1) coincides

with the Milnor-algebra M (fy) = k[[X B—L E_L and in this case the
result coincides with ([1], 12.6).
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3. RESULTS IN THE 1-SEMI-QUASI-HOMOGENEOUS CASE

Using a computer®, from the theorem in section 2. we obtain easily:

semi-quasi-homogeneous singularities with s = 1 in characteristic 2

type Tjurina—numbej maximal set of linearly independent total
superdiagonal monomials number
case 1: dimension = 1 mod 2 |
E5(0) 16 XoX X35, X1 X2X5, XoX2X3, XoX1X2X5 4
Es(t) 16 X? X3, X3 X3, X1 X2 X3, X3 X3 4
Ey g @ 0
Eg 12 XoX? 1
case 2:  dimension = 0 mod 2 |
Es(0) 8 U] 0
Eg(t) 8 ] 0
E7.1(t) 10 0 0
Eq2(t) 10 0 0
Es(t) 10 0 0

Thus e.g. for n odd, the 1-sqh singularities with first term Es (as in the theorem
of section 1) are given by adding a constant multiple the monomial X X?. If the
coeflicient is not zero, an easy coordinate transformation leads to the only non
quasi-homogeneous 1-sqh singularity of that weight; it is given by the equation
Xo(Xo + X2)(Xo +tX?) + XoXP =0 (t ¢ {0,1}) with Tjurina number 11.
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SOME EXAMPLES OF RICKARD COMPLEXES
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ABSTRACT. After a presentation of Broué’s conjecture for principal blocks
with an abelian defect group, we describe a Rickard complex for GLa(q)
arising from the f-adic cohomology of a Deligne-Lusztig variety, in accor-
dance with the explicit form given by Broué to his conjecture in the case
of Chevalley groups in non natural characteristic.

1. OVERVIEW OF BROUE’S CONJECTURE

Let G be a finite group and £ a prime number. Let P be a Sylow £-subgroup
of G and assume P is abelian. Let H = Ng(P). Let O be the ring of integers
of a finite unramified extension K of Qg, such that KG and K H are split. Let -
A and B be the principal blocks of G and H over O. Let us denote by H® the
group opposite to H. Similarly, B® denotes the algebra opposite to B. We put
AP = {(z,z7 )|z € P} < G x H°. The sign ® means ®¢. Finally, if M is an
O-module, we put KM = KQ M.

Conjecture 1.1. The blocks A and B are Rickard equivalent. More precisely,
there is a complez C of (left) A ® B°-modules which are direct summands of
relatively AP-projective permutation modules such that:

C*®4C ~ B in K°(B® B°)

C®pC*~Ain K'(A®A°).
For the sake of simplicity and for the lack of a final form of the conjecture in
the general case, we have stated the conjecture for principal blocks only. The
original statement of the conjecture [Brl] makes no assumption on C. That C

should be of this special type (“ splendid ”) appeared in [Ri4].
The conjecture is known (to the author) to hold in the following cases:

Received by the editors Feb. 5, 1996.
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P cyclic [Ri1, Li, Rou];
G = G(F,) the group of rational points of a connected reductive algebraic
group, when £|¢g — 1 but £ does not divide the order of the Weyl group
[Puj;

e G = As and £ =2 [Rid];

o G =58L,(8) and £ = 2 [Roul;

¢ (G is £-solvable.

For Chevalley groups, when £ is not the natural characteristic of the group,
there is a very precise conjecture of Broué giving a candidate for C, in terms of
£-adic cohomology of certain Deligne-Lusztig varieties [Br-Ma]. The aim of the
second part is to present the simplest case of this conjecture.

2. A GEOMETRICAL CONSTRUCTION FOR GLy(q), £|(¢ + 1)

Let ¢ be a prime power. Consider the affine curve X with equation {zy? —
z9y)9~! = —1 over an algebraic closure F, of F,. The group G = GL,(F,)!
acts naturally on the affine plane over F, and this induces an action of G on X.
There is also an action of the group of rational points T' ~ F;z of a Coxeter torus

of GLy(F,) by scalar multiplication (in the isomorphism above, F acts on T' as
z + 2% on F;z). Finally, the variety X is defined over F,, with corresponding
Frobenius endomorphism F.

This variety is actually the Deligne-Lusztig variety associated to the non
trivial element of the Weyl group? [De-Lu, 2.2].

Let £|g+1 be an odd prime and O be the ring of integers of a finite unramified
extension K of Qg, such that K G and K H are split, where H = Ng(T) =TxW
and |W| = 2. Let P be the ¢-Sylow subgroup of T'.

Our object of study is the complex RI';(X,O) (O is the constant £-adic
sheaf) giving rise to the compact support £-adic cohomology: this is an object
in the derived category of (OG) ® (OT)°-modules. Actually, we will consider
the finer invariant C' = A.(X,O) in the homotopy category of (OG) ® (OT)°-
modules, as defined by J.Rickard [Ri3]. This is a complex of direct summands of
permutation O(G x T°)-modules. Note that there iz an action of the Frobenius
F on C, giving rise to a right action of OT x F.

Let e be the sum of the £-blocks with positive defect of OG. Define A = OGe
and B = OH.

Proposition 2.1. 3 The action of OT % F on C factors through an action
of an algebra isomorphic to B. The action of OG on C factors through an

'In the talk, the case of SLz(g) had been considered, where the same methods apply.

2This is a Coxeter variety, i.e., the variety associated to a Coxeter element of the Weyl
group. These varieties should be studied by the author in a future paper.

3The proposition actually holds for O replaced by Z,, as suggested by K.WARoggenkamp.
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action of A : the complex C 1is then a complex of direct summands of relatively
A P-projective permutation modules. We have

C*®4C ~B in K°(B® B°) and
CepC*~A inKb(A®A°).

Proof. Since X is an affine curve, the cohomology groups H:(X, Q) are zero
for ¢ = 0 and ¢ > 2. Since X is in addition smooth, the cohomology groups
H!(X,0) and H2(X,O) are free as O-modules [SGA43, Arcata, IIL§3].

Since both G and T act freely on X, the complex C is perfect (i.e. isomorphic
to a bounded complex of projective modules) as an object of D°(OG) and as
an object of D*(OT) [De-Lu, (proof of) 3.5].

The representation of G x T° on HZ(X, O) is isomorphic to the permutation
representation on the connected components of X. Its character is

Z dety @a

aglrr(Fy)
where det, is the character « o det of G. The Frobenius morphism F acts with
the eigenvalue q on HZ(X, O).
The character of the KG ® (KT')°-module H} (X, K) is [Di-Mi2, 15.9]:

> Ste@a+ Y. [g- 1 ®w+w)
a€lrr(Fy) wEIrr(Fzz)/W,
wi 21
where St, = St - det, St is the Steinberg character of G and

{[q - 1]w}w€lrr(F;2)/W, w211

is the set of irreducible characters of G with degree ¢ — 1. The Frobenius F acts
with the eigenvalue 1 on the GG-isotypic component with character St, and with
eigenvalues /—q and —+/—¢q on the component with character [¢ — 1], (this is
a consequence of Lefschetz formula, [Di-Mil, V.1.3]). From this description of
the character of H*(C), it follows that OG acts on C through A.

Let 0 € KT % F defined by
1—1
V—q
where 1 = 5 33,7 t?"! and where \/=¢ € O is chosen such that {1 - \/=¢.
Note that o is actually in OT x F, since

o= QF —1—¢q)+ —=F

q—1

o= St 1“V‘q S iR
(g~ 1)2 teT v V=alg =121+ v=9) =

For t € T, we bave ot = t90 since F't = t9F. Now, we see that ¢ acts trivially

on H?(X,K), with eigenvalue —1 on the G-isotypic components of H} (X, K)
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with character St, and with eigenvalues 1 and —1 on the G-isotypic components
with character [g — 1], ; in particular, 02 acts trivially on H}(X, K). Finally,
the image in Endges(x 4)(KC) of the sub-algebra of KT x F generated by T
and o is isomorphic to K H. Butiit is clear that Endgs(x 4) (K C) is isomorphic
to KH : this means that the image in Endgs(x 4) (K C) of the sub-algebra of
KT x F generated by T and o is actually the image of KT x F. Hence, we
have proven the analog of the proposition where scalars are extended to K.

For a € Irr(F}), let eq be the sum of the blocks of G containing the characters
[g — 1], with w9*? = o and the characters det, and St,. Let Cy = eoC. Since
H(C) is free over @ and C is perfect in D*(QOG), it is isomorphic to a complex
of projective modules 0 = C* % €2 — 0 as an OG-module. Let us choose C*
such that Imy has no projective direct summand. Put C} = e,C*. Then, C?
is a projective cover of dety, since H?(Cy,) ~ dety. Now, Cy splits as

0-C,=C250805C" 2050

where C'L, — C2 is the beginning of a projective resolution of det,. From this
description and from the knowledge of the characters of C’L,C”% and C2, it
follows that C is a tilting complex for A.

Let B’ be the image of the sub-algebra of OT x F generated by T and ¢ in
Endgs(4)(C). The algebra B’ is isomorphic to OH and C is perfect in D*(B"),
since it is perfect in D*(OT).

A proof similar to the one above shows that C is a tilting complex for B’.
Now, by [Br2, théoreme 2.3], this implies that C is a two-sided tilting com-
plex for A ® B°, i.e., the isomorphisms of the proposition hold in the derived
categories and a priori not in the homotopy categories. Note that we have ob-
tained that B’ is the whole of Endgs(4)(C), hence B' is the image of OT x F
in EDde(A)(C). _

If S is a non trivial £-subgroup of G x T° which is not conjugate to AP,
then S acts freely on X, hence by [Ri3, Corollary 3.3], C is a complex of direct
summands of relatively AP-projective permutation modules. If S is a non
trivial £-subgroup of G x T°, then the fixed points set X has dimension zero,
hence A.(XS,©) is concentrated in degree 0. Hence, by [Ri3, Theorem 4.2, C
is homotopic to a bounded complex of modules which are all projective A ® B°-
modules, except C° ; this implies that the isomorphisms of the proposition hold

indeed in the homotopy category [Ri2, (proof of) Corollary 5.5]. O
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INTRODUCTION

For a field & of characteristic 0 and a representation-finite quiver ZX, it has
been observed [8] that the indecomposable E-linear A - representations are in-
dependent of the chosen orientation. In fact, they can be associated [6] to the
positive roots of the corresponding semisimple Lie algebra g = g(A), where
A denotes the unoriented graph underlying A. Thus if we consider the graph
Z with pairs of arrows in opposite direction for every edge of A, we may ask
whether there exists a Z—representa’cion which induces the indecomposables for
each orientation A of A. Of course, for a reasonable solution, one should ex-
pect that the maps representing the arrows of A are connected with the opposite
maps by a suitable relation, and the resulting Z—representation should be more
or less unique.

Our first aim in this paper is to show that this problem is indeed solvable
(Theorem 1.1) and admits a unique solution depending on a fixed element o
in the root space Ay which does not ly on a wall of the Weyl chambers. (For
arbitrary « € EAg, the Z-representation is still unique, but for some orientations
A, the induced representation might decompose.) The mentioned relation (see -
(1) below) between the maps representing A and the opposite maps is well-
known in the particular case @ = 0: Then it turns into the defining relation
of the preprojective algebra [10, 7] of the graph A. Our construction in §2
therefore leads to a semisimple deformation A of the preprojective algebra,
which, as we shall see, can be regarded as a ”double” of the path algebra EA.

We shall prove that the indecomposable E&—representations correspond to the
simple A-modules.

Received by the editors March 8, 1996.
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There are quite different contexts where quivers of the form Z and relations
similar to (1) have occurred. We thank the referee for directing our attention
to some of them. McKay [15] observed that for a binary polyhedral group G,
if the two-dimensional irreducible representation R {over C) is tensored with

all irreducibles Ry,... , Ry, say R ® R; = HRE."""), the oriented graph with

adjacency matrix (ai;) is of the form Z, with an extended Dynkin diagram
A. Ap explanation is provided, among others, by M. Auslander [3] (see also
[4]). He establishes a one-to-one correspondence between Ry,..., R, and the
indecomposable projective modules over the twisted group ring S[G], where

S = [z,y]], and shows that the McKay quiver A coincides with the Gabriel
i x4
quiver of S[G]. Now if A is regarded as a translation quiver with the identity

as translation, the relations in Z given by the ring structure of S[G] are just
the mesh relations, that is, the relations (1) with o = 0.

On the other hand, the inhomogenous equations (1) are connected with the
resolution of singularities, and with minimum action solutions of SU, Yang-Mills
fields, also called instantons or pseudo-particles. Atiyah and Ward [2] have
shown that self-dual instantons in R* correspond to certain two-dimensional
algebraic vector bundles over P3{(C), and in [1] these bundles have been con-
structed in terms of pure linear algebra. A quadratic equation between matrices,
similar to (1), results as a defining relation.

Every binary polyhedral group G, viewed as a subgroup of SU>(C), gives
rise to a quotient singularity C? /G with intersection matrix of Dynkin type. If
X denotes the 4-manifold underlying the minimal resolution of C? /G, Peter
Kronheimer has shown [11] that X admits the structure of an ALE hyper-
Kahler 4-manifold, that is, a self-dual gravitational instanton. Here, ALE (=
asymptotically locally Euclidean) signifies that at infinity, X¢ resembles R* /G,
and the Riemannian metric is Euclidean up to O(r~*). “Hyper-K#hler” means
that X is equipped with three covariant-constant complex structures I, J, K
connected by the relations of quaternion units. Moreover, he proved that every
ALE hyper-Ké&hler 4-manifold is diffeomorphic to some Xg. In his construction
of X¢, Kronheimer starts with the manifold M = (R ® EndCG)€, on which
the group F' of G-invariant unitary transformations of CG operates. Then X
is obtained as a hyper-Kahler quotient M'/F, where M’ C M is defined by a
quadratic relation similar to (1). The left-hand side of this relation plays the
role of a (hyper-K&hler) moment map. In a similar way, relation (1) enters into
the definition of certain varieties of quivers considered by Lusztig ([12], §8; [13],
§12) and Nakajima's quiver varieties [16, 17].

