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Extension of Paul Erdős graph on hypergroups

Shamsadini, S., Aghabozorgi, H., Jafarpour, M. and
S. Hoskova-Mayerova

Abstract

This paper introduces ultra non-commutative graphs derived from
ultra non-commutative hypergroups. Vertices represent ultra non -
commutative elements of the hypergroup U, defined as AU = {x ∈ U |
∃y ∈ U, y ◦x∩x ◦ y = ∅}. An edge connects vertices x and y if and only
if y ◦ x ∩ x ◦ y = ∅. We investigate properties of the associated graph
Γ(U), including connectivity, Hamiltonian conditions, and planarity.

1 Introduction

Graph theory has emerged as a powerful tool across diverse fields in recent
years. Studying algebraic (hyper)structures through the lens of graph prop-
erties has become an exciting area of research, yielding numerous intriguing
results and open questions. Researchers have extensively explored the con-
nection between (hyper)groups and graphs by associating graphs with these
algebraic structures and investigating their algebraic properties.

For instance, the idea of non-commuting graphs, initially proposed for fi-
nite groups to analyze the structure of non-central elements [1], has been
effectively adapted to hypergroups, where it illustrates the algebraic charac-
teristics of non-commuting elements through the connectivity and structure of
graphs [17]. This adaptation highlights the effectiveness of graph-theoretic
methods in investigating the intricate interactions within hyperoperations.
Fundamental research on equivalence relations in hyperstructures has estab-
lished crucial frameworks for defining quotient hyperstructures, contrasting
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traditional and contemporary methods for forming equivalence classes in hy-
peralgebra [4]. Concurrently, the concept of geometric polygroups has pro-
vided a fresh algebraic viewpoint on geometric transformations, linking sym-
metry and reflection attributes in geometry with polygroup operations [5].
Graph vertex colorings have also been employed to define color hypergroups
and related join spaces, which represent combinatorial groupings and alge-
braic interactions among color classes [12]. In a different research avenue,
path hypergroupoids have been created by establishing set-valued operations
on graph paths, with investigations uncovering their connections to commu-
tativity and connectivity [18]. Likewise, path hypercompositions in automata
have been suggested to characterize nondeterministic transitions through hy-
peroperations, connecting automata theory with hyperstructure analysis [21].
Recently, Cayley digraphs over polygroups have been introduced as a gener-
alization of classical Cayley graphs, demonstrating how the algebraic features
of polygroups such as their non-deterministic, set-valued operations can be
represented in directed graph frameworks [24]. Graphs and hypergraphs were
studied in [13] and [19]. Together, these studies illustrate a dynamic research
trajectory at the convergence of hyperalgebra, combinatorics, and geometry.
In this context, one can also refer to the subsequent papers: [14], [16], and [20].

A comprehensive overview of graphs defined on groups, encompassing non-
commuting, deep commuting, nilpotency, solvability, and Engel graphs, is
available in [7]. A recent collection of theoretical and applied research delving
into the relationship between algebraic structures and graphs can be found
in [8]. In this note we propose a construction of a graph starting from an ultra
non-commutative hypergroup, i.e. a finite hypergroup (H, ◦), having elements
x and y such that y◦x∩x◦y = ∅. Paul Erdős (as mentioned in Neumann [22]),
utilized a similar approach in 1975. Let G be a non-abelian group and Z(G)
be the set of elements of G commuting with all elements in G, i.e. the center
of G. Take the set of vertices V = {x ∈ G | x /∈ Z(G)}. Two vertices x
and y are joined whenever they are not commute, i.e. xy 6= yx. Abdollahi et
al. [1], coined the term ”non-commuting graph” for Erds graph Γ(G). Their
work delved into the influence of the graph-theoretic attributes of Γ(G) on the
group-theoretic characteristics of G. Iranmanesh et al. in [17] extending this
notion to the hypergroups, instead of a non-abelian group, they considered a
non-central hypergroup, i.e., the associated fundamental group H = H/β is
non-abelian. Two vertices x and y whenever x ◦ y ◦ ωH 6= y ◦ x ◦ ωH , where
ωH is the core (heart) of the hypergroup (H, ◦). The properties of an associ-
ated graph of non-central hypergroup, H are related to the fundamental group
H/β. Now let (U, ◦) be a finite hypergroup and set AU = {x ∈ U | ∃y ∈ U :
y ◦ x ∩ x ◦ y = ∅}. If AU 6= ∅, then (U, ◦) is called an ultra non-commutative
hypergroup.
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In this paper we extend Erdős construction to ultra non-commutative hy-
pergroups as follows: AU is the set of vertices and join two distinct vertices
x, y if y ◦x∩x ◦ y = ∅. Building on the concept of non-commuting graphs, our
paper explores the following: After reviewing fundamental graph theory con-
cepts and establishing notation, Section 3 introduces essential hypergroup the-
ory definitions used throughout the paper. We define ultra non-commutative
hypergroups and ultra non-commuting graphs, providing examples of such
graphs over ultra non-commutative hypergroups. We delve into properties of
the ultra non-commuting graph Γ(U), including its connectivity, Hamiltonian
conditions, and planarity.

