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A mathematical note about a FLRW universe
embedded in a universe without time

Cristina Sburlan

Abstract
In this paper we propose to study a six-dimensional Friedmann-
Lemaitre-Robertson-Walker (FLRW) universe without time. The way
we study this timeless universe is the classic one: we highlight future
oriented time-like loops and closed chains of future oriented time-like
curves. Inside this six-dimensional FLRW universe it is embedded a
four-dimensional classical FLRW universe.

1 Introduction

In this article we obtain an example of a FriedmannLemaitreRobertson Walker
(FLRW) six-dimensional expanding universe that is timeless according to
Go6del’s meaning (see [5]).

There is a series of articles published by W.G. Boskoff (see [1], [2], [3]) re-
lated to timeless universes. In [3], a family of timeless universes is constructed.
This model has led us to consider the possibility of a six-dimensional timeless
universe containing a four-dimensional FLRW physical universe, where the
time exists.

The four-dimensional spacetime is studied in special and general relativity,
and theoretical models for the physical expanding universe are described (see
[4], [7]), while the importance of the FLRW metrics to model our universe is
highlighted (see [6]).

Key Words: Einstein’s field equations, FLRW universe, expanding universe, timeless
universe.
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The concept of a timeless six-dimensional universe housing our expanding
four-dimensional reality represents a different approach from the conventional
cosmology (see [8]). While the mathematical framework presented here demon-
strates that it is theoretically feasible, one possible implication is that the time
of our universe is arising from a higher-dimensional structure.

2 Main result: A six-dimensional timeless FLRW uni-
verse containing a four-dimensional FLRW physical
universe

We first consider a six-dimensional metric on a set. Using an appropriate
change of coordinates, we can transfer the metric to another set and obtain a
new six-dimensional metric satisfying Einstein’s field equations, describing a
FLRW expanding universe.

Consider the metric

d52 _ 6x3(d1’0)2 - 62\/W~ [(dII)Z + (dI2)2 + (dzd)ﬂ +
+(dz*)? 4 (dz®)? (1)

on M; = R® and, in order to simplify the computations, we apply to this
metric the following change of coordinates

xozt,
=z
2
e =y
Fi:

1 =z
x* =rcosf
2° = rsinb,

where t,z,y,2,0 € R, r € (0,00).
Therefore, we obtain the following metric connected with (1) through the
above transformation

d&* = e*dt? — " (da?* + dy? + dz%) + dr® + r?df? (2)

on the set My = R* x (0,00) x R described by the coordinates (¢,x,y, z, 7, 0).
Denoting (¢, z,y, z,7,0) := (v°,y*, ¥%, 9%, y*, y°), the metric (2) becomes

d5? = v (dy")? — " - [(dy")? + (dy?)? + (dy*)2] + (dy")? + (") (dy®)*.
So, the nonzero components g;; of this metric tensor are

3 4
goo=¢€", gi1 =g =gs3=—€Y, gu=1, gs5s = (v*)*
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We compute the Christoffel symbols for metric (2) and they are

| R
7;F00:§ey v

F83 = Fgo = 2

Iy =T =05=ThH=03="T=1L
4
I =To = Pg?) =
Fés = -y’
1
yt
All the other Christoffel symbols are zero.
Therefore, the components R;; of the Ricci tensor for metric (2) are

5 _ 15 _
F45_F54_

1

3 4
Roo = 161’ Y
2y4
Ry = Ry = 3¢¥" + eT;
Yy
e2v' 1
Rag = 3¢®' 4 — — =
33 e + " 1
1
R3y = Rag = ok
Ryq = —3;
R55 = —3y4.

All the other components R;; of the Ricci tensor are zero.
So, we obtain that the Ricci scalar curvature is

Therefore, the Einstein’s field equations
1
Rij — 5Rgij = 871Gy,
are verified for the stress-energy tensor T;; = ﬁﬂj, where G is the gravita-
tional constant and .
7o 3¢ (1+ 2y*)

00 — 4
)
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~ ~ 1
T3y =Ty3 = 3

and the rest of Tj; are zero.