QOur subsequent article will be self-contained. No use is made of the above
mentioned connections.
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1. EXTENSIONS OF INDECOMPOSABLES

Let E be a field of characteristic 0 and A a finite oriented graph with vertex
set Ag = {1,...,n}. A representation (V, f) of A over ¢ is defined as a family
V =(V1,...,V,) of finite dimensional &-vector spaces ¢ and a family f of €-linear
maps TR V — V; for each arrow ¢ — j in A. Let A denote the path algebra
of A Jd.e. the B-algebra with paths p:ig =4 — ... =2 i in A as basis such
that, for another path g: 50 —» ... = j5 in 5, the product gp is given by the
composition ¢g = ... = 1, = j1 = ... = 4 if i, = jo, and gp = 0 otherwise.
Then in an obvious way, each 5-representation (V, f) can be regarded as a
finitely generated tA-module. The vector dim(V, f) = (d1,... ,d,) € N* with
d; = dim, V; is called the dimension vector of (V, f).

Gabriel’s theorem [8] states that the number of (isomorphism classes of) inde-
composable A-representations (i.e. #A-modules) is finite if and only if the unori-
ented graph A underlying A is a disjoint union of Dynkin diagrams. Moreover,
the set of dimension vectors of indecomposable A-representations coincides with
the set % of positive roots of the semisimple Lie algebra g of type A. Thus for
a given root d € T, there is an indecomposable representation with dimension
vector d for each orientation A of A. o _

Now let A be a Dynkin diagram. If A denotes the oriented graph with arrows
.i—j and j—i for each edge i—j in A, the question arises for a given dimension
vector d € T, whether there exists a Z-representation which induces the
indecomposable A-representations of all orientations via the natural embedding
EA < EA.

Qur first result {Theorem 1.1) will give a solution to this problem, includ-
ing an explicit construction of the Ex-modules in question. Furthermore, we

“r
shall prove that these EA-modules can be regarded as simple modules over a
semisimple algebra associated w1th A. Let us define a A-representation of type

a = (a,...,a,) € " as a A -representation (V, f) which satisfies for each
1 € Ag the relation

ZfijfjiZGi'lw ‘ (1)
J

where j runs over the vicinity V(2) of i, that is, the set of vertices j adjacent to
iin A. If d is the dimension vector of (V, ), the following relation necessarily
holds for the o;: )

> #dias = 0. .(2)
Here, the + and — signs are chosen according to any fixed partition Aq =
AJ U Ag such that adjacent vertices belong to different signs. (Since A is a
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tree, there are only two such partitions!) In fact, if we take the trace on both

sides of (1), we get
> dij = aud;

JEV()
where d;; 1= tr(fi; f;i) = dji. Thus (2) immediately follows. For a fixed parti-
tion Ag = A U Ay, let us define 4 € E(z1,... ,z,] by
(I’d = Z :td,'ilfi = Z d,‘l‘,‘ - Z d{(l),'. (3)

iead i€y
Theorem 1.1. Let A be a Dynkin diagram and o € 8 with ®4(a) = 0. Then

every indecomposable [&-representation (V,f) with dimension vector d has a

unique extension to a A-representation (V,f} of type a. Moreover, the f,-j
depend polynomially on a.

As a consequence, we get the solution to the above question:

Corollary 1.2. Let (V, f) be a A-representation of dimension vector d € &7
and type o such that Y *dia; # 0 for all d’ # d in 7. Then the induced
[ﬁ-representations of all orientations are indecomposable.

Note that this choice of « is possible since t is infinite. The corollary follows
immediately by a proposition which we shall prove together with Theorem 1.1:

Proposition 1.3. Let A be an orientation of A and M o A-representation
which extends some A-representation M. Then M has a subrepresentation with

underlying A -representation S such that S is an indecomposable direct summand
of M.

2. THE DOUBLE OF A PATH ALGEBRA

Our second purpose of this paper is to show that by Theorem 1.1, the de-
composition g = g+ & g®® g~ of a semisimple Lie algebra g has an analogue for
associative algebras. Namely, the nilpotent Lie algebra g* corresponds to our
path algebra A™ = A, the negative part g~ to A~ = (E&)"p, and the abelian
part g° is replaced by some commutative algebra A° generated by n elements
&1,...,0n. The semisimple Lie algebra g corresponds to a semisimple algebra
A containing an order Ag generated by A*, A=, and A°.

Firstly, the A-representations over some extension field of & can be interpreted
as modules over the E-algebra

A=R.AJI (4)
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where R, is the polynomial ring €[z1, ... ,z,] and I the principal ideal generated
by

Ze,‘jeﬁ - Zmiei.. (5)

Here e;; denotes the path j — 4, and e; is the primitive idempotent (empty
path) corresponding to the vertex ¢ € Ag. The first sum in {5) is to be extended
over the edges 1—j, the second over the vertices ¢ in A. The residue class of
z; modulo I will be denoted by ;. Thus a1,...,a,; € A generate a subring
R =¢tay,...,a,] in the center of A, and A becomes an R-algebra.

Recall that an ideal P in a ring T is said to be prime if for any two ideals
I,J in T, the inclusion P D I - J implies P D I or P O J. An elementr € T
is called regular if the left and right multiplication by r is injective. A subring
I of T is said to be an order in T if each regular » € T is invertible in I, and
every element of [ is of the form r~'a, and also of the form ar~?, with r,a € I"
and r regular. The intersection N(I') of all prime ideals in T is called the prime
radical ([19], chap. XV}, and T is said to be semiprime if N(I') = 0.

Now we define Ag := A/N(A). The natural homomorphism A —» Ay maps R
onto a central subring Ry = €[a1,... ,&,] of Ag, generated by the residue classes
of the @; modulo N(A). Let & € R. denote the product of all ®4,d € &,
By virtue of (5), the defining relations (e? = e;, e;e;; = e, etc.) of the
ei; which encode the graph structure of A, are turned into a single relation
®(&1,...,0n) =0 in Ry encoding the root system of A:

Theorem 2.1. The kernel of the natural map p : R. - Ry is the ‘prz‘ncipal
ideal (®). If M is any A-representation such that for some orientation A of

A, the underlying eA-module is indecomposable, then N(A)M =0, i.e. M can
be regarded as a Ag-module.

For each orientation A of A, the tEA-module EA extends to a A-represen-
tation M of type (0,...,0). Thus Theorem 2.1'implies N(A)M = 0, whence
¢A NN(A) =0 in A. Therefore, the natural ring homomorphism

EA < A - Ay (6)

is injective, i.e. A and (E&)"P can be regarded as subrings of Ag, and A is
generated by these subrings together with Ry.

Since for each d € ®*, there is an integral domain R4 := K. /(®4) isomorphic
to [z1,... ,Zn-1), with quotient field K4, say, Theorem 2.1 yields a natural
embedding

Ry [] Ka= K, (7)
ded+t
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and K is the classical quotient ring [19] of Ry. Consequently, there is a natural
homomorphism

A— K@rA=A , (8)

Theorem 2.2. The ring A is semisimple, the kernel of (8) is N(A), and thus
Ao 1s an order in A. The blocks of A correspond to the positive roots d € &+,
and are matriz algebras Mg(Kq) withd =dy + ... +dy.

This theorem leads to a fairly pI‘eCISe descnptxon of the structure of Ag. In
particular, each indecomposable A- representatwn M {for some orientation A of
A) extends to a Ag-representation E via Theorem 1.1, and for fixed d = dimM
and all orientations 5, the Ag-lattices E belong to a unique simple A-module
S4. (Such lattices over an order Ay are said to be irreducible.) The reason that
M extends to a Ag-lattice E depends on the fact that the extension problem in

Theorem 1.1 admits an “integral” solution. For example, let A be the following
orientation of Fg:
4

1 2 3 ) 6
and (V, f) the indecomposable A-representation with

= (1) (1) e (1) e (38) 0em 0)

Then the extension to a A-representation of type « is given by

frz = (a1 B); fas = (azam 3 ;2) faz=1{(-7 =68); fsa= (7“53“6 _");

R as
, fos = (as B)
where 8 = ag — a2 —as, v = @2 — 1 — a3, and § = as — a3z — ag. The entries of
all matrices f;; are integral in the a1,... ,ag. In general, this follows by means

of

3. REFLECTION FUNCTORS FOR A-REPRESENTATIONS

Reflection functors for A-representations, which, in virtue of Theorem 1.1,
can be viewed as extensions of the functors Fi* of Bernstein, Gelfand, and
Ponomarev [6] to A-representations.

Firstly, for each vertex i € Ag, define a linear map o; € Aut €” by o;(zy, ..
zp) = (2},... ), where

"

—z; for j =1 7
i =< z; —z; forje V(i) (9)
T; otherwise.
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For a given A- representatio'n (V,f) of type o, and 1 € Ay, let us define a
A-representation o] (V, f) of type o;(a) as follows. For j € V(i), the maps
fij : V3 = V; and fJ1 : Vi = V; give rise to E-linear maps fio : @ V; — V; and
Joi: V,- — @V, such that

fiofoi = ai- 1y;. (10)

If fo;: Vi < @ V; is the kernel of fig, then fio(foifio — @i+ 1gv;) = 0, whence
there exists a unique f; : @ V; — V; such that

foifio — i - 1g v, = foifio- (11)

Now the fg; and fj; decompose into t-linear maps f;; : V{ — V; and fj; :
V; = V/, which replace the fj; and fi; in order to obtain o} (V, f). It is
eas1ly verified that (1) is satisfied for each vertex j € Ag if « is replaced by
oi(a). The dimension vector d is changed into o;(d) = (d},...,d,), where
d; = d+2JeV( dj and d; = d; for j # i.

If U is restricted to A- -representations, we obtain a functor which is applica-
ble w1thout any condition on A Ifiisa sink, i.e. no arrows start at 4, this
functor coincides with the “image functor” F:* in [6]. Dually to o}, we define
o] by taking the cokernel f}, : @ V; = V/ of foi, etc.

Remark. Since these functors are well defined even if ¢ is replaced by an
integral domain, they can be applied to the irreducible representations E of Ag
considered above. However, since alft is universally applicable, even if 7 is neither
a sink nor a source, there exist “non-oriented” irreducibles of Ag, i. e. those
irreducible Ag-lattices which do not arise by extension of some indecomposable
A—representation via Theorem 1.1.

Now let (V, f) be a A-representation of type o and 1 € Ag. If o; # 0, then
(10) and (11) state that the maps fo;, f§; and D,L‘.fio, —ai‘, io form a biproduct
diagram [14]

Vi : @ V i’) (12)
JeVv(i)

that is, we have a natural isomorphism QV; = V; & V/. Hence a and o}
coincide on (V, f). In this case, we simply write o; instead of a Ifo; =0, we
put o; = 1, the identity functor. Via these o, the Weyl group of A operates on
the category of A-representations.
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4. PROOFS

For the proof of the existence part of Theorem 1.1, these reflection functors
o; suffice. For the uniqueness part, however, we have to make use of af‘ and
o;:

l Proof of Theorem 1.1. If (V,f) is simple, then ®4(a) = o, for some
4 € Agp, and the assertion is trivial. Otherwise, let ¢ be a sink of A. Then
F~ F”"(V f) = (V,f), where F* denote the classical reflection functors [6]
for A-representations. As ®4(a) = 0 implies &4 (/) = 0 for d’ = o;(d)
and o’ = o;(a), we may assume by induction that F:¥(V, f) is extendable to
a A-representation (W, g) of type o;(a). Then (V,f) extends to the A-re-
presentation o] (W, g) of type oioi(«) = a. To prove the uniqueness of this
A-representation, let (V, f) be any such extension. Then aH(V, f) extends
E}(V, f), whence af (V, f) = (W, g). Therefore weget (V,f)=o70F(V,f) =

o; (W, g). By the construction of a , an inductive argument also proves the
1ntegra,hty property of f. O

Proof of Proposition 1.8. If i € Ag is a source of A we may apply o; to
M which extends the application of F7 to M. Then o} o] “M=M, whence by
induction, we may assume that M has a simple direct summa.nd S concentrated
at a source i. Thus a; = 0, and S extends to a subrepresentation S of M. O

Next we shall focus our attention to Theorems 2.1 and 2.2. If « is specialized
to (0,...,0), then A turns into the preprojective algebra II(A) of A [10, 7, 5].
For k € N define A as the R-submodule of A generated by the paths of length
< k. This gives a filtration

RCACACAyC...CA 1)

of A, ie. AjJAj C Aypjford,j € No With A_, := 0, we can form the associated
graded R-algebra [[(A;/A;_1), wherein the defining relation (5) simplifies to
> €i;€; = 0, if &;; denotes the residue class of e;; in A;/Ag. Hence, we have a
natural epimorphism of R-algebras:

R@eT(A) - [[(Ai/Aiy). (2)

iEN
Lemma 4.1. A is finitely generated as an R-module.