2 Preliminaries

A simple graph G consists of a non-empty finite set V (G) of elements called
vertices (or nodes), and a finite set E(G) of distinct unordered pairs of distinct
elements of V (G) called edges. We call V (G) the vertex set and E(G) the edge
set of G. An edge {v, w} is said to join the vertices v and w, and is usually
abbreviated to vw. For the following basic notions we referee the readers to
the fundamental book in graph theory by Bondy and Murty [6].

Definition 2.1. [17] The degree of a vertex v of G is the number of edges
incident with v, and is written deg(v). The minimum degree of G is denoted
by δ(G).

Definition 2.2. [25] A subgraph of a graph G is a graph, each of whose
vertices belongs to V (G) and each of whose edges belongs to E(G).

Definition 2.3. [25] Two graphs G and H are isomorphic, written G ∼= H,
if there is a one-one correspondence between the vertices of G and those of H
such that the number of edges joining any two vertices of G is equal to the
number of edges joining the corresponding vertices of H.

Definition 2.4. [15, 25]

(1) A walk in a graph G is a sequence of vertices v0, v1, . . . , vk, in which any
two consecutive edges are adjacent. A walk is a closed if v0 = vk. A path
is a walk without repeated vertices. The length of a walk is the number
of edges in it. A connected graph is a graph having a path between every
pair of vertices.

(2) A cycle in a graph G is a closed path of length at least 3. We are the
notation Cn for a cycle of n. A Hamiltonian cycle is a closed path that
visits every vertex in the graph exactly once. A graph is Hamiltonian if
it has a Hamiltonian cycle.
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Let x = v1, v2, . . . , vn = y be a path between two vertices x and y in a
given graph G. By d(x, y), we mean the minimum length of all paths from x
to y. If there are no walks between x and y, let d(x, y) = ∞ by convention.
It is clear that a graph G is connected if d(x, y) < ∞ for all x, y ∈ V . For
a connected simple finite graph G define the diameter of G as diam(G) =
max{d(x, y) | x, y ∈ V (G), x 6= y}.

Theorem 2.5. (Dirac’s Theorem) [25] If G is a simple graph with n ≥ 3
vertices and if δ(G) ≥ n

2 , then G has a Hamiltonian cycle.

A simple graph in which each pair of distinct vertices are adjacent is a
complete graph. We denote the complete graph on n vertices by Kn. If the
vertex set of a graph G can be split into two disjoint sets A and B so that
each edge of G joins a vertex of A and a vertex of B, then G is a bipartite
graph Alternatively, a bipartite graph is one whose vertices can be colored
black and white in such a way that each edge joins a black vertex (in A) and a
white vertex (in B). A complete bipartite graph is a bipartite graph in which
each vertex in A is joined to each vertex in B by just one edge. We denote
the bipartite graph with n black vertices and m white vertices by Kn,m. It is
obvious that each Kn is a Hamiltonian graph whenever n ≥ 3, while Kn,m is
a Hamiltonian graph if and only if n = m ≥ 2. A planar graph is a graph
that can be drawn in the plane without crossings that is, so that no two edges
intersect geometrically except at a vertex to which both are incident. For
example, K5 and K3,3 are not planar graphs, while K4 is a planar graph.

Theorem 2.6. [25] If G is a connected simple planar graph with v(> 3)
vertices and e edges, then e ≤ 3v − 6.

As a result we get the following.

Proposition 2.7. [17] Every simple planar graph contains a vertex of degree
at most 5.

Theorem 2.8. [17] If a maximal planar graph has vertices with v > 2, then
it has 3v − 6 edges.