The coordinates (z,y, z) from the second metric completely determine the
coordinates (z!, 2%, 2%) from the first metric. The coordinate ¢ from the second
metric completely determines the coordinate z° from the first metric. The
coordinates (r, ) from the second metric completely determine the coordinates
(2%, 25) from the first metric.

The nature of this coordinates, time type or space type, will be settled
defining the orientation of Ms. We will define the orientation such that x,y, z
are space type coordinates and ¢,r,6 are time type coordinates in Ms (and,
corresponding to them, z',z2,2% are space type coordinates and z°,z?,x®
are time type coordinates in Mj). The orientation will be defined following
Godel’s model.

The vectors in the tangent spaces of My can be split in three types of
vectors: time-like, space-like and light-like vectors.

A vector u = (u®, ul,u? u? ut,u’) of a tangent space of My is a time-like
vector if ds%(u,u) = g;;u’u? > 0, it is a space-like vector if d5%(u,u) < 0 or it
is a light-like vector if d32(u,u) = 0.

We see that considering the vectors

€0 := (1,0,0,0,0,0), e4 := (0,0,0,0,1,0), e5 := (0,0,0,0,0,1),

we have that d5°(ep, e0) = €* > 0, d3*(eq, e4) = 1 > 0, d5%(e5,e5) = 1° > 0,
so the vectors eg, e4, e5 are time-like and considering the vectors
€1 = (07 17 Oa Oa 07 0)7 €2 = (0, O, 1, 07 O, 0), €3 1= (O, O, O7 1, 0, O),

we have that d32(ej,e;) = —e?" < 0, d3?(eq,e2) = —e* < 0, d3?%(es,e3) =
—e?" < 0, so the vectors e, eg, e3 are space-like.
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Therefore the coordinates t,r, 6 are time type and the coordinates x, vy, z

are space type in My (and, consequently, 2°, 2%, 2° are time type coordinates

and z!, 22, 23 are space type coordinates in Mj).

The vector &€ = (€%, e!,e2,e3,¢e*,e®) = (1,0,0,0,1,1) is time-like because
d3?(é,é) = e* + 1+ 12 > 0. We choose this vector to establish the future
oriented time-like vectors.

We say that a time-like vector u = (u®, ul, u?, u3, u*, u®) is future oriented
if ds%(é,u) = g;je'u? > 0 and it is past oriented if d5?(é,u) = g;;e'u/ < 0. If
a time-like vector w is future oriented, then the vector —u is a time-like past
oriented vector.

We say that a curve ¢(s) in Mj is a time-like future oriented curve if all
its tangent vectors ¢(s) are time-like future oriented vectors. In this case, the
curve F(c(s)) in My is also considered a future oriented time-like curve.

We can now formulate the following result.

Theorem 1. The set My with the metric (1) allows future oriented time-like
loops.

Proof. Consider in My the curve ¢(s) := (0, Ry cos s, Ry sin s,0,In Ra, s), where
s € [0,2x]. This curve is modeling the movement of a point in My (which
moves in space and also in time).

The corresponding moving point

F(c(s)) :== (0, Ry cos s, Ry sins,0,In Ry - cos s,In Ry - sin )

in M has also a movement in space (for the second and the third coordinates)
and a movement in time (for the fifth and the sixth coordinates).
We assume that Ro > 1, so % > 0 and we can choose Rq such that

0< R < %. Therefore R < n” R2 so R?R? < In® Ry and we obtain that

RS
—R2R% +1n? Ry > 0.
The velocity vector of ¢(s) is

é(s) = (0, —Rysins, Ry cos s,0,0,1) = (27,01, 02,03, 0%, 0%),
therefore
d3?(é(s), é(s)) = gijv'v? = g1 (v1)? + g22(v*)” + g55(v°)* =
= —e? 2 (R26in% s + R2cos?s) + In? Ry = —R?R2 +In* Ry > 0,

hence ¢(s) is a time-like vector.
Moreover,

d3?(8,¢(s)) = gije'v! = gsse®v® =1n® Ry > 0,
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and consequently ¢(s) is a future oriented time-like vector.