Proof. By virtue of (14), this follows from the well-known fact that II(A)
is finite dimensional. For the convenience of the reader, let us give a proof
(cf. [9, 18]) which also sheds some light upon the structure of A via (14). It
suffices to show that for large m € N, any path of length > m becomes zero
in II(A). Let i € Ag be a fixed vertex. We choose the unique orientation A
of A such that for each 7 € Ay, there is a path from 7 to j. Define ZA as the
oriented graph with vertex set Ag x Z and arrows (3,1) — (4,1) = (¢,{ + 1) for
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each arrow i — j in A and | € Z. (Note that, as an abstract oriented graph,
ZA does not. depend on the orientation of [ﬂ.) The numbering of ZA is given
by the embedding A <« ZA with i — (i,0) for i € Ag. Now let (V, f) be i-th
projective &~representation, ie. V; =Eforallj € Ag and f;x = 1 for each arrow
k — j in A. There is a natural way to extend (V, f) to a Z A-representation.
By induction, suppose that (V, f) is already extended to the full subgraph I’
of ZA, and let (i,1) be a source in [ such that (j,7n) € T if there is an arrow
(i,1) = (j,m) in ZA, and (3,0 +1) ¢ . We apply the classical reflection
functor F(:,z) to (V, f). This gives a representation (V’, f'} where (7,1) is a sink.
Define Vii41) := Vi, faien ey = flinen a0d S Gien = f(’i,l)(j,l+1)
for arrows ;7 — ¢ — k in A. Thus we obtain a Z&—representation (V,'f). If
(W, g) is a non-simple indecomposable representation of some orientation of
A, and j is a source for this orientation, then W; — @kevu) Wi is always
injective. Therefore, it is easily seen that a path in II(A) starting in 1 vanishes
if and only if the corresponding map V(; 0y — V) in (V, f) is zero. But since
A is representation-finite, Vi5,m) = 0 for sufficiently large m. O

Lemma 4.2. Every prime ideal P of A contains some ®a(a) with d € &,

Proof. Since A is noetherian, Goldie’s first theorem ([19], chap. I, Prop.
2.6) implies that A/P is an order in a simple ring B. The ideal p = PN R
of R is prime, whence B contains the quotient field ¥ of R+P/P = R/p. By
Lemma 4.1, A/P and F generate a finite dimensional F-algebra in B which
therefore coincides with B. Consequently, B gives rise to a A-representation
over F. By Proposition 1.3, at least one relation ®4(c) = 0 must hold in F,
whence &4(a) ep C P. O

Corollary 4.3. There is a positive integer s with ®(a)® =0 in A.

Proof. By Lemma 4.2, ®(a) lies in the prime radical N(A) of A which is a
nil ideal ([19], chap. XV, Prop. 1.2). O

Next we consider the natural epimorphism

p bz, ..., za] » tlag,. .. ,an] =R (15)

with p(l‘,) = ;.
Lemma 4.4. The kernel of p is contained in the principal ideal (®).

Proof. Let d € & be given. Take any orientation A of A. By Theorem 1.1,
the indecomposable tA-module with dimension vector d admits a unique ex-
tension to a A-representation M of type (Z,...,Z,) over the quotient field
K4 of Rg = tzy,... ,z,)/(®a) = E[Z1,... ,Za] = Ez1,... ,25_1], where Z; is
the residue class of z; modulo ®4. Hence, if f € Kerp, then fM = 0 for the
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corresponding f € Rq. Thus f = 0, i.e. f € (®a). Since this holds for each
d € &t we obtain Kerp C (((®4) = ($). O

For any d € &7, the preceding lemma implies that p := $®4(a) is a prime
element of R. For Aq := R(;) ®r A, we have:

Lemma 4.5. p- Aa = 0.

Proof. Without loss of generality, we may suppose that |V(n)| < 1, and
d, = 1. Let 7 : R = R, be the natural homomorphism, and «} = 7(a;)
for i € {1,...,n—1}. The residue class field R, /pR(,) is isomorphic to the
quotient -field K4 of KR4 = R/pR which is isomorphic to the function field
8(z1,... ,Zn—1). Hence, Kq is isomorphic to the subfield F :=¥¢(cf,... o), ;)
of Ry), and R,y = F' @ pR(,). Moreover, there is a unique a;, € F' such that

m(an) = a, +7(p); ®ale),...,a,) =0 (16)

holds in R(p). Next we consider the exact sequence
pAa/p’Ada — Aa/p’Aa - Aa/pAa. (17)

For an arbitrary orientation A of A, let X be the indecomposable FA-
module. Since pA4/p®Aq and Aq/pAq are A-representations of type (af, . .., o)
over F, the corresponding FA-modules are isomorphic to powers of X. Hence,
Ext(X,X) = 0 implies that the sequence (17) of FA-modules splits. Regard-
ing Aa/p®Aq as a A-representation (V, f) over the ring R, /p*R(p), the FA-
module (V, f) is thus of the form (C, f’) @ (pC, f"'), that is, for each vertex
i € Dy, we have V; = C; ® pC;, and for each arrow ¢ — j in A,

fji = (féi f?") ) fij = (,{"’] f?;)
Furthermore, the multiplication by p gives rise to an epimorphism (C, f') —
(pC, f") of FA-modules which splits by virtue of Ext(X,X) = 0. There-
fore, p can be regarded as the natural projection in a decomposition (C, f') =
(pC, f")& (D, g). Thus p induces an endomorphism p’ of (C, f'), and the h;; in-
duce F-linear maps h}; : C; — pC; < C; which extend the FA-module (C, f')
to a A-representation (C, f) of type (0,...,0,p'). For any edge i—j in A, let
di; be the trace tr(fi]- fji). Then d;; = dj;, and for each vertex i € Ao,

S 4 = { 0 ifs#n

v trp'|e, ifi=n.
But this implies trp’ |, = 0, whence pC = 0 and thus pAa/p?4aq = 0. By
Nakayama’s lemma, we conclude pAg = 0. O

Using the notation of (7), we thus obtain that Ag4 is a finite dimensional
K g-algebra. Since the relation ®4(e) = 0 in K4 holds for no positive root
other than d, Proposition 1.3 and a similar argument as in the preceding proof,
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together with the uniqueness part of Theorem 1.1 imply that the A-represen-
tation Ag decomposes into simple A-representations of a single type «. Hence,
the Kg-algebra Aq is simple. Consider the natural map

g - A— Ad. . ) (18)

The image of mq is an order in Ag4. Thus, by Goldie’s theorem ([19], chap. II,
Prop. 2.6), the kernel Py of ngq is a prime ideal of A:

Ps={a€eA|Ire R\ R®4(c):ra =0} (19)
Lemma 4.6. P4N R = R¥4(a).

Proof. Since ®4(a) € R is prime, the inclusion “C” holds. Conversely,
suppose ®4(a) ¢ Ps. By Lemma 4.2, there would exist some d’ € &% with
d’ # d and $4(a) € Pg. Consider the epimorphism (15). By (19), we infer
Kerp ¢ ($4q), which contradicts Lemma 4.4. O

Lemma 4.7. Let M be a A-representation of type @ € F'™ over an extension
field F of & such that, for some orientation & of A, the underlying eA-module
is indecomposable. If N := (g g+ Pa, then NM = 0.

Proof. There is a unique f-algebra-homomorphism 7 : ¥z;,... ,2,] = F
with 7{z;) = o;. The kernel p of 7 is a prime ideal of t[z,,... ,z,], and 4 € p
holds for the dimension vector d € &% of M. By Theorem 1.1, there is a
unique A-representation Mg of type (Z1, ... ,&,) over the quotient field K4 of
Rg = ¥z, ... ,2,]/(®4), where Z; = z; + (®a), and there is an Rqg-lattice E
in Mg which is a A-representation over the ring Rgq such that M = F ®ry E.
Since My is an Ag-module, we have NMg C P4Mg =0 and thus NM = 0. O

Lemma 4.8. N(A) = [} Pq and RNN(A) =R &(a).
ded+

Proof. Let N be as in Lemma 4.7 and P a prime ideal in A. As in the
proof of Lemma 4.2, A/P is an order in a simple F-algebra B = S¢ with
a simple A-representation S over F. Choose any orientation A of A. By
Proposition 1.3, S is indecomposable as a €A-module. Hence, Lemma 4.7 implies
N(A/P) ¢ NB = 0. Consequently, N C P and thus N(A) = N. The second
equation follows by Lemma 4.6 and Lemma 4.4. O

Proof of Theorem 2.1 and 2.2. Theorem 2.1 follows by Lemma 4.7 and 4.8.
Since Aq = Kq®g A by Lemma 4.5, Theorem 2.2 follows immediately by (18),
(19), and Lemma 4.8. The endomorphism ring of the simple Ag-modules is K4
since this holds for the underlying indecomposable KqA-modules. O
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5. AN OPEN QUESTICN

We have shown that the element $(a) = [[ ®4(a) of A is nilpotent. On
the other hand, Lemma 4.2 and {19) imply that there is a polynomial r €
Blz1,...,24] \ (&) with r(a)®(a) = 0. Since E[z;,... ,2z,] is not a principal
ideal domain for n > 2, we cannot conclude ®(a) = 0. A direct calculation in
A, however, shows that ®(«) = 0 at least for A = A, and Dy. If &(a) = 0 holds,
then the distinction between R and R can be dropped. A further simplification
would arise if A is semiprime: then Ay would coincide with A. By Lemma 4.8,
this would also imply ®{a) = 0.
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ABSTRACT. The initial part of this note presents some results on the clas-
sification of finite dimensional Hopf algebras. In the second part we shall
“prove” that there are a finite number (up to an isomorphism) of semi-
simple and cosemisimple Hopf algebras of a given dimension.

INTRODUCTION

Throughout this paper we shall work over an algebraically closed field of
characteristic 0. Recently there is some progress in the classification of finite
dimensional Hopf algebras over k. The main aim of this note is to survey some
of the work in this area. We shall start by describing the types of Hopf algebras
of “small” dimension. Then, we shall point out the basic ideas of the proof
of Zhu’s result: a Hopf algebra of prime dimension is a group algebra of a
cyclic group. We shall continue presenting some of Masuoka’s results on the
classification of semisimple Hopf algebras, and we shall end the first section by
studying the types of pointed Hopf algebras. The starting point of the second
section is a very old conjecture, mentioned by Kaplansky in his book [K], and
which asserts that the set of types of Hopf algebras of a given dimension is
finite. Actually, we shall show that this conjecture has a positive answer if we
consider the case of the semisimple and cosemisimple Hopf algebras.

Preliminaries

Let k be a field (not necessarily algebraically closed and of characteristic
0). By a coalgebra C' we mean a vector space over k with a coproduct map
A:C — C®C and a counit € : k = C (the tensor product ® means ®;).
These obey axioms dual to the axioms of an algebra. A vector space which is
both a coalgebra and an algebra such that the coalgebra structure maps are
algebra morphisms is called a bialgebra. By a Hopf algebra H we shall mean a
bialgebra with an antipode, that is with a k linear map S : H — H such that
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Y Shih =3, hiS(hy) = e(h)ly, forallhin H, where A(h) = . hi®h]. If
H is a finite dimensional Hopf algebra then the dual space H* of H has a natural
structure of Hopf algebra. The Hopf algebra H will be called cosemisimple if H*
is semisimple, or equivalently, H is the direct sum of its simple subcoalgebras.

We recall that an element g # 0 is called a group-like element if A(g) = ¢®y.
By definition, z € H is an g, h-primitive element if A(z) = z® g+ h® z, where
g,h are two group-like elements. In the particular case when g = h = 1 we
say that z is a primitive element. We denote by G(H), P(H) and P, ,(H)
respectively the sets of group-like elements, of primitive elements and of g, h-
primitive elements of H. A Hopf algebra H is called pointed if all its simple
subcoalgebras are of dimension one.

1. HOPF ALGEBRAS OF DIMENSION p®gP

In this section we shall survey some results on the classification of Hopf
algebras of dimensions p®¢?, where « and 3 are “small” natural numbers.

The start on investigating Hopf algebras (actually bialgebras) of dimension
2 or 3 was made by 1. Kaplansky. He proved, by a case by case examination,
that such a Hopf algebra must be isomorphic to the group algebra of the cyclic
group with 2, respectively 3 elements.

Studying Hopf algebras of dimension 4 we are led to the first nontrivial re-
sult. D. Radford [R] proved that there is only one {up to an isomorphism) Hopf
algebra of dimension 4, which is neither commutative nor cocommutative. So,
if k is an algebraically closed field of characteristic 0, and H is a Hopf alge-
bra of dimension 4 over k, then H is isomorphic with the group algebra of a
group of order 4, or H is isomorphic with Radford’s example. Indeed, if H is
any commutative Hopf algebra over an algebraically closed field of character-
istic 0 then, by a result of Sweedler, H is reduced so it is semisimple. Hence,
the dual H* of H is a pointed (H* is cocommutative) and cosemisimple Hopf
algebra. In conclusion, H* = corad(H*) = k[G], where G is a group of order
dim(H). Moreover, if G is a commutative group, then H is cocommutative and
cosemisimple (any semisimple Hopf algebra over a field of characteristic 0 is
cosemisimple too), thus H is isomorphic with the group algebra of the Pontrya-
gin dual of G. In particular, if H is a 4-dimensional commutative Hopf algebra,
it is a group algebra. If H is cocommutative then H* is commutative, so H is
the group algebra of a group of order 4.

Regarding Hopf algebras of dimensions 5, Kaplansky conjectured that such
a Hopf algebra is the group algebra of the cyclic group of order 5. The main
obstacle for proving the conjecture was to show that H is commutative (see the
above paragraph). But, if this is not the case, then the underlying algebra of
H should be the direct product of & and two by two matrices over k, which is
not possible, cf. [K, p. 44].
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The results ron Hopf algebras of dimension 2, 3 and 5 which we have discussed
above led Kaplansky to the following conjecture [K, 1975):

Conjecture 1.1. Let H be a Hopf algebra over an algebraically closed field of
characteristic 0. If dim(H) = p, where p is a prime number, then H is the
group algebra of the cyclic group of order p.

The conjecture was solved affirmatively by Y. Zhu in 1992 [Z]. Let us sketch
the main steps of Zhu’s proof.

1) It suffices to show that H contains a group like element g, g # 1. Indeed,
if G is the set of group-like elements of H, then k[G] is a Hopf subalgebra of
H, so by a well-known theorem due to W. Nichols, the dimension of any Hopf
subalgebra of H divides the dimension of H. In particular, the order of G is 1
or p hence, if G # {1} it results H = k[G].