Theorem 2.9. (Kuratowski,s Theorem) [25] A graph is planar if and only if
it contains no subgraph homeomorphic to K5 or K3,3.

3 On ultra non-commuting graphs

This section focuses on constructing and analyzing the properties of a specific
graph associated with an ultra non-commutative hypergroup, that is, a hyper-
group (U, ◦) where not all products commute (∃x, y : x ◦ y ∩ y ◦ x = ∅).
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For a comprehensive understanding of hyperstructure theory, refer to the
foundational works by Corsini [9], Davvaz and Leoreanu-Fotea [11], Corsini
and Leoreanu [10], and Vougiouklis [26]. We begin by defining a hyper-
group. A hypergroup is a non-empty set H equipped with a hyperoperation
◦ : H×H −→ P∗(H) that satisfies the associative property: (x◦y)◦z = x◦(y◦z)
for all x, y, z ∈ H, and the reproduction axiom: x ∈ H, x ◦H = H ◦ x = H
for all x ∈ H. A crucial concept in hypergroup theory is the ”heart” of a
hypergroup, which, in some ways, parallels the center of a group. To define
the heart of a hypergroup, we introduce the β-relation, also known as the fun-
damental relation due to its significant properties. Further details regarding
its meaning and applications can be found in Al Tahan et al. [3], and Novák
et al. [23]. Define first, for all n ≥ 1, on a hypergroup (H, ◦) the relation βn
as follows:

aβnb ⇔ ∃(z1, . . . , zn) ∈ Hn : {a, b} ⊆
n∏
i=1

zi and take β =
n⋃
i=1

βi, where

β1 = {(x, x) | x ∈ H} is the diagonal relation on H. Denote by β∗ the transi-
tive closure of β, so β∗ is an equivalence relation on H, see Corsini [9].
It is well known that β∗ is the smallest strongly regular relation on a hy-
pergroup (H, ◦), such that the quotient H/β∗ is a group with respect to the
following operation β∗(x)⊗ β∗(y) = β∗(z),∀z ∈ x ◦ y. H/β∗ is called the fun-
damental group associated with H. The heart ωH of the hypergroup H is the
set of all elements x of H, for which the equivalence class β∗(x) is the identity
element of the fundamental group H/β∗.

Definition 3.1. [9] Suppose (U, ·) and (K, ◦) are hypergroups and α cor-
responds one to one from U to K. α is called an isomorphism whenever
α(x · y) = α(x) ◦ α(y), for every x and y in H.

Definition 3.2. A finite hypergroup (U, ◦) is called ultra non-commutative if
there exist elements x, y ∈ U such that the hyperproducts y ◦x and x ◦ y have
no elements in common, i.e., y ◦ x ∩ x ◦ y = ∅.

Example 3.3. If a group G has an order less than or equal to 5, then G is
abelian. Consequently, the set of elements in G that do not commute with
any other element is empty.

Definition 3.4. Given an ultra non-commutative hypergroup (U, ◦), we con-
struct an associated graph Γ(U) as follows: The set of vertices of Γ(U) is
denoted by AU . Two distinct vertices x and y are connected by an edge if and
only if the hyperproducts x ◦ y and y ◦ x have no elements in common.

Example 3.5. Consider the hypergroup defined by Table 1.
Here we have the set of vertices AU = {x, y} and the associated graph is

depicted in the Figure 1.
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(U, ◦) x y z
x x x U
y y y U
z U U U

Table 1: Cayley Table of the hypergroup (U, ◦)

x

y

Figure 1: Ultra non-commuting graph of U

Example 3.6. Let us consider the hypergroup represented by the Table 2:

(K, ◦) x y z r t
x x y z r t
y y y y K y
z z z z K z
r r K K K K
t t z z K z

Table 2: Caley Table of the hypergroup (K, ◦)
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In this example the set of vertices is AK = {y, z, t} and the associated
graph is depicted in the Figure 2.

t

y

z

Figure 2: Ultra non-commuting graph of K.

Example 3.7. Consider the hypergroup defined by the Table 3.

(L, ◦) x y z t
x x x L L
y y y L L
z L L z z
t L L t t

Table 3: Cayley Table of the hypergroup (L, ◦)

xz

t y

Figure 3: Ultra non-commuting graph of L.

Proposition 3.8. Let U and K be two ultra non-commutative hypergroups,
such that U ∼= K. Then Γ(U) ∼= Γ(K).