The points ¢(0) = (0, R1,0,0,In R2,0) and ¢(27) = (0, R1,0,0,In Ry, 27)
are connected in My by the future oriented time-like curve ¢(s). But they
have the same image in M, that is the point A(0, R;,0,0,In R2,0) € M,
because F(¢(0)) = F(c(2m)) = (0, R1,0,0,1n Ro,0). We obtain that the image
in M; of the curve c(s), which is also a future oriented time-like curve, starts
from A = F(c(0)) and it is returning to the same point A = F(c¢(27)) when
s € [0,27], so it is a future oriented time-like loop in Mj. O

Consequence 1. The coordinates x* and z° in My with the metric (1) are
not proper time coordinates.

Proof. We use the time-like loop F(c(s)) C M;, constructed in the proof
of Theorem 1. The curve F(c(s)),s € [0,2n] is a future oriented time-like
curve startig with the point A = F(¢(0)), so each point of the time-like curve
F(c(s)) (with s € (0,2n]) is an event in the future of the initial event A.
Because A = F(c(27)), we obtain that the point A is in the future of A, that
is impossible. The time coordinates involved in this situation are z* and x°,
therefore they are not proper time coordinates. O

Consider now the following

Remark 1. Let t1,t5 € R and choose Ry, Ry > 0 such that Ry, > 1 and
0< R < % (like in the proof of theorem 1). For Ry big enough we have
that both inequalities

2
to —t1
( o > —R’R:24+1n*Ry >0 (3)

to —ty

o+ In*Ry >0 (4)

hold.
We can now formulate

Theorem 2. Consider t1,to € R and Ry > 0, Re > 1 satisfying relations (3)
and (4).

Any two points Ay, and Ai,, which are images in My respectively of the
points (t1, R1,0,0,1n Ry, 0) and (t2, R1,0,0,In Ry, 27) in My can be connected
in My by a future oriented time-like curve such that A, is in the future of

Ay,

Proof. Let By, and B, be the two points in M, having the coordinates
(t1,R1,0,0,1ln Ry,0) and (t2, R1,0,0,1n Ry, 27), respectively.
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Consider now the curve

ta — 11

v(s) = (t1 + -8, Ry cos s, Ry sin s7O,lnR2,s> ,

connecting in My the points B, = v(0) and By, = v(2m).
The tangent vector of y(s) is

to — 1
A(s) = ( 2%_ 1,—R1 sin s, Ry cos s, 0,0, 1) = (%0, 02, 03 0t V0.

We have that along the curve (s) the tangent vector satisfies

d3*(5(s), ¥(s)) = gijv'v? = goo(v°)* + g11(v")* + g22(v*)* + g55(v°)* =

2

to —t

:eo~(22 1) — 2 B2 (R26in? 5 4 R? cos? s) + In® Ry =
™

ty—t1\°
:(2W>—ﬁﬁ+W&>m

and, moreover,

d§2(é(s)’ Y(s)) = gijeivj = gooe"v” + gs5e”v° =

to—t
=2 1 i n?Ry >0,
2T

therefore v(s) is a future oriented time-like curve in M.
The image of y(s) in M is

to —ty

Fer(s) = {1+

-8, Ry coss, Rysins,0,In Ry - cos s, In Ry - sin 3) ,

s € [0, 27], connecting in M; the points
Atl = F(Btl) = F(W(O)) = (tllevovovlnR%O)

and
A, = F(By,) = F(v(2m)) = (t2, R1,0,0,1n Ry, 0).

The curve F((s)) is a future oriented time-like curve in Mj, because it
is the image of the future oriented time-like curve y(s) in M, therefore the
event A, is in the future of Ay,. O

Using Theorem 2, we can prove the following result
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Theorem 3. The set My with the metric (1) allows closed chains of future
oriented time-like curves.