2) By a very easy argument, it follows that H is semisimple. The main step
is to prove that the theory of characters of semisimple Hopf algebras is quite
similar to the theory of characters of finite groups. More precisely, we have the
following theorem which goes back to G. I. Kats:

Theorem 1.2. If k is an algebraically closed field of characteristic 0 and H 1s
a semistmple Hopf algebra over k, let C(H) be the character ring of H. Then
C(H) is semisimple and if (Eq4ij)aij, 15 the canonical basis on C(H) ®q k ~
My x - x Mg, where My, ..., M, are full matriz algebras over k, then each
tr{Eqij) 15 an integer number which divides dim(H). (Here tr(f) denotes the
trace of the linear operator on H* sending g to fg).

3) By the second step we can see easily that if dim(H) = p then C(H)Qqk =~
H*, that is H is a direct product of copies of k so the theorem is proved by the
first part of the proof.

We shall end this section with some results on the classification of two very
important classes of Hopf algebras, namely the semisimple and pointed ones.
First of all, a definition: ’

Definition 1.3. Let H be a Hopf algebra. A Hopf subalgebra K of H is called
normal if HK™ is a two-sided ideal of K, where KT is the augmentation ideal
of K.

Actually, if HK* is a two-sided ideal of K it is a Hopf ideal, so we can
construct the quotient Hopf algebra H = H/HK™*. We shall say that H is
an extension of H by K. The significance of extensions of Hopf algebras is
emphasized by the following theorem, which is due to A. Masuoka [M1]:

Theorem 1.4. If H is a semisimple Hopf algebra of dimension p®, where p s
a prime number, then there is a central group-like element of order p in H. In
particular, H is an extension of the group algebra of the cyclic group of order p
by a Hopf algebra K of dimension p®~1.
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‘Masuoka, by using the above theorem and Zhu’s result, has obtained the
classification of semisimple Hopf algebras of dimension 2p, p? and pS.

Theorem 1.5. a) [M2] If H is a semisimple Hopf algebra of dimension 2p,
p # 2, then H is isomorphic to precisely one of the following three Hopf algebras:
k[C2p], k[D2p), k[D2p]*, where Cap, Dap are the cyclic group and respectively
the dihedral group of order 2p.

b) [M1] If H is a semisimple Hopf algebra of dimension p® then H is the
group algebra of a group of order p®.

¢) [M3] There are p+ 1 semisimple Hopf algebras of dimension p® which
are neither commutative nor cocommutative besides trivial 7 ones ( that 15 group
algebras and their dual).

We now consider the case of pointed Hopf algebras. The technical result
necessary t0 study them is given in the next theorem

Theorem 1.6. [S1] Let H be a pointed Hopf algebra. If H is not semisimple
then there ezist two natural numbers m,n, with m # 1 and m divides n, an m**
primitive root of 1 (denoted by w) and two elements g,z € H such that

a) gz = wzxg.

b) g is a group-like element of order n.

¢) x € Py 1(H) and o™ is either 0 or g™ — 1.

Let n be a natural number and let w be a primitive nt*-root of 1. We recall
that, by definition, Hy,2 , is the Hopf algebra generated as an algebra by two
elements g and z satisfying the following relations

n:l, mﬂ:O, gz:w$g7
Alg) =g®g, Alz)=z0g+1®x,
e(g) =1, g(z) = 0.

Using the preceding theorem, it is now easy to describe the types of pointed
p?-dimensional Hopf algebras over an algebraically closed field of characteristic
0, and to prove that any pointed Hcpf algebra of dimension pq is semisimple (¢
is a prime number, q # p).

Theorem 1.7. If p is a prime natural number and H 1s a pointed Hopf algebra
of dimension p?, then H ~ k[G]| or H ~ Hp ,, where G is a group with p?
elements and w is a certain primitive nt*-root of 1.

Theorem 1.8. Let p and g be two different prime numbers. If H is a pointed
Hopf algebra of dimension pq then H 1is semisimple.

As an application of the last theorem we have obtained the complete classi-
fication of Hopf algebras of dimension 6.
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Corollary 1.9. Let H be a Hopf algebra of dimension 6. Then H is isomorphic
to k[Ceg], k[Ss) or k[Ss]*, where Cg and Sg are respectively the cyclic group with
6 elements and the symmetric group with 6 elements.

2. ON KAPLANSKY’S CONJECTURE

Let k be an algebraically closed field of any characteristic. We shall “prove”
that the classification problem of finite dimensional Hopf algebras over & is not

hopeless, at least in the case of semisimple and cosemisimple Hopf algebras.
Indeed, we have

Theorem 2.1. [S2] There are only a finite number (up to an isomorphism) of
semisimple and cosemisimple Hopf algebras of a given dimension n.

“Proof” The set of Hopf bialgebra structures which can be defined on a
vector space of dimension n is an affine algebraic variety, which we shall denote
by B(V). The basic properties of B(V) are:

1) GL{V) acts on B(V), such that the orbit of a bialgebra A contains all
structures isomorphic to 4, so the set of types of bialgebras on V is in a one-
to-one correspondence with the set of orbits.

2) Let A be a bialgebra, A € B(V). Studying the tangent spaces Ta(O4)
and T4(B(V)), where O, is the closure of the orbit through a bialgebra 4, we
are led in a natural way to a certain cohomology theory of the bialgebra A. If
the cohomology of A vanishes we prove that the orbit of A is open. Therefore,
the number of orbits which correspond to bialgebras having trivial cohomology
is finite.

We end the proof of our result by showing that the cohomology of a semi-
simple Hopf algebra A vanishes if A is semisimple and cosemisimple.

Corollary 2.2. If k is an algebraically closed field and char(k) = 0, then the
set of types of n-dimensional semisimple Hopf algebras is finite.

Corollary 2.3. If char(k) = 0 and n is a given natural number then there
exists a semisimple Hopf algebra H,,, such that any semistmple Hopf algebra of
dimension n can be embedded in H,.
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ABSTRACT. We do not know whether the near-rings can be used decisively
for studying cohomology of non-abelian groups; probably not. But some
sets of mappings playing a good part in this theory (like the set of pseudo-
homomorphisms from G to G) are near-rings. We just consider such near-
rings and their properties "related to cobomology”.

1. GENERALITIES ON NEAR-RINGS.

In 1958, A. Frohlich [7] tried to build a non-abelian homological algebra by
using the near-ring E(G) generated (in the right near-ring of all mappings from
G to G) by the endomorphisms of a non-commutative group G. In this way, he
obtained distributively generated near-rings which have been intensively studied
for some years.

But Frohlich’s idea has not been used for the future constructions in non-
abelian cohomology, mostly since it seemed to be too narrow, and Fréhlich
himself did not visited it again.

In the cohomology theory for the non-abelian case, in spite of some similar-
ities, there are naturally fundamental differences; so, the sum of two endomor-
phisms is no longer an endomorphism and this implies that the derived functors
fail to be additive, but they preserve the null mappings.

However there are some possibilities of using near-rings of mappings on a
group (which include E(G)) for studying non-abelian cohomology. Lockhart
[14] has tried it and we followed his way to go a little bit further (see [23, 24]).

Let us recall first some definitions in the theory of near-rings (one can see
more in Pilz’s book [20}).

Definition 1.1. A4 right near-ring is o triple < N,+,- >, where < N,+ > is
a group, < N,- > is a semigroup and, for allz,y,z € N, (z+y)-z2 =z -2+y- 2.
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The most important example is the set of all mappings preserving the neutral |
element on a group < G, + >, - let us denote it by Enso(G), - with respect to
the induced addition and the mapping composition.

DNY:={de Nld-(z+y)=d-z+d -y, forall z,y € N} is the set of all
distributive elements of V.

If the right near-ring N is additively generated by D(N), then it is called a
distributively generated near-ring.

D(Enso(G)) = End(G). Generally, End(G) does not generate Ensg(G), but
a subnearring of it, denoted E(G).

Definition 1.2. Let < G,+ > be a group and N be a right near-ring. G is
called an N-group, if there exists an operation : N x G = G,(n,g) = n - g,
such that for alln,n' € N and g € G, the following conditions are fulfilled:

(i) (n+n')-g=n-g+n'g;

(i) (n-n')- g =n-(n'-g);

(i) n- 0 =0 (if the same condition is satisfied by the near-ring N u,hzch s
then called O-symmetric).

Definition 1.3. A non-empty subset A of the right near-ring N 1is called an
ideal of N, denote it by A< N, if:

(i) A is a normal subgroup tin < N, + >;

(ii)a-z € A, foralla€ A and z € N;

(i) z-(a+y)—z-y€ A, foralla€ A and z,y € N.
((i) and (i) define a right ideal, while (i) and (iii) define a left ideal of N.)

In the same way, if we consider two groups (with additive notation) G and
M, Ensg(G, M), the set of mappings ¢ : G — M such that ¢(0) = 0, is a
group, while Hom(G, M), its subset formed by the homomorphisms from G to
M, is not a group, but it generates a subgroup, H{G, M), of Enso(G, M).

In this case, E(G) acts on the right hand on H(G, M), and End(M) has a
left action on it (Lemma 2.2, [23]).

In the case M is an abelian group, Hom(G, M) is a group and, if we denote
by [G, G| the commutator of G, and by # : G — G/[G,G) the mapping of
abelianising on G, then

Hom(G, M) ~ Hom(G /|G, G), M).

By considering two endomorphisms ¢, ¢ € End{G) and their sum, let us note
that its behavior on a sum of elements in G is: ‘

(p+¥)z +y) = (p+v)(z) + (¢ + ) (y)+
H =) + [w(y). ¥(=)] + ¥}

where [a,b]:=—a—b+a+b fora,beG.
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But ¢ + [a,b] — ¢ € [G,G], for all a,b,¢c € G, since [G,G] is a characteristic
subgroup of G.

This led us to the idea of considering pseudo-homomorphisms from G to
M.

p: G = M, with p(z +y) = p(z) + p(y) + dy(z,y) and p(0) = 0
for z,y € G, where d, : G x G — [M, M].

It is clear that, for z,y € G, dy,(0,y) = d,{z,0) = 0. If d,(z,y) = 0, for
all z,y € G, then ¢ € Hom(G, M), therefore each homomorphism is a pseudo-
homomorphism. We note that the sum of two homomorphisms from G to M 1is
not a homomorphism, but a pseudo-homomorphism.

The set of all pseudo-homomorphisms from G to M, P(G, M), is a group,
while the set P(G,G) is a right near-ring studied in (23] and [24].

Let us recall some results concerning pseudo-homomorphisms:
Proposition 1.4. Let G and M be two groups, P(G, M) (resp. P(G,G)) be
the set of pseudo- homomorphisms from G to M (resp. from G to G). Then:

(i) < P(G,M),+ > is a group and H(G, M) < P(G, M);

(i) < P(G,G),+,0 > is a near-ring included in Enso(G) and including
E(G);

(iti) There exists an epimorphism of near-rings:

T : P(G,G) = End(G/(G,G), defined by T(8)(g + G, G)]) = 8(g) + [G,G],
for all 8 € P(G,G] and g € G,

(i) If K .= KerV, then the sequence of near-rings:

0 K = P(G,G) 3 End(G/[G,G))
1s ezact. (See [23], Lemma 2.5.)
If we restrict to E(G) < P(G,G) and K N E(G), then the restriction of T

does not remain generally surjective; see Lockhart {14} for an example in this
connection. . :

However, we may prove immediately that this restriction to E(G), namely
the map % in the sequence

0 = KN E(G) - E(G) % End(G/IG,G))
remains surjective if
1. G/[G,G] is cyclic; or
2. the exact sequence of groups
0= |[G,G]—+G—=G/iG,G] =0
is split.
More generally, we get
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Proposition 1.5. 9 is surjective if and only if for each a € P(G,G) there
ezists an element B € E(G) such that 8 — o € C*(G,[G,G]).

We would like to characterize the set of all pseudo-homomorphisms of a group
G. For the right near-ring /V we put

1. é(a,b,¢):=a-c—a-(b+c)+a-bfora,b,c€ N and

§(N):={a € N|é(a,b,c) € [N,N]; for all b,c € N}.

If N is an abelian — additively written — group then [V, N]y = {0} and the
right near-ring with §(N) = N is a ring.
Proposition 1.6. P(G,G) = §(C*(G,G)).

Proof :Let « € P(G,G) and B,v € C*(G, G); then for an arbitrary z € G we
have ’
§(a, B,7)(z) = a(y(z)) — da(B(z), ¥(2)) — a(v(z)) — a(B(=)) + a(B(z) € [G.G].
Thus

§(a, B,7) € CHG,[G,G)) = [C*G,G),C*(G,G)] and « € §(C* (G, G)).
Conversely, if @ € 6(C*(G,G)) and z,y € G with z # 0, then there exist
B,v € C*(G,G) such that 3(z) = z and v(z) = y. We then have
aly) —alz +y) + a(z) = a(y(z)) — a(B(z) - 7(z)) + a(B(z)) =
(@oy—ao(B+7)+aof)(z))) =da,B,7)(z) € [G,G].
Hence a € P(G,G).

Remark 1.7. 1. If G is a non-cyclic simple group; i. e. < G,+ > is not
abelian, then P(G,G) = C*(G,G) = E(G).
2. If < G,+ > is abelian, then P(G,G) = End(G) is a ring.
3. If [G,G] = G then C'(G,G) = P(G,G).
4. If « € CY(G,[G,G)), then a € P(G,G).
Let us give an example of a group G for which P(G,G) # E(G).