Proof. As ultra non-commutative hypergroups U and K are isomorphic there
exists α one to one correspondence from AU to AK . Let (x, y) ∈ EU , we prove
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(
α(x), α(y)

)
∈ EK . Since

α(x)α(y)
⋂
α(y)α(x) = α(xy)

⋂
α(yx) = α(xy

⋂
yx) = ∅.

Hence
(
α(x), α(y)

)
∈ EK . On the other hand, let (a, b) ∈ EK , in the following

we prove that
(
α−1(a), α−1(b)

)
∈ EU . Since

(
α−1(a)α−1(b)

)⋂(
α−1(b)α−1(a)

)
=

α−1(ab
⋂
ba) = ∅. Then

(
α−1(a), α−1(b)

)
∈ EU . Hence (x, y) ∈ EU , if and only

if
(
α(x), α(y)

)
∈ EK . Therefore we have Γ(U) ∼= Γ(K).

Remark 3.9. The following example shows that the converse of Proposition
3.8 is not true.

Example 3.10. Let us consider the hypergroup represented by the Table 4.
Than the associated graph is the same with Example 3.5 while U � L.

(L, ◦) x y z t
x x x L L
y y y L L
z L L L L
t L L L L

Table 4: Cayley Table of the hypergroup (L, ◦)

Let (U, ◦) be a hypergroup (or more generally a hyperstructure). The
relation β∗ is defined as the transitive closure of the relation β, where xβ∗y if
and only if there exists a finite sequence x = x0, x1, , xn = y such that xiβxi+1,
for all i and x, y in U. The class x can be thought of as: x = {y ∈ U : xβ∗y}.
Lets define the equivalence class of a nonempty subset D of U under the
relation β∗ as bellow: D = {x : x ∈ D}.

Proposition 3.11. Let (U, ◦) be a an ultra non-commutative hypergroup and
AU = {x1, x2, . . . , xn}. Then AU ⊆ AU .

Proof. Suppose that AU = {x ∈ U/β∗|y ∈ U/β∗ : xy 6= yx}. Since x ∈ AU ,
there exists y ∈ AU , such that xy 6= yx. As a result xy

⋂
yx = ∅. Thus

x ∈ AU . Therefore x ∈ AU . So we have AU ⊆ AU .

Corollary 3.12. If U is an ultra non-commutative hypergroup, then Γ(U) is
subgraph of Γ(U).

Definition 3.13. Suppose (U, ◦) is an ultra non-commutative hypergroup,
we set: BU = {x ∈ AU |x /∈ AU} and for all x ∈ AU we have AU (x) = {y ∈
AU |x ◦ y

⋂
y ◦ x = ∅}.
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Example 3.14. Let us consider the hypergroup U = {e, x, y, z} represented
by the Table 5.

(U, ◦) e x y z
e e x y z
x x e y z
y y z {e, x, z} {e, x, y}
z z b {e, x, z} {e, x, y}

Table 5: Cayley Table of the hypergroup (U, ◦)

In this case have: AU = {x, y, z}, AU = ∅, BU = {x, y, z}, AU = {e} and
AU (x) = {y, z}, AU (y) = {x}, AU (z) = {x}.

Remark 3.15. If H is a group, then BU = ∅.

Theorem 3.16. For every ultra non-commutative hypergroup U , we have:

(i) AU = AU −BU .

(ii) AU −BU = AU −BU .

Proof. (i) Let x ∈ AU −BU . Then there exists y ∈ AU −BU , such that x = y.
Because y /∈ BU , then y ∈ AU so x ∈ AU . Therefore AU −BU ⊆ AU . Now
let x̄ ∈ AU . Because AU ⊆ AU , then x ∈ AU . So there exists y ∈ AU , such
that x = y. By the definition of BU as a result we conclude that y /∈ BU .
Thus y ∈ AU − BU . Therefore y ∈ AU −BU , and so x ∈ AU −BU . Hence
AU ⊆ AU −BU .

(ii) Now let x ∈ AU −BU . Then there exists y ∈ AU−BU such that x = y.
Since y ∈ AU ⊆ AU , then y ∈ AU and y /∈ BU . Therefore y ∈ AU −BU and so
x ∈ AU −BU . Hence AU −BU ⊆ AU −BU . Let x ∈ AU −BU , then x ∈ AU .
So there exists y ∈ AU such that x = y. Since y /∈ BU . We have y /∈ BU . Thus
y ∈ AU −BU . Consequently y ∈ AU −BU , and so x ∈ AU −BU . Finaly, as a
result we get AU −BU ⊆ AU −BU .

Proposition 3.17. [1] For any non-abelian group G, the graph Γ(G) is con-
nected.

Lemma 3.18. If x, y ∈ AU and x, y ∈ AU , then there is a path between x, y.

Proof. If x, y ∈ AU . Then according the Proposition 3.17, there exists
a0 = x, a1, . . . , an = y such that xa1 6= a1x, a1a2 6= a2a1, . . . , an−1y 6= yan−1.
Consequently xa1

⋂
a1x = ∅, a1a2

⋂
a2a1 = ∅, . . . , an−1y

⋂
yan−1 = ∅, so

there exists a path from x to y.
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Theorem 3.19. If for all x ∈ AU , AU (x)
⋂

(AU − BU ) 6= ∅, then Γ(U) is
connected.

Proof. Suppose that x, z ∈ AU . Because for all x ∈ AU , AU (x)
⋂

(AU −BU ) 6=
∅, then there exists y ∈ AU (x) and y ∈ AU −BU . Thus x ◦ y

⋂
y ◦ x = ∅ and

y /∈ BU . Therefore y ∈ AU . On the other hand if z ∈ AU , then AU (z)
⋂

(AU −
BU ) 6= ∅. Hence there exists y′ ∈ AU (z), such that z ◦ y′

⋂
y′ ◦ z = ∅ and

y′ /∈ BU , therefore y′ ∈ AU . Because y and y′ ∈ AU , by Lemma 3.18, there
exists a path between y and y′. Thus there exists a path from x to z.

Recall that for any element x in a hypergroup (U, ◦) we denote by x = β(x)
the equivalence class of x modulo the relation β.

Proposition 3.20. Let U be an ultra non-commutative hypergroup, and AU
= AU . Then,

(1) if x ∈ AU , then x = β(x) ⊆ AU .

(2) AU =
⋃

x∈AU/β

x.

Proof. (1) If x ∈ AU . Then x ∈ AU , therefore there exists y ∈ AU , such that
y⊗ x 6= x⊗ y. Now let z ∈ x, it follows that x = z and so y⊗ z 6= z⊗ y. As a
result z ◦ y ∩ y ◦ z = ∅. Hence z ∈ AU , consequently β(x) ⊆ AU .
(2) It follows immediately from part (1) and equivalence x ∈ AU ⇐⇒ x ∈
AU/β .

Proposition 3.21. Consider a, b ∈ AU , a, b ∈ x, and x ∈ AU , then there
exists a path between a, b.

Proof. Suppose there is no path between a, b. Since x ∈ AU , thus there exists
c ∈ AU , such that c⊗x 6= x⊗c. As a result c⊗a 6= a⊗c, therefore c◦a

⋂
a◦c = ∅

and c ⊗ b 6= b ⊗ c. As a result c ◦ b
⋂
b ◦ c = ∅. We conclude that there is a

path between a, b, which is a contradiction.

Corollary 3.22. Let (U, ◦) be an ultra non-commutative hypergroup and BU =
∅. Then the graph Γ(AU ) is connected.

Proof. Because BU = ∅, AU (x)
⋂

(AU −BU ) 6= ∅, for all x ∈ AU . By Theorem
3.19, we conclude that Γ(U) is connected.

Proposition 3.23. Let (U, ◦) be an ultra non-commutative hypergroup and
AU = AU . Then Γ(U) is connected.

Proof. Since AU = AU , it results that BU = ∅. By corollary 3.22, it follows
that Γ(U) is connected.
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Corollary 3.24. Let (G, ◦) be a non-commutative group. Because BU = ∅,
we have Γ(G) is connected.

Lemma 3.25. Let (G, ◦) be a non-commutative group. Then Γ(G) is not a
complete graph.