Example 1.8. Let < G,+ > be the p-group generated by elements a, b, z
subject to the relations

p -a=p° b=z =[a,b) and p* -z = 0 with integersr > s > ¢ > 0.
Then a € End(G) is given by its action on the generators as follows
ala) =ui-a+uz-b+uz -z, ad) =vi-a+ve-b+v3-z and a(z) = w-z where
w,u;,v; €Zfor1 <i<3
such that

U+ Uz Pt =w =uy Ve —ug - vy mod (p) and vy - p°-a = (w — vz
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For an element o € E(G) the action on the generators is satisfying only the
relations '

uy +ug - p " ° = wmod (p') and v, - p° - aB(w —v2) - 2.
The element § € P(G, G) given by
b@)=u-z,00b)=p"" " +v-z,0(z)=w-z

is not in E(G), since then w = 0 mod (p*) and therefore p” - @ = z = 0 which
is not the case. (We obtain such a 6 by considering 6 € ¥~'(9), where § €
End(G/[G, F)) is given by 6(@) = 0 and 6(b) = p"~* - a.)

It arises naturally the following question:

Which are the groups for which P(G,G) = E(G) ?

In the above considerations we have shown that there are p-groups for which

the equality is not true and that for the simple non-abelian groups the equality
holds.

2. NON-ABELIAN COHOMOLOGY.

Let G and M be two additive groups. We may define an n-cochain from G
" to M, by ¢ : G = M, such that, if 0 € {zy,... ,z,},forz; € G,i=1,2,... ,n,
then ¢(z1,...,2,) =0. '

It is obvious that an 1-cochain is a mapping preserving 0, therefore, if we
denote by C™(G, M) the set of n-cochains from G to M, then C'(G, M) =
Ense(G, M). '

For ¢ € C™(G, M), we define ¢ € C"1(G, M), by the formula:

Ov(zo, 21, ,Zn) = @(Z1,. .. ,Zn) — (o + T1,T2, ... , Zpn)+

+o(T0,T1 +Tay oo, Tp) — -+ (1) o(20y -y T2y Tno1 + Tn)+
(1)
+(=D"(z0,.-- ,Tn-1).
Denote

ZMG, M) = {p € C*(G,M)|0p € C™ (G, M, M])}, forn >1, (2)
and we consider Z°(G, M) = C°(G,M) = M. This is the set of n-cocycles

from G to M.

The following properties of n-cochains have been proved in [23] or could be
proved by straightforward calculations:

Proposition 2.1. Let G and M be two additive groups, generally non-abelian.
Then:

(i) [C™M(G, M), C™(G, M)] = C™(G, [M, M]);
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(i) The mapping ¥ : C*(G, M) — C™(G, M/[M, M]) given by
T (o) (zo,y.-- ,Tn-1) = @(Z0,--- ,Zn-1) + [M, M],

is an epimorphism of groups and Ker¥ = C"(G, [M, M]);

(i) oD =doW, with 8 given in (1);

(iw) 8C™(G, M) C Z™" (G, M);

(v) Ker® = C™(G,[M, M]);

(vi) Z"(G, M) = T~HZ™G, M/ M, M)));

(vii) 8 € P(C™(G, M), C™ (G, M)).

Remark 2.2. Z'(G,M) = P(G,M).

Let us point out that the image of a subgroup by a pseudo-homomorphism
(like J) is not a subgroup in general. Thus the subset of Z*(G, M) given by
applying § to C™(G, M) is not a subgroup. Moreover, the sets
S(Z™MG,M)) = {6¢ : ¢ € Z™(G,M)} and C™(G,[M, M]) do not coincide ;
There are only the inclusions §(Z™(G, M)) C C™*(G,[M, M]), which can be
proper.

This is an obstructing difficulty in considering a cohomology theory in this
context. Therefore for n > 2 we could consider the normal subgroups generated
in Z™(G, M) by the subset §(C"* (G, M)), and we denote it by B*(G, M).
For convenience we take BY(G, M) = BY(G, M) = 0. If we put B"(G, M) =
U~YB™G, M/[M, M])), then we get the following inclusions:

S(C™YG,M)) C B*G,M) C BN(G,M) C Z™(G,M) forn>1.
In any case, we have a group epimorphism from
H™G,M) = Z™{(G, M)/B™(G, M) to H™(G,M/|M, M))

which sends the coset of ¢ to the coset of ¥(¢)

We may change the commutator of M by a normal subgroup of M such that
M/T is abelian. Then [M, M} C T.
Denote

Pr(G, M) := {p € C*(G, M)|dyp € C*(G,T))}. (3)

Proposition 2.3. Let G and M be groups, T <M such that M/T is an abelian
group. Then:
(i) < Pr{(G,M),+ > is a group;

(i) When M = G and o{T) C T for all a € Pr(G,G), < Pp(G,G),+,0 > .
" 18 a right near-ring, and P(G,G) C Pr(G,G);
(ii2) There exists an epimorphism of near-rings:

U7 : Pr(G,G) — End(G/T),
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b

given by Tr(p)(g + T) = ¢(g) + T, and Ker¥r = CYG,T) is an ideal in
Pr(G,G).

(See 23], for the proof.)

There exist such groups which contain a normal subgroup satisfying the hy-
potheses in the above proposition; for example, a metacyclic group G, with
E(G) = I(G), the near-ring generated by Inn(G) in Enso(G), contains a nor-
mal subgroup T with the properties:

(i) T and G/T are cyclic groups.

(1) (T,G]=T.

(See, for more informations, Saad & al [22], Theorem 13.)

Proposition 2.4. Let G and M be groups, and p € Hom(G, M). For each
o € P(G,M) (resp. Pr(G,M)), there exists p € P(G, M) (resp. Pr(G,M)),
such that o = u+ p. Moreover u € Z*(G, M).

Proof. By calculations, we get for u = o — p that it belongs to P(G, M)
(resp. Pr{G,M)); indeed, for all z,y € G,

plz +y) = p(e) + p(y) + p() + p(y) + [p(¥), o(z)]+

+[p(z), o (y)] + do (2, y) — ply) — p(z).

The rest of the statement may be proved by verifying that du € C?(G, [M, M]).
Indeed

Su(z,y) = oly) + [ply), —p(2)] + {p(e) —do(2,y) — p(z)} + [~ p(2),0(y)] — o (y)

€ [M,M](or €T if o € Pr(G,M)).

We may see that each o.€ P(G, M) is of the form p + u where u € ZY(G, M)
and p € Hom(G, M) is fixed.

Remark 2.5. 1. Given a group homomorphism 7 -.G — M, a mapping
€ Ensg(G, M) which satisfies the condition:

plz +y) = p@) + " @uy), forallz,y € G, (4)

is a pseudo-homomorphism from G to M.
2. If u € Enso(G, M) satisfies the condition:

pz) =m+ " (—m), for afixed m € M,
then p € CHG, M, M]).

This remark shows that the usual 1-cocycles and I-coboundaries are in fact
pseudo-homomorphisms.
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3. SOME REMARKS.

In order to study P(G,G) and Pr(G, G) for a normal subgroup T of G and to
determine their relationships with E(G) and Ensg(G), some classes of groups
seem to be of interest, namely those for which E(G) or/and I(G) have some
additional properties. Here we quote some results in this connection, only for
suggesting to be used in future researches. ’

A. Frohlich [6] has studied first the case of a finite simple group; in this case
E(G) = Enso{G). Moreover, I{G) = Enso(G) if and only if G is a finite simple
group (Higman).

We point out another interesting (from the cohomology point of view) classes
of groups: E-groups and I-groups.

Definition 3.1. 4 group G is called an E-group (I-group) if E(G) (resp.
I(G)) is a ring.

In this case, taking N = E(G), each N-group is a module.

The first example of E-groups is given by R. Faudree; this is a p-group of order
p® and exponent p?, with four generators. In 1971, Faudree [5] has also shown
that, for such a group G, each endomorphism which is not an automorphism 1s
central. Moreover, this group is nilpotent of class two.

In 1977, Malone [16] has proved:

Proposition 3.2. In a group < G,+ >, each element g € G commutes with
its endomorphic images if and only if any two endomorphic tmages of each g
commutes.

This is also a condition of E-group, and it has been used to find other exam-
ples of E-groups (see (1], [2], [17]); among them , there are non-abelian 2-groups,
infinite groups and other p-groups of exponent p?.

Chandy [3] gave conditions for J-groups:

Proposition 3.3. If G is nilpotent of class two, then I(G) is a commutative
ring.

Proposition 3.4. G is I-group, if and only if the centralizer of each element
1s a normal subgroup of G.
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ABSTRACT. This is a little note for the decomposition numbers of Sp(4, gq).
Moreover this is one of the standard examples to use computer for the
group representation theory.

1. INTRODUCTION

Let G the symplectic group Sp(4,q) where ¢ is the power of an odd prime
p. The decomposition numbers of G in characteristics other than p are almost
determined by White[6][7]. But in case the characteristic divides ¢ + 1, there
is one variable in the decomposition matrix of the principal block. We will
determine this variable a under some conditions. After this meeting, the same
results are obtained in case p is even (see Waki[4]). All calculations of the scalar
products in section 5 are done by Mathematica[3] with the character table of
Sp(4, q) of White[5].

2. NOTATION

An odd prime r which divides ¢+ 1 is fixed. Thus there are numbers d and s
such that ¢+1 = r%s and s is not divisible by 7. The subgroup H of G which is
denoted by K in Srinivasan([2] is isomorphic to SL(2,q) x SL(2,q). The order
of H is ¢*{q* — 1)%. We can see the fusion map between G and H in appendix
B. We use the same notation of White[6] for the ordinary characters of G. The
ordinary characters and conjugacy classes of G are given in Srinivasan(2]. The
group C, denotes the cyclic group of order n.

Received by the editors Dec. 26, 1995, revised Jan. 21, 1996.
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3. A RESULT OF WHITE

Theorem 3.1 (White [6] [7]). The decomposition matriz for the principal r-

block of G is as follows. The unknown entry « is an tnteger satisfying 1 < a <
g=1 .
o

Degrees Chars. | No.of Chars.
1 lc |1 1
(g — 1)%/2 610 1 1
q(g® +1)/2 6y |1 1 1
q(g® +1)/2 612 |1 1 ‘ 1
7 65 |1 o 1 1 1 1
(@ +D@-1)%] xa a—2 1| (r4=1)(r* - 3)/8
(@ +1g-1) | xe 1 1 (rt —1)/2
g(®+1)(g-1) | xv a-1 11 (rd —1)/2
@+1e-1) | & 11 (r¢=1)/2
(@ +1(g-1)| & a-1 1 1 (rd —1)/2

4. A MAIN RESULT

Theorem 4.1. In theorem 3.1, we have the following.

(1) If 3-Sylow subgroup of Sp(4,q) is isomorphic to the elementary abelian
group of order 32, then a = 1 forr = 3.

(i1) If 5-Sylow subgroup of Sp(4,q) is isomorphic to the elementary abelian
group of order 5%, then a = 2 forrt = 5.

5. A PROOF OF THEOREM 4.1

Let H=H, x H, = S5L{2,q9) x SL(2,q). We can find the character table of

SL(2,q) in appendix A. There is an r-block b1 in SL(2,q) such that this block
has the following decomposition matrix.

Degrees | Chars. | o1 2 | No. of Chars.

(¢-1/20 X5 1 i
(@-1)/2} X 1| 41
g-1 | Xs(k) [ 1 1 =
where k € I := {s/2, s/2+s, -+, 8/2—“ =35}

There is an r-block b; which is constructed by the irreducible characters of
H
{X(5,5)=X(s,e))X(s,s)(k),Xge,spX(e,ﬁ)»X(ﬁ,s)(k):X(s,m(k),X(s,s)(k) X(8,8) (k' 1)}

where x(i ;) = Xi(ha)X;{hs) for each h, € H, and hy € Hy and k.l € [. It
is not so easy to calculate the scalar products of the generic characters. But
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the values of characters Xs, Xxs and xs(k) in the conjugacy class C; are all 0.
Moreover the restricted characters x10, y, X11,m, X123 and X13, take same
values in the same kind of the conjugacy classes.
Remark 5.1. It is easy to check the following equations for each k € .

a1

2

D€+ = (=1)F 41

=1

=1

S (-1HER ) = -2

o

{-lk_‘_gtk _3

M~I‘;

i=1

L 27/ =1
where £ := exp(—”q;l—)
Then we can get the following lemma from appendices A and B.

Lemma 5.2.

(X(S,G)aXlOiH) =
(X(s,a)(k),me) =
(xs,6)(k)s x1008) =

(X(s,s)(k,l),XmLH) =

—
e
!

(X(S,G)lelLH) =
(X(s,s)(k)axluy) =
(X(s,s)(kLXniH) =

(X(S,S)(kvl)7X11LH) =

(X(S,G):XIZ;H) =
(X(s,s)(k)sXmLH) =
(X(s,e)(k)7X12¢H) =

( (k 1), X12|H) =
(X 6)» XlSlH) =
(xe(k) xiaym) =
(X ( S Xusgm) =
):

k=1
k#1

( ss)( l X13¢1-1) =

" P H OO OO0 OO O A O D
O

. k#1
where k,l € 1.
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It is easy to define the decomposition matrix of b; by E; From the above

lemma, the multiplicities of the Brauer character ¢(,2) := Xx(s,6) of H in 610, 4,
d; d

911‘”{, 912LH’ and 913LH are rd%l, rd—l, 0 and r_(%i)_ respectively. Thus we

2
de d
can get = ("2_1) > a(’%“) + sz"l.

Proposition 5.3.
o D
- rd4+1
Remark 5.4. It is easy to check that an r—Sylow subgroup of G is isomorphic to
Cr2 x C,a. From this proposition, we can see that the variable « has just finitely
many possibilities when we fix an r-Sylow subgroup of G. (See Donovan’s
Conjecture in Alperin(1])

The assumption of theorem 4.1 means r4 is 3 or 5. From proposition 5.3,
< 1ifr% = 3. Since @ > 1, @ must be 1. If 7 = 5, proposition 1 shows
< §. In case r¢ is bigger than 3, a > 2. Thus theorem 4.1 is proved.