Proof. Assume, for the sake of contradiction, that Γ(G) is a complete graph.
This implies that the diameter of Γ(G), denoted by diam(Γ(G)), is 1. If x ∈
AG: Since diam(Γ(G)) = 1, x must be its own inverse (x = x−1). Otherwise,
x and x−1 would be connected by an edge in the complete graph, implying
that x ◦ x−1x−1 ◦ x, which is a contradiction. If x /∈ AG: There must exist
an element y ∈ AG such that x ◦ y ∈ AG. If not, x ◦ y would commute with
every element in AG, leading to a contradiction. Specifically, if x◦y commutes
with all elements in AG, then y would also commute with all elements in AG,
contradicting the assumption that y ∈ AG. Since x ◦ y ∈ AG, it follows that
(x ◦ y)−1 = x ◦ y. This implies that y−1 ◦ x−1 = x ◦ y = y ◦ x (as x ∈ AG).
Consequently, x = x−1. Therefore, we have shown that x = x−1 for all
x ∈ G. This implies that G is an abelian group, which contradicts our initial
assumption. Hence, Γ(G) cannot be a complete graph.

Proposition 3.26. If (U, ◦) is an ultra non-commutative hypergroup and
AU = AU , then Γ(U) is not a complete graph.

Proof. Suppose that Γ(U) be a complete graph. We have xy ∩ yx = ∅ and
x, y ∈ AU , for all x, y ∈ AU . As a result x, y ∈ AU and y⊗x 6= x⊗y. Therefore
AU is a complete graph, which is a contradiction.

Proposition 3.27. If (U, ◦) is an ultra non-commutative graph and AU = AU ,
then diam(Γ(U)) = 2.

Proof. Using Proposition 3.26, we know that the associated graph Γ(U) is not
complete, so there exist x, y ∈ AU , such that d(x, y) 6= 1. Since x◦y∩y ◦x 6= ∅
and x, y ∈ AU . Hence there is z ∈ AU , such that z⊗x 6= x⊗z or y⊗z 6= z⊗y.
It results that x◦z∩z ◦x = ∅ or y◦z∩z ◦y = ∅. Consequently d(x, y) = 2.

Example 3.28. Consider the hypergroup defined by the Table 6.
Then diam(Γ(H4)) = 3.
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(H4, ◦) x1 x2 x3 x4
x1 H4 {x1, x2} H4 H4

x2 {x3, x4} H4 {x1, x2} H4

x3 H4 {x3, x4} H4 {x1, x2}
x4 H4 H4 {x3, x4} H4

Table 6: Cayley Table of the hypergroup (H4, ◦)

x1

x2

x3

x4

Figure 4: Ultra non-commuting graph of H4.

Definition 3.29. [11] We say that a hypergroup H is complete, if for all
(n,m) ∈ N2, such that n,m ≥ 2, and for all (x1, . . . , xn, y1, . . . , ym) ∈ Hn+m,
the following implication is valid:

n∏
i=1

xi
⋂ m∏

j=1

yj 6= ∅ ⇒
n∏
i=1

xi =

m∏
j=1

yj .

Theorem 3.30. [11] A hypergroup (H, ◦) is complete if and only if H =⋃
i∈G

Xi, where G and Xi satisfy the conditions:

(1) G is a group. (Indeed G = H/β∗).

(2) i 6= j implies Xi ∩Xj = ∅.

(3) If (a, b) ∈ Xi ×Xj , then a ◦ b = Xij .

Theorem 3.31. If (U, ◦) is an ultra non-commutative complete hypergroup,
then diam(Γ(U)) = 2.

Proof. According Theorem 3.16, we have AU ⊆ AU . By Proposition 3.27,
we have to prove that AU ⊆ AU . Let x ∈ AU . Then there exists y ∈ AU ,
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such that x = y. Therefore there exists z ∈ AU , such that y ◦ z ∩ z ◦ y = ∅.
Since y ∈ Xi, z ∈ Xj , then Xi ◦ Xj 6= Xj ◦ Xi, such Xij 6= Xji, as a result
ij 6= ji. Because U is complete hypergroup, according Theorem 3.30, U =⋃
i∈G

Xi, where G = U/β∗ and Xi satisfy the conditions (1), (2) and (3). Thus

i = y, j = z. Hence y ⊗ z 6= z ⊗ y, as a result y ∈ AU . Therefore x ∈ AU .

Corollary 3.32. Let (G, ◦) be a non-commutative group. Then diam(Γ(G)) =
2.

The graph associated to hypergroup has a different property from the graph
of groups, for example, for every natural number n, there is a hypergroup of
diameter n.

Theorem 3.33. Let n ≥ 4, Hn = {x1, x2, . . . , xn} and hyperoperation ∗ on it
defined as follows:

xi ∗ xj =

 {x1, x2} j=i+1
{x3, x4} j=i-1

Hn otherwise

Then (Hn, ∗) is a hypergroup.

Proof. (1) For all i ≤ n, we have xi ∗ Hn = Hn ∗ xi = Hn. Because n ≥ 4,
there exist j 6= i+ 1, i− 1.
(2) For all xi, xj , xk ∈ Hn, we have (xi ∗ xj) ∗ xk = Hn = xi ∗ (xj ∗ xk).
Indeed, (xi ∗ xj) ∗ xk = {x1, x2} ∗ xk or {x3, x4} ∗ xk or Hn ∗ xk. Therefore
(xi∗xj)∗xk = Hn.On the other hand, xi∗(xj∗xk) = xi∗{x1, x2} or xi∗{x3, x4}
or Hn ∗xk. Thus xi ∗ (xj ∗xk) = Hn. Consequently the associativity condition
is valid. Thus (Hn, ∗) is a hypergroup.

Theorem 3.34. For all n ≥ 4, diam(Γ(Hn)) = n− 1.

Proof. By Definition of Hn, for all xi, xj ∈ Hn, xi and xj are adjacent if
and only if i and j are consecutive numbers (i.e. j = i − 1 or j = i + 1).
Therefore the minimum length of all paths from xi to xj ; d(xi, xj) = n − 1
and so diam(Γ(Hn)) = n− 1. The associated graph Hn, is a graph of order n
as follows:

x1 x2 x3 . . . xn

Figure 5: Ultra non-commuting graph of Hn.
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Definition 3.35. An ultra non-commuting hypergroup U is called Hamilto-
nian if the associated graph Γ(U) is a Hamiltonian graph.

Example 3.36. Let S3 = {(1), (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)} be the
symmetric group on three elements and assume X(1) = {e}, X(1,2) = {x},
X(1,3) = {y}, X(2,3) = {z}, X(1,3,2) = {t}, X(1,2,3) = {r, p, q} and U = ∪σ∈S3

Xσ.
Then we define on U the hyperoperation ◦ as follows: a ◦ b = Xσa·σb , where
a ∈ Xσa and b ∈ Xσb . This is the method to obtain a complete hypergroup,
starting from a group [2]. Besides, U is an ultra non-commutative, which is
not a Hamiltonian hypergroup. The associated graph AU is as below:

r

pq

t

z

y

x

Figure 6: The associated graph AU

Example 3.37. Consider the hypergroup (U1, ◦) defined by the Table 7.

(U1, ◦) e a b c d
e e a b c d
a a {e, a, b} {c, d} {e, a, b} {c, d}
b b {c, d} {e, a, b} {c, d} {e, a, b}
c c {c, d} {e, a, b} {c, d} {e, a, b}
d d {e, a, b} {c, d} {e, a, b} {c, d}

Table 7: Hypergroup (U1, ◦)

In this case the associated graph Γ(U1) is a Hamiltonian graph.



EXTENSION OF PAUL ERDŐS GRAPH ON HYPERGROUPS 159

a

c

b

d

Figure 7: Associated graph Γ(U1)

Theorem 3.38. If U is an ultra non-commutative hypergroup such that AU =
AU , and there exists n ≥ 1 such that, |β∗(x)| = n, for all x ∈ U , then U is a
Hamiltonian hypergroup.

Proof. Because AU = AU , we have AU 6= ∅. Let x ∈ AU = U−Z(U) and C(x)

be the set of elements that commute with x in U . We have |C(x)| ≤ |U |2 . It
follows that:

deg(x) = |U − C(x)| > |U − Z(U)|
2

=
|AU |

2
.

Indeed, if deg(x) ≤ |U−Z(U)|
2 , then more than half elements of AU can commute

with x, therefore |C(x)| ≥ |U−Z(U)|
2 + |Z(U)|, following that |C(x)| > |U |

2 ,
which is a contradiction. Moreover, we have

deg(x) = deg(x) · n = deg(x) · |AU |
|AU |

>
|AU |

2
· |AU |
|AU |

=
|AU |

2
.

Hence, by Dirac’s Theorem, it follows that Γ(U) is a Hamiltonian graph.

Proposition 3.39. If U is a complete ultra non-commutative hypergroup,
such that U =

⋃
i∈G

Xi and |Xi| = n, for all i ∈ G, then U is Hamiltonian.