The author would like to thank a referee for his or her advices. He would
like to thank all staffs of this meeting for their great hospitality in Constanta.
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APPENDIX A. THE CHARACTER TABLE OF SL(2,q)

‘ SLqu) 14‘ Z P1 | P2 P] 24[ P2Z C.‘ D.‘ ]
[ # of conj. 1| 1 21 | 21 21 21 (g-3)/2 (e —1)/2 |
‘ # of elem. 14| 1 e ‘ e 52;1J —— q(g +1) q(g —1)
X1 1 1 1 1 1 1 1 1
Xz q 0 0 0 0 1 —1
%3 3t latlle b b, ble boe (- 0
Xa - axie by oF bre ble (- 0
Xs LT G T =t | bre bie 0 —(=1)
P = ~1Je - — 1
X6 [E —lazDe .—i —b ble boe 0 —(-1)
X7 (k) g+1 | (=1)*(g+1) 1 1 (-1* (-n* [¢F+¢* 0
Xs(k) [q-1](=D*-D[ -1 [ -1 [-(=1)" [ —(-1)* 0 —¢* -

=1 - /€ 7 — XN —
e = (—1)12_ b;*' = 1+2 9 by = X ¥ ‘? ¢ = exp(-z—q{g) £ = exp(%g)

APPENDIX B. THE FUSION MAP BETWEEN (G AND H

\ [ L [ 2 [ A | P | AZ | »Z | C« | Di_|

I Ay D, A Az Do, Doy Ci(k) Ci(h)
z D, AT Dag Daa AL Ad, Ccik)y | Ccl(h)
Py An Do3 Ag Aa2 D3 D32 Cai(k) | Car(l)
P, As2 Dag Asz Az D33 D34 Ci2(k) Ca22(1)
PiZ || Dn [ A% Dy D33 Ay Ay 1 CLr) | CH()
P2Z |[ Do | Ay | Do Daq Ay Ay | ChLtF) | Co(d)
Ci Ca(l) [ C3() | Car(3) | Caa(i) | €51 (9) | Ca(d) | Bs(i,k) | Bs(i,0)
D; [ Ci() [ Ci(0) T Cay(h) | Coald) | C21 () | Co2(4) | Bs(k,7) [ Ba(G, 1)

These entries of the table are names of the conjugacy classes of G in case ¢ =1 mod 4 . Note that
Bs(i, i) means Bs(i) and Ba(j,j) means Bg(j). We should exchange A3: to A3z and Al to Af,

in case ¢ = 3 mod 4.

E-mail address: slwaki@si.hirosaki-u.ac.jp
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1. INTRODUCTION AND PRELIMINARIES

It was shown in the paper [Yal] that the p-adic representations of a cyclic p-
group are almost completely determined by their homological parameters. This
description appeared to be rather convenient; some applications of this result
can be found in [Yal, Ya2]. The purpose of this work is to extend the main
theorem of the paper [Yal] from cyclic p-groups to finite groups with cyclic
Sylow p-subgroups.

1.1. Notations. We use throughout the paper the following notations:

p — a prime integer;

Zp, - the ring of p-adic integers;

G - a finite group with cyclic Sylow p-subgroup F;

p" 7! — the order of F;

0 = gy - a fixed generator of F'; _

F; ~ the subgroup of F' generated by the element o; = o

N; - the normalizer of the subgroup Fj in the group G;

A = Z,{G] - the group ring of the group G over the ring Zp;

Z; = Z,[N;] - the group ring of the group N; over the ring Z, (¢ > 0).
Some reasonings of this paper are different for ¢ > 1 and for ¢ = 0. To cover the
case 1 = 0 it will be convenient to denote by Fy, o9, Ny and ¥g the group F,
its generator ¢, its normalizer V; and the group ring of the normalizer Z ,[Ny]

Received by the editors April 9, 1996.
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(so Fy = F1, Ng = Ny, 09 = 0, Lo = Z1). It is clear that
G=N,2Ny, 12 D2NoDON=Ng2Fy=F 1 2F,2---2F,=0,
To=5,C% C--CE,=A.
The following elements of A will play an important role in our investigation:

ro=1-0, vh=p=1, vg=pn=0,

1

2 ) —~1 , i—1 2\'—- -1 i1
ri=1l+40i+0i 4+ =140F 40T 4. g PP

Vi =TiTip1 -+ Tpa1 = Zf, di=ro...ric1=1—-0; (1<i<n).
fer;

Lemma 1.1. If z is an element of one of the rings Z,[F], A, ¥;, such that
iz = 0 (or viz = 0), then there ezists an element y of this ring such that
v;y = ¢ (respectively uyy = x). For any element g € N; and any j > ¢
Qv = V39, Gl € piki,  f5g € Ligty .

For any element g € N, there exist elements q,q' € £; = Zp[N;] such that
rig = (g + quilri, gri = ri(g + pwd')-

Proof. The first statement is trivial since all the rings are free Z 5[ F]-modules.
If g € N; and j > 7 then g belongs to the normalizer N; D N; of the group F;

as well; hence, go;g™* = aﬁ, g 'oj97! = o7 for positive integers I, m, and
p7 pr !
gv; = () 90397 )g = (D, of)g = vsg,
g=1 s=1

gp; = giig g = (90397 — 1)g = (0§ — 1)g € p;%s,
19 =99 19 = g(9 7 o59 = 1) = g(of" = 1) € Zip;.
In particular, v;9 = gv;, v;019 = griey and
Tigliv1 = TiVit1g = Vig = gVi = grilivy -
Therefore, there is an element ¢ € £; = Z[N;] such that rig = gri + qui+1 =
(g + qui)r;. The existence of ¢’ can be proved similarly.

1.2. The category 9. Now let us define a new category 91. Objects of this
category are the diagrams

Qg (241
Tr=Tha - 2 T,
Bo B Bn 1
satisfying the following conditions:

(1) T; is a finitely generated ¥;-module (1 <14 < n);
(2) To = Tn = 0; .
(3) the mappings «;, B; are homomorphisms of ¥;-modules (1 < i < n);
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(4) a;B; coincides with the action of the operator r; € ;41 (0 <1 < n);
(5) Bia; coincides with the action of the operator r; € £; (1 <1 < n).
Morphisms of the object

xp (03]
Tl o T,
Bo B Bn -1
into the object
ag al oy
Ty = T,
By B BLy
are the collections of X;-homomorphisms v; : 73 = T} (0 < 7 < n) such that
oY = Yit104, Vili = Bivig for alli < n.

a. a An—1
Proposition 1.2. If T, = T: = ... 2 n ts an object of the category It
Bo B Brn-1

then w;T; = v;T; =0 for any i (0 <1 < n).

Proof. Since T1 = T;, = 0 and all homomorphisms are Z ,[F'|-homomorphisms,
we have:

pili =rory...riaTi =iy .. .anaofofy .- Bi-1 €y ... cnagTpy =0,
VviTiy =ty .11 = Biv1 . P ..o Ti € Birr .- BT = 0.

1.3. The functor U. Let A be a A-module which is free and finitely generated
as Z,module; denote by A? the Z,submodule of A consisting of all elements
a € Asuch that y;a = 0. It is clear that A* = u;A, and more generally, A* D ;A
for any A-module 4; denote by U;(A) the factor group A*/u;A.

According to Lemma 1.1

viga =gria =10, gub€ wAA=p;A.

for any elements a € A*, b € A. Therefore, the groups A* and u;A are ;-
submodules of A and consequently U;(A) = A*/u; A is a £;-module.

It is obvious that A*** C A%, u; 1 A C p;A; therefore, the inclusion A1 — A?
induces a homomorphism 7; : U;y1(A4) = U;(4), which is obviously a homomor-
phism of ¥;-modules. On the other hand, r;A* C A*!, r;u; A C piy1 A and the
operator r; € A induces a homomorphism p; : U;(A) = Uii1(4). It follows from
Lemma 1.1 that for any elements a € A%, g € N; the element gr;a differs from
the element r;ga only by a summand r;u;q'a = pir1¢'a € ;1 4; therefore, p;
is a X;-homomorphism.

Denote by U(A) the following diagram:

P1 Pn--1

Po
Us(A) 2 Uy(A) = -+ 2 Un(A).

To T1 Tn—1
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The groups U;(A4) and the homomorphisms p;, 7; have simple homological in-
terpretation: U;(A) = H'(F;, A) for ¢ > 1, and the homomorphisms p;, 7; are
respectively restrictions and corestrictions. ’

Proposition 1.3. U(A) is an object of the category IN.

Proof. The requirements {1) — (5) of the definition of objects of the category
9N are immediate corollaries of the definitions of the modules U;(A) and the
homomorphisms p;, 7;.

2. MAIN THEOREMS

We say that a A-module A is a p-adic integral representation of the group
G if the module A regarded as a Zy,-module is a free module of finite rank;
we say that this representation is cohomologically trivial in the dimension 1 if
U(4) =0.

The main result of this paper is the following

Theorem 2.1. For any object T of the category I there exists a p-adic integral
representation A of the group G such that U(A) = T. This representation is
unique up to cohomologically trivial in the dimension 1 direct summands.

The proof will be given later. Denote by R{(G) the set of isomorphism classes
of indecomposable p-adic integral representation of the group G which are not
cohomologically trivial in the dimension 1.

Theorem 2.2. There exists a one-to-one correspondence between the elements
of R(G) and indecomposable objects of the category .

Proof. This theorem is an immediate corollary of Theorem 2.1.

Corollary 2.3. Let G and G' be finite groups with cyclic Sylow p-subgroups.
Let P C G and P' C G’ be any subgroups of order p and let N and N' be the
normalizers of P (in G) and P’ (in G'). If the groups N and N' are isomorphic,
then there ezists a canonical one-to-one correspondence between the elements of
the sets R(G) and R(G’).

Proof. The category 9 depends in fact not on the group G but on the
normalizers Ny C Ny C--- € N,_; of the subgroups of the Sylow subgroup F.
But the group N,_; determines the group F and all the normalizers N; up to
isomorphism.

Theorem 2.4. Any indecomposable cohomologically trivial in dimension I
p-adic integral representation of the group G is isomorphic to a direct summand
of one of the modules Z,|G/F;) = A/ Ap;.



210 A. V. YAKOVLEV

Proof.b Let A be a left A-module. Denote by I' the group ring Z,[F]. The
ring A = Z,[G] is a left and a right I'-module; so we can define a left A-module
B = A @r A; recall that operators from A acts on B by the rule

z(y®ra)=zyQ®ra (z,ye A, ac A).

The mapping z ®r ¢ — za defines a A-homomorphism ¢ : B = A. It is clear
that ¢ is an epimorphism; denote by X its kernel.

Let G = FUFgFU- -UFgiF be a decomposition of the group G into a
union of double cosets. The module B regarded as a I'-module decomposes into
adirect sum '®@r AGTg.I'®@r Ad - - &g l'®r A. The first summand ' ®@r A
is canonically isomorphic to A, and the restriction of ¢ on it is an isomorphism
of I'-modules I ® A — A. Thus, the extension

0 X B-2.4 - 0 (%)

splits as an extension of I'-modules.

Assume now that the module A regarded as a Z -module is a free module of
finite rank. Then the extension groups Extp(4, X) and Ext) (A4, X) are canon-
ically isomorphic to the groups H!(F,Homgz_(4, X)) and H!(G,Homz (4, X))
(see [CE], XVL7.(6) and the definition in XI1.2). Let w € H'(G,Homg,(4, X))
be the element corresponding to the extension of A-modules (*); then its restric-
tion pw € H'(F,Homg_ (A, X)) corresponds to the same extension regarded as
an extension of I'-modules. We have seen that the last extension splits, i.e.,
pw = 0. But the index (G : F') is prime to p and consequently it is invertible in
Zp; therefore, the restriction p : H*(G,Homg (4, X))— H*(F,Homg (4, X)) is
a monomorphism ([CE], XI1.8.(6)) and w = 0. Hence, the extension (x) splits as
an extension of A-modules. Therefore, we have proved that any p-adic integral
representation A of the group G is a direct summand of the module A ®r A.

Assume now that the representation A is cohomologically trivial in dimension
1. Then the module A regarded as a I'-module decomposes into a direct sum
of several modules each of which is isomorphic to one of the modules Z ,{F/F;]
(this follows, for example, from the results of [Yall). Therefore, A is a direct
summand of a direct sum of several A-modules, each of which is isomorphic to
one of the modules A ®r Z,[F/F;] = A/Au; = Z,/G/F;]. It remains to apply
the Krull-Schmidt theorem, which holds for p-adic integral representations (see,
for example, [R]). ‘

3. THE MODULE A/Ar;

Lemma 3.1. The A-module X = A/Ar; regarded as a X;-module 1s a direct
sum of a submodule X generated by the element z = 1 (mod Ar;) and a free
¥;-submodule Y. The generator z satisfies only the relations following from the
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relation r;2 = 0. The module X, regarded as a Zp-module 1s free and finitely
generated; besides, X, = 0 and X;T' = 0.

Proof. Let G =N;-1-F;UN;g2F; U---U N;gr F; be a representation of the
group G as a union of double cosets. The group ring A = Z,[G] can be regarded
as a left Zp[N;]- and a right Z,[F;]-module. This bimodule decomposes into a
direct sum Zy[G] = X1 ® Xo @ --- @ Xy of its Zy[N;] — Zy[F;]-submodules
X1 = L[N} - Zp[F;) = Zp[N;], X; = Zp[N;]g;Zo[F;} (5 > 1). Therefore, the
module A/Ar; regarded as a left Z,[N;}-module is the direct sum of the left
Z | N;}-modules X; = X;/X;r;, 1< j <k

Assume first that j > 1; in this case g; does not belong to the normalizer of
the group F;. Moreover, the group g]-F,-gj“1 is not contained in the group N;.
Indeed, F' is a Sylow p-subgroup of the group N;; F; is the only subgroup of
F, the order of which is equal to p?~%, if i > 1, and equal to p"~3, if ; = 0. If
ng,-gj_1 C N; then ng,-gj_l is contained in a Sylow subgroup F” of the group N;.
All Sylow subgroups are conjugate; therefore, there exists an element h € N;
such that F' = hFh~!. Thus, ng,-gJ-‘1 C hFh™!, and ng,-gj—1 = hF;h~! since
the order of the group ng,-gj_1 is equal to the order of the group F;. But F; is
a normal subgroup of the group N;; hence, hF;h~! = F; and g]-F,'gj_1 = F3;, i.e.,
g; € N; in contradiction to the assumption.

Thus the intersection N; N g;Fig; ! is a proper subgroup of the cyclic group
F;, and gj_ngj N F; = F; for an integer | > 1, ¢ < ! < n. Any element of the
bimodule X; can be uniquely represented in the form

i1
>, > assfgiof. asp€Zy

=0 feN;
for i > 1 and in the form

pl—l_l

Z > assf9;0°, ass €l

=0 feNy

for i = 0; therefore, the bimodule X; regarded as a left £;-module is a free
T;-module with the basis {gjof, 0 < s < p'~'} for ¢ > 1 and the basis {g;0°,
0 < s <p'~1} fori = 0. Hence, X;r; is the Z;-submodule of X; generated by
the elements

gimio} = gi(l+oi+ -+l o] (0<s<p T -p)
for i > 1, and by the elements
gi{(l—0°) (1<s<p™)

for ¢ = 0. It is clear that X; is the direct sum of X;r; and a free ¥;-submodule
Y of the module X; generated by the elements gjo!, 0 < ¢t < p-1, fors > 1,
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and generated by the element g; for i = 0. The factor module X; = X;/X;r;
is isomorphic to Y and consequently X; is a free £;-module for j > 1.

The ;-module X, is equal to £;/Zir;; therefore, this module is generated
by the element z = 1 (mod Z;r;) = 1 (mod Ar;) satisfying the only relation
riz = 0. It is clear that X, is a free Z yrmodule of finite rank. Let g be any
element of the group N;; if ¢ > 1 then by Lemma 1.1 there is an element q € %;
such that r;g = (g + qui)rs, and r;92 = (g + qui)riz = 0. The same is true for
i = 0; indeed, g~log = o for a positive integer u and (1 —0)gz = g(l—0o%)z =
gl+o+-++0* )1 ~0)z=0. Thus, 7;X1 = r;,Zy[N;]z = 0.

It remains to prove that )—(IH =0. Let z € X’f“; then v;112 = 0. Besides,
z € X, and consequently r;z = 0. Show that z = 0. Assume at first that 1 > 1;
the polynomials v(t) = 14+t +---+tPL and w(t) =1 +tP+--- + P ~Pare
relatively prime; therefore, there exist polynomials v (¢), w1 (t), the coefficients
of which are integers, and an integer d # 0 such that d = v; (t)v(t) + w1 (t)w(t).
‘We have now:

dz = vy (o;)v(o:i)z + wi(oy)w(oi)z = vi(oi)riz + wi (03) vz = 0.

If i = 0 then the polynomials v(¢f) = 1 —¢t, w(t) = 1 +tP +--- + -t
are relatively prime, and again d = v (t)v(t) + wi (¢)w(t), dz = 0 for some
polynomials v; (t), w; (t) and an integer d # 0. But the module X; is a torsion
free Z p-module; hence, z = 0.

4. THE PROOF OF THEOREM 2.1. EXISTENCE

4.1. Auxiliary theorem. To prove the existence of the module A we shall
prove at first a stronger theorem.

23 o On—1
Theorem 4.1. Let Ty = T 2. = T, be an object of the category M. For
Bo £ Bn 1

every i, 0 < i < n, there exist a A-module B; and ¥ ;-epimorphisms 7r{ : B{ —=T;
(1 < 7 < n) such that:
a;) the following diagrom is commutative:

A i1 Titl Tn-1
Bi % Bi+! Rt ¥ B}
3 i+1 n
lﬂ-i l”i 5
Ty — Ty —— - —— T,
e 54 Q441 QAn—1

b;) for any j, i < j < n, the restriction qf the homomorphism w] on Bf“
coincides with the homomorphism B;mit;

Ci) Tj Kerwf = Ker7r;"+l forany j,i<j<n;
d;) the module B; regarded as a Zp-module is a free module of finite rank;
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e;) the A-module B; is generated by Bi;

f;) the factor group B;/B! regarded as a Z,[F)-module is isomorphic to the
direct sum of several copies of the group ring Z ,[F/ Fi] regarded as a Z o[ F]-
module;

&) 1wiB; C Kerri.

4.2. Preliminaries. We shall prove Theorem 4.1 by inverse induction on i:
the module B, = 0 and the homomorphism 7]} = 0 satisfy the requirements of
the theorem for i = n. Let 0 < ¢ < n and assume that a A-module B;;; and
homomorphisms wf +1 (J 2 1+ 1), satisfying the requirements a;;1)-g;41), are
already constructed.

Lemma 4.2. For j <1 the groups B{H, B:ﬂ + p;Biy1 cotncide.

Proof. It is clear that B:}:% + piBip1 C B{+1. Let b be any element of the
group Bf+1. Then the class b (mod B:ﬁ) belongs to the group (B,-.H/B:i%)f.
By the statement f;,;) of the inductive hypothesis the group B,~+1/B,?'Ii re-
garded as Zy[F]-module is isomorphic to the direct sum of several copies of
the module Zp[F/Fiy1]; therefore (Biy1/BiI1) = p;(Biy1/Bif1). It follows
that there exists an element b; € B;i; such that b — p;b € B! Thus

i+1
Bi., C Bii1 +u;Bis1.

4.3. The modules W, V. Denote by W the submodule of the direct sum
T; ® B}T} consisting of all elements ¢t @ b such that o;(t) = n}T}(b) and by V
the submodule of the same direct sum consisting of all elements ,Biw::_ti (b)Y r;b,
be B,‘I} Further, denote by €1, €2 the canonical projections of the direct sum
T; & B;41 onto T, B |, and by &, & the restrictions of €, e; on W. It is
obvious that ;W CV CW,aW =T;, &W = (ﬂfi})‘l Ima;, o8 = Wfiiéz.
The normalizer N; of the group F; is contained in the normalizer N;.; of the
group Fii; therefore, L; = Z,[N;] C Zp[Nit1] = £;41 and the groups T, By
and their direct sum T; @ B;.) can be regarded as ¥;-modules. We shall show
that V, W are Z;-submodules of T} @ Bi1. Indeed, for any elements g € N,
tdb e W we have o;(gt) = go;{t) = gwi_ﬂ(b) = W:I} (gb); so gW C W. By
Lemma 1.1 there is an element ¢’ € I; such that gr; = r;(g + piq’). For any

element b € BiT] we have gb € Bit} and

9Bl (b) @ grib = Bimitl(gb) @ ri(gb + pig'h) =
Bimiti(gh + pig'b) @ ri(gb + pig'h),

because Bimil1 (nig'b) = piBimi1(g'd) € wiTi = 0. Hence gV C V.
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4.4. The construction of the module B;. Choose elements e¢;, ..., e, €
W so that these elements together with the module V generate W as a &;-
module. Denote by B; the A-module containing B;,; and generated by B;,; and
elements zy , ..., Zn,, satisfying only the relations riz; = &(e;), 1 < j < m.
Lemma 4.3. The modules B;/Bi.1, B; regarded as Z,-modules, are free mod-
ules of finite rank.

Proof. 1t follows from the definition of the module B; that the A-module
B;/B;y1 is generated by the elements Z; = z; (mod B;y1), ... , Tm = T,
(mod B;y;), and these generators satisfy only the relations following from the
relations r;Z; = 0, 1 < j < m. Therefore, the module B;/B;, is isomorphic to
the direct sum of m copies of the module A/Ar;. But Lemma 3.1 shows that
A/Ar; is a free Z-module of finite rank. Hence, B;/Bi;; is a free Z module
of finite rank as well. It follows that the module B; regarded as Z,module
decomposes into a direct sum of the module B;;; and a module isomorphic to
B;/Biy1. Therefore, B; is a free Zmodule of finite rank.

Denote by Cy the I;-submodule of B; generated by B,‘j;l1 and the elements
Z1,y ..., Tm, and by C the module Cg + B; ;. It follows from the definition of
B; that r;z; = &(e;) € Bif] (1 < j < m) and that all relations between the
generators follow from these equalities.

Lemma 4.4. The module B; regarded as a £;-module decomposes into a direct
sum of the module C and a free ¥;-module Y. Besides, 7;Cq C Bfﬂ, Ct =
Co + piBit1, C7 = Bl | for j > i.

Proof. The factor module B;/C = (B;/B;+1)/{C/B;+1) is isomorphic to
the direct sum of m copies of the £;-module (A/Ar;)/X; where X; is the ;-
submodule of (A/Ar;) generated by the element 1 (mod Ar;). According to
Lemma 3.1 the module (A/Ar;)/ X, is a free &;-module; therefore, B;/C is a

free ¥;-module, and B; decomposes into a direct sum B; = C @Y, where Y is
a free X;-module. The other statements of Lemma 4.4 are trivial.

Lemma 4.5. For all indices j, 0 < j < n, the group Y7 coincides with piY - If
j <1 then C9 = Cy + pjBir1 and B] = Bi + u; By, If j > i then C7 = B]_|,
B} = Biy; + wsY.

Proof. The first statement of Lemma 4.5 is trivial because Y is a free ;-
module and consequently a free Z,[F]-module.

Let g be an element of the group N;; using Lemma 1.1 we can find an element
q € L; such that r;g = (g + qu;)ri. Therefore,

rigzs = (9 + qui)rizs = (g + qui)éles) € Bif}
(9 + qui € Si € Sy, and B(f] is a L;;1-module). Thus, we have proved that

riCo C Bif1.
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Let j < 4; since v;Cy = rj...1i_1v3417iCo C Tj--.ri._ll/i.,}_lej:i = 0 and
vjujBiy1 = 0, the module Cy + 1By is contained in Ci. Conversely, let
¢ € C be an element of C?. The module C is the sum of its submodules Cy and
Bj,1; therefore, the element ¢ can be represented in the form ¢ = ¢y + b, where
co € Co, b € B 1. But we have seen that all elements of Cy belong to C7; hence
b=c—co€ CI. It follows that b € C7 N B, C Bl,,; according to Lemma 4.2,
Bf+1 = BIf] + p;jBiy1, and the element b decomposes into the sum by + ;b1
with by € BIY], by € Biy1. Thus, ¢ = co + bo + p;b1 € Co + Bif{ + pj By =
Co + u;Bis1.

Since B; = C @Y, we have:

Bf =ClgYi= (Co + pjBi) ® ;Y =
((Co + piBiy1) ® piY) + pj(Bis1 @ Y) € Bi + u; B;.
The converse inclusion is trivial.

If ¢ € C**! then the class ¢ (mod B;;;) € C/B;y, belongs to the group
(C/B;41)™?; but C/ By, is isomorphic to the direct sum of m copies of the &;-
module X, and Lemma 3.1 shows that X/** = 0. Therefore, (C/B;y1)'*! =0
and ¢ € Bj;1 N CHY = BIY!. Thus, C'T! = B{Y] and it follows immediately
that C7 = B{H forany s >i+ 1. Since B; =C @Y, we obtain for 7 > i+ 1
that B =C7 @Y’ = B, & ;Y.

4.5. The homomorphisms { and nt. Define a ;-homomorphism ¢ : Co — W
by setting &(zs) = es, &(b) = Bimiii(b) @ribfor 1 < s < m, b€ Bif}. This
definition is not contradictory. To show this we have to verify that it preserves
the relations rjzs = &(e,). There are two ways to calculate the action of £ on
the element r;z, = &fe,) € B,‘L‘ We have £(riz;) = ri€(zs) = ries. On the
other hand, 71';1%52(63) = ;& {ey) by the definition of W therefore,
€(E2(ey)) = BimitiEa(es) ® ritales) = Biciéi(es) ® rida(es) =
ri€1{es) D ri€ales) = Tieg,

and both ways give the same result.

The image of £ contains the elements ey , ..., e,, and the group V = £(Bi11);
therefore, this image coincides with W, i.e., £ is an epimorphism of Cy onto W.

Define a £;-homomorphism 7} : B! = Cy+p;B; = T; by setting 7i(c) = &£(c)
for ¢ € Co, mi(uib) = 0 for b € B;. This definition is consistent as well.
Indeed, let ¢ € Co N ;B;. But p;B; = u;C @ ;Y therefore, ¢ € Co N ;C =
Co N (u;Co + 1:iBiv1), and ¢ = pjico + pib fore some elements ¢ € Co, b € Bit1.
The element p;b = c—p;co belongs to the group CoNBit C B:ﬂ According to
the requirement f;,, ) of the inductive hypothesis the group Bjy1/BiT} regarded
as Z p{ F}-module is isomorphic to the direct sum of several copies of the module
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Z o[ F[F;y1]. Therefore, for any element be B,+1/Bfﬁ such that p;b = 0 there
is an element d € By, /B 111 such that b = r;d. In particular, this is true for
the class b (mod B:I}) hence, there exists an element by € B;,1, such that the

element by = b — r;b; belongs to Bif! C Cj, and we have

mi{c) = &&(c) = & &(uilco + ba) + wariby) = &€ (uilco + ba) + pivibr) =
Bim il (milco + b2)) + ﬁﬂrﬁii (uiv1b1) = piBimil(co + b2) € wTi =0,

since the homomorphisms f;, n} +1 are L;-homomorphisms, the element p; be-

longs to £; and pi41 Biy1 C Kerm}l} (the last inclusion is the statement giy1)
of the inductive hypothesis).