Proof. Because for all x ∈ U, |β∗(x)| = |Xi| = n. Hence, by Theorem 3.38, it
follows that Γ(U) is a Hamiltonian graph.

Corollary 3.40. Every non-abelian group is a Hamiltonian hypergroup.

Definition 3.41. A planar graph is a graph that can be embedded in the
plane so that no two edges intersect geometrically except at a vertex which
both are incident.
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Example 3.42. Let us consider the hypergroup represented by the Table 8:
In this example the associated graph is at Figure 8:

(S3, ◦) e x y z r t
e e x y z r t
x x e t r z y
y y r e t x z
z z t r e y x
r r y z x t e
t t z x y e r

Table 8: Caley Table of the hypergroup (S3, ◦)

r

t

z

x

y

Figure 8: Ultra non-commuting graph of S3.

Proposition 3.43. [19] A non-abelian group G has a planar Cayley graph
Γ(G) if and only if G is isomorphic to D6, D8, or Q8.

Theorem 3.44. Let (U, ◦) be an ultra non-commutative hypergroup and AU =
AU . If Card(β∗(x) = x) ≥ 2, for all x ∈ U , then U is non-planar.

Example 3.45. The dihedral group D8 and the quaternion group Q8, both
of order 8, have isomorphic associated graphs as given on the Figure 9.

Proof. If Γ(U) is not planar then Γ(U) is not planar. Otherwise suppose Γ(U)
is planar. In this case if there exist x, y ∈ AU , such that Card(x) ≥ 3 and
Card(y) ≥ 3, then we have K3,3 is a subgraph of Γ(AU ). If do not exists
x, y ∈ AU , such that Card(x) ≥ 3 and Card(y) ≥ 3, then suppose that ne be
the number of edges and nv be the number of vertices of AU . As the graph
AU , is planar, by Proposition 3.44, U is isomorphic to one of the groups D6,



EXTENSION OF PAUL ERDŐS GRAPH ON HYPERGROUPS 161

a

b

c

f

g

d

Figure 9: Ultra non-commuting graph of D8 or Q8.

D8 or Q8. Let U ∼= D6, thus Γ(U) ∼= Γ(S3). By Example 3.42 we get the set
of vertices AU = {x, y, z, t, r}.
Without loss of generality, suppose that:
Case (1) Card(x) = k ≥ 2 and Card(y) = Card(z) = Card(t) = Card(r) = 2,
then the number of vertices of Γ(AU ) is nv = 8 + k and the number of edges
of Γ(U) is ne = 20 + 8k.
Case (2) If Card(r) = k ≥ 2 and Card(y) = Card(z) = Card(t) = Card(x) =
2, then the number of vertices of AU is nv = 8 + k and the number of edges of
Γ(U) is ne = 24 + 6k. With respect of cases (1) and (2) we have 3nv − 6 < ne,
and using Theorem 2.8, it follows that Γ(U) is not planar.

Now let U ∼= Q8. By Example 3.43 we get the set of vertices AU =
{a, b, c, d, f, g}. Without loss of the generality, suppose that Card(a) = k ≥ 2
and Card(b) = Card(c) = Card(d) = Card(f) = Card(g) = 2, then the
number of vertices of Γ(U) is nv = 10 + k and the number of edges of Γ(U) is
ne = 32 + 8k. Because 3nv − 6 < ne, it follows that Γ(U) is not planar.

4 Conclusion

Paul Erdős defined a graph having the set of vertices V = G − Z(G), where
Z(G) is the set of the elements of a non-abelian group (G, ·) commuting with
all elements in G, and joining two vertices x and y whenever x ·y 6= y ·x. This
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construction has been extended in this note to the hypergroups framework,
considering an ultra non-commutative hypergroup (U, ◦), and considering the
set of the vertices as AU = {x ∈ U | ∃y ∈ U : x ◦ y ∩ y ◦ x = ∅} and join
two vertices x and y whenever x ◦ y ∩ y ◦ x = ∅. We have established the
connectivity and necessary or sufficient conditions for the associated graph to
be Hamiltonian or planar. In a future work other similar constructions will be
investigated, in the sense that we will construct new graphs or hypergraphs
associated with hypergroups, and vice-versa we will study the properties of
the hyperstructures associated with some particular graphs. Moreover, we
can explore how the graph theoretical properties of the associated graph can
effect on the hypergroup theoretical properties of (U, ◦).
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