Thus, we have proved that the homomorphism 7! was defined correctly. Its
image contains the group mi(Co) = €€(Cs) = & (W) = Tj; hence, = is an
epimorphism onto Tj.

4.6. The homomorphisms ﬁf, j>d.
Lemma 4.6. If j > ¢ then 7rf+1uj0 =0.

Proof. The ¥;-module C is generated by B;y; and the elements z,, 1 < s <
m. By Lemma 1.1, ujgz, € Z;u;z,; hence, the group p;C is generated as a
Z;-module by 14;Bi41 and the elements yjx,. According to the statement g;. 1)
of the inductive hypothesis, u;B;y1 C Ker nf 415 so it is sufficient to prove that
7r;?+1ujxs = 0. But the last statement is true, since

- _ _ i . = —
T BTy = Moy WiTit -« T3TiTg = BiTh, Tig1 - .- TjEa(eq) =
i+1 = _
KiQj . 04:+17rz+1 Ea(es) = pity ... aip1 i€ (e5) € piaj ... o101 =
Q.. .a,-+1a,-,u,-T,» =0.

By Lemma 4.5 Bl =C/ @ ;Y =B, , & u;Y. We take for 7l BJ —T; the
homomorphism, the restriction of which on B,» 11 coincides with 7r,. +1 and the
restriction on u; B; = u;C @ 14;Y is the zero homomorphism Lemma 4.6 shows
that this definition is consistent: if b € B! 1 N Bi = p;C, then both ways to
calculate (b) give the same element 0. Both groups B} , and u;B; are 5;-
modules, and the restrictions of ] to these groups are X, - homomorphxsms,
therefore, 77 is a Z; - homomorphism as well. The homomorphlsm 7] is an
epimorphism because even its restriction on B{ +1 is an epimorphism onto Tj.-

4.7. End of the proof of Theorem 4.1. To complete the proof of Theo-
rem 4.1 we have to verify that the T;-module B; and the epimorphisms ]
satisfy the requirements a;) — g;) of this theorem.
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g:). Recall that the module B; is the sum of three submodules Cy, B;¢1, Y;
therefore p; B; = u;Cy + ;B ,+1 + p.,Y Let ¢ € Cy; since Cy € Bj, the element
7i(c) make sense and 7}(uic) = pimi(c) C w;T; = 0. Therefore, the group 1:Co
is contained in the kernel of . By the definition of #} the groups p;Biyi, ,u,Y
are contained in the kernel of =} as well and p;B; C Kerw

a;). Let 1<s<m,be€ B:ﬂ, b € B;. It follows from the definitions and
the property g;), which has been already proved that

;T (xa) = a;€1(e,) = 7fx+1€2(e )= 7"¢+1 (sza) ,

aimi(b) = aifimify (b) = ramify (b) = mifi(rid),
aimi(pib1) = 0 = mj{ ] (g1 1) = mhLy (rapabs) -
The group B is generated as ¥;-module by the elements z, and the groups B, 1
piB;, and the homomorphisms a,1ri, w:i} are X;-homomorphisms; therefore,
oy and wifir; coincide on B
Assume now that 7 < j <n; by Lemma 4.5 any element of the group B{ can
be represented in the form b+ ;b with b € B, 1o b, € B;. We must prove that
aJwJ(b+,u]b1) = wfill(rj(b+p.]b1)) Since w7 ,u]B =0 and 7r'7 L (rjp;B;) =
71 i1 B; = 0, we need only to prove that ajm(b) = aﬂr‘H(b) wiE (rsb);
but this is exactly the statement a; ;) of the 1nduct1ve hypothesis.
b;). Any element of the group B{ *1 can be represented in the form b+ pjr1bn
with b€ BII, by € B;. We obtain, using b41) for j > i and the definition of
7t for j =1: :

7l (b+ pipabr) = 7d (0) + w (ujabr) = 7wl (b) = Bymid! (b) = Bymit (b)) =
Bimi T (b + pjabr) (5> 1),
THb + pivaby) =mE(b) + T (i b)) =Bimi T (0)=Bim i (B) = BimiT (b + pigabr).

¢;). It is clear that r; Ker 7rj C Ker 7rg+1. Let b be an element of Bg“ such
that 1rj+1 (b) = 0. Since Bj'H = Bf_tll +/LJ+1 B;, the element b can be represented
in the form b = b; + pj41b2, where b € BH_l, by, € B;. But 7r{+1(,uj+1b2) =0
by the definition of 7} *!; therefore, 71} (b)) = 71! (b1) = 0. Let us show that
there exists an element a € Ker 7rf such that r;a = by. For j > 1 this follows from
the statement c;4+1) of the inductive hypothesis; the case j =1 is a little more
complicated. The element 0@ b, € T; ® B:LI belongs to the module W since
o;(0) = WII{ (b1) = 0. Since the homomorphism £ : Co - W is an epimorphism,
there exists an element a € Cp such that £(a) = 0 & b;. According to our
definitions, 7i(a) = &&(a) = 0 and rja = €¢&(a) = b1. We have now in both
cases: b= ri(a + pujb2) and a + by € Ker7r’ Hence Ker7r7+ Cry Ker7r
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d;). The statement d;) was proved earlier (Lemma 4.3).

e;). The A-module B; is generated by the elements zj, ..., z,, and the
module B;.1; by the inductive hypothesis f; ;) the A-module B;,; is generated
by Bif]. Since the elements z; , ..., Tm and the group B}] are contained in
Co C B, the module B; is generated by B:.

f;). The module B; decomposes into a direct sum C®Y = (Co+B;41)®Y and
B} = (Co + piBit1) @ p:Y'; therefore, B;/Bi = (Co + Bit1)/(Co + piBiv1) ®
Y/pY. But Y is a free £;-module and consequently a free Zp[F]-module;
hence, Y/p;Y is a direct sum of several copies of the module Z,[F]/pZ[F] =
ZP[F/F,']. Since Bit NCq = B:j:ll , the module D = (Co+Bi+1)/(Co +/1iBi+1) is
isomorphic to the module Biy1/(Bifi +piBir1) = (Bir1/Bi} )/ ui(Bis1 /BIY).
According to the statement f;41) of the inductive hypothesis Bjy,/Bil] is a di-
rect sum of several copies of the module Z,[F/Fj;1]; it follows that the module
D, regarded as Z,[F]-module, is isomorphic to a direct sum of several copies of
the module ZP[F/F,'+1]/M,'ZP[F/F,'+1] = ZP[F/F,]

4.8. The proof of Theorem 2.1. Existence. Let A = By be a A-module
satisfying the requirements of Theorem 4.1 for i = 0. Since Ty = 0, Ker 7 = By;
it follows from the condition cp) that Kern§ = ri_y...riroKernd = p;Bq.

Hence, 7§ induces an isomorphism U;{(Bog) = B§/u; By EiN T;. It is obvious that
the collection of isomorphisms &, &) , ..., &, is an isomorphism in the category
.

5. THE PROOF OF THEOREM 2.1. UNIQUENESS

Let 9V and U’ be the category and the functor constructed for the group F'
as the category 91 and the functor U were defined above for the group G.

For the case G = F Theorem 2.1 was proved in [Yal]. Moreover, the following
statement can be easily obtained from its proof.

Let X be an object of the category 9M' and A, B be Z,[F]-modules such
that U'(A) = U'(B) = X. Then there ezists a Zy/F]-homomorphism £ : A —
B such that the homomorphism U'(A) — U'(B) induced by £ is the identity
isomorphism.

Now let X be an object of the category 9t and A4, B be A-modules such that
U(A) = U(B) = X. Since X can be regarded as an object of the category Dt
and A, B can be regarded as Z,[F]-modules, we can apply the above statement.
It follows that there is a Z ,[F|-homomorphism £ : A— B inducing the identity
isomorphism X = U’(A)>U’(B) = X. For any ¢ the homomorphism U;(4) =
Ul(A)—Ul(B) = U;(B), induced by ¢, is the identity isomorphism as well, and
therefore it is a ¥;-isomorphism.
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Recall that the group Hom(A4, B) can be made into a G-module in a canonical
way: ‘

(gn)(a) = gn(¢g~'a) forany g€ G, n€ Hom(A4,B), a€ A.
For the Z[F]-homomorphism ¢ : A — B define its averaging & as follows.
Let G = UT:l hsF be a decomposition of G into a union of left cosets; then
€ =3, he€. It is obvious that the homomorphism £ is a A-homomorphism
and that it does not depend on the choice of representatives h; in the cosets.
Lemma 5.1. Denote by ¢, & : HY(F;, A) = H'(F;, B) the homomorphisms,
induced by €, €. Then & = (G : F)& for each i.

Proof. Let G = |J,., Fig,F be a decomposition of G into a union of double
cosets. For any s the intersection F;Ng,Fg, ! is a subgroup of Fj; therefore this
intersection coincides with the group F, for an integer l;, 7 < [, < n. Denote
by O(s) the index (F; : F},) = p'»~'. The elements o (1 < t < O(s)) are
representatives of all left cosets of the subgroup F Ng,Fg;! = F}, in the group
F; therefore, F; = Ugf) ot (FNgyFg;') is a decomposition of F; into a union
of left cosets. Then G = Ji_, ( to_(f) ot)g,F is a decomposition of G into a
union of left cosets and Y., O(s) = (G F) (as in [CE],XIL9).

Let a € A% then ZO(”) ota € Als. The element g, belongs to the normalizer
of the group F;, = F; N g,Fg;' and therefore g;* Zt (2) ota € Als; since &

is a ¥;,-homomorphism, g, € %;, and € i3 a F- homomorphxsm, there exists an
element b, € B such that

O(s) O(s)
9:£(g lzaa 8(93—1 Zaga))+/~‘l.bs=
t=1
o(s) O(s)

D oté(a) + by = O(s)é(a +Z(a ~ 1€(@) + u1,by -

t=1

Obviously, all the summands but the first one belong to the group (o; —1)B =
w; B. Therefore there is an element ¢, € B such that

O(s)
Zaa O(s)é(a) + pics -

We have now

v O(s) v O(s)
Ea) = (33 )98 (0) = S otautlororta)) =
s=1 t=1 ’ =1 t=1
v O(s) v O(s)

DO (or =gt o a)) + D (D gutlgs o)) -

8=1 t=1 g=1 t=1
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Obviously, the first sum belongs to the group p;B; denote this sum by p;b.
Thus,

v O(s)

€)= (D 9:6(g: 07 ta)) + b ="y O(s)é(a) + ) _ pics + pib =

g=1 t=1 8=1 g=1
O 0(NE(a) + wild + Y cs) = (g: F)é@) + mid+ Y es);
=1 s=1 s=1

hence the elements £(a) and (G : F)¢(a) define the same element of the group
Bt/u;B = U;(B). Lemma 5.1 is proved.

It follows from the previous lemma that the A-homomorphism ( =
1/(G : F)¢ : A— B induces the identity isomorphism X = U(4) 2 U(B) = X
(the division is possible because p does not divide the index (G : F) and,
therefore, the index is invertible in the ring of p-adic integers). Similarly there
exists a A-homomorphism 6 : A — B which induces the identity isomorphism
X = U(B) > U(A) = X. The uniqueness in Theorem 2.1 is an immediate
corollary of the following lemma.

Lemma 5.2. Let A, B be A-modules free and finitely generated as Z,-modules,
and let ( : A— B, 8 : B— A be A-homomorphisms such that the homomor-
phisms U{A) > U(B), U(B) = U(A), induced by {, 6 are the identity isomor-
phisms. Then there exist direct decompositions A= A, ® A2, B= By ® B; and
homomorphisms (' : A—> B, 8/ : B— A such that Ay = Ker (', By = Ker#’,
U(A2) = U(B2) = 0 and the restrictions of the homomorphisms (', §' on A,
and By are isomorphisms A — By, B) > A,.

Proof. For any positive integer m denote by A, the set of pairs of homomor-
phisms (p, : A/p™A— B/p™B, 6,, : B/p™B— A/p™A such that

(1) Cmbmlm = Cms OmCmbm = Om;

(2) there exist homomorphisms ¢ : A— B, 6" : B— A such that the homo-
morphisms U(4)—=U(B), U(B)— U(A), induced by ¢”, ", are the iden-
tity isomorphisms, and homomorphisms A/p™A — B/p™B, B/p™B —
A/p™A, induced by ¢", 8", coincide with (n, -

The set &, is finite; it is not empty. Indeed, the modules A/p™ A, B/p™B are
finite; therefore, there are only a finite number of homomorphisms from 4/p™A
into B/p™B. Hence, there exists 2 homomorphism (, : A/p™A — B/p™B such
that the homomorphism A/p™A— B /p™ B induced by ((8¢)¥ coincides with (n,
for infinitely many positive integers w. In particular, there are positive integers
u < v such that (, is induced by ((8¢)* and by ((8¢)**°. Take for 6,, the
homomorphism B/p™B — A/p™ A induced by 6(¢6)?*~¢~!. Easy calculations
show that (mBmlm = Cmy Imlmbm = Om.-
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If m; > m there is a canonical mapping #,,, = 2. The projective limit
of these nonempty finite sets is nonempty. Therefore we can choose the pairs
(¢m»>Om) € A, so that the homomorphisms (n,,8m, induce the homomor-
phisms (y,, 6., for my > m. There exist homomorphisms (' : A— B, 8' : B—» A
such that the homomorphisms A/p™A — B/p™B, B/p™B — A/p™A, induced
by (', §', coincide with ¢, 8, for all m. It follows from the construction that
¢'0'¢' = (', 6'¢C'6' = §'. The homomorphisms ¢/, 8’ and the modules A; = Im ¢’
A =Ker (', B; =Im (', B, = Ker#' satisfy all the requirements of Lemma 5.2.
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