Proof. Consider tq,t2,t3 € R and let Ry, Ry > 0 such that Ry > 1 and 0 <
Ry < %. For Rs big enough we have that the inequalities

2
bt RR2 PR, >0
LBl 2R, >0
2w
hold, for any (i, ) € {(1,2),(2,3),(3,1)}.
Using the idea in the proof of Theorem 2, we consider in M5 the following
future oriented time-like curves:

to — 1t
afs) = <t1+ 22 ! -s,Rlcoss,Rlsins,O,lnRg,s>7
iy
i3 —t2 .
B(s) = |ta + 5 -5, Ry coss, Rysins,0,In Ry, s |,
7T
i1 — 13 .
v(s) = (t3+ 5 -8, Ricoss, Rysins,0,ln Ry, s |,
T
with s € [0, 27].

Their images in M; are the curves

Fla(s)) = <t1 plh

2T

ts — to
2

-8, Ry coss, Rysins,0,In Ry - coss,In Ry - sin s) ,

F(3(e) = (12 +

-8, R coss, Rysins,0,In Ry - cos s, In Ry - sin s) ,

t —
F(y(s)) = <t3 + 12 3. s, Ricos s, Ry sins,0,ln Ry - cos s, In Ry - sin 5) ,
™

with s € [0,27], which are future oriented time-like curves in Mj.
We see that

F(O[(O)) = F(/Y(27T)) (t17R17O7071nR270)u
(6(0)) :F( ( ) (t27R1507071nR230)a
(v(0)) = F(B(27)) = (t3,R1,0,0,1In Ro,0).
Therefore this curves are connecting in M; the points:

F(a(0)) and F(a(2m)) = F(5(0)), F(5(0)) and F(5(2m)) = F(7(0)), F(v(0))
and F(v(2m)) = F(a(0)), therefore we obtain in M; a closed chain of future

oriented time-like curves (the concatenation of the curves a(s), 5(s),v(s), with
s € [0, 27]).
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We can now formulate

Consequence 2. The coordinates x°, 2* and z° in My with the metric (1)
are not proper time coordinates.

Proof. We see from the proof of Theorem 3 that the event Fy = F(«(27))
is in the future of the event E; = F(«(0)), the event E3 = F(B(27)) is in
the future of Fy = F(£(0)) and the event E; = F(y(27)) is in the future of
E5 = F(v(0)). We obtain that the event Fj is in its own future, which is not
possible for proper time coordinates.

The coordinates involved in this situation are z°, z* and z°, so they cannot
be proper time coordinates. O

0

Remark 2. We have that My with the metric (1) is modeling a Friedmann
LemaitreRobertson Walker (FLRW) expanding universe. Using the above re-
sults, we obtain that My is a timeless FLRW universe.

If we restrict the set M; = RS for 20 = 2° = 0, the metric (1) becomes a
four-dimensional FLRW physical expanding universe, where the time exists:

ds? = (dz*)? — 2" [(da)? + (da?)? + (da®)?] . (5)

In this universe representing the region 0 x R* x 0 of M; = RS, the coordi-
nate z* is a proper time coordinate and the spatial component of the metric
is time dependent.

This special region is in fact a physical four-dimensional spacetime of
FLRW type, where the classical time exists and the expansion of the space is
given by a scale factor depending on this physical time. The scale factor of
this FLRM universe has a positive second derivative, therefore the expansion
of this universe is accelerating.

Similarly, we obtain a four-dimensional FLRW-universe in the region of
M; = RS where 2° = z* = 0:

ds® = (d2®) — 1 [(da")? + (da®)? + (d2®)?] . (6)

5

Here, z° is a proper time coordinate.

3 Conclusions

In this paper, we constructed a six-dimensional timeless FLRW universe,
demonstrating that it contains a four-dimensional FLRW spacetime which
may be our physical universe. This theoretical model offers a new perspective
on the nature of time and the underlying structure of the physical universe,
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providing the idea that our universe may be embedded in a higher-dimensional
universe.

We proved that a six-dimensional FLRW-like metric can provide a con-
sistent framework for a four-dimensional FLRW physical expanding universe.
This model challenges traditional cosmology by suggesting that the observable
dynamics may be projections of a higher-dimensional geometry. The absence
of the proper time coordinates in the six-dimensional universe raises more
questions about the origin of temporal flow in our universe. The possibility
that our universe is a region of a larger timeless reality invites us to reconsider
the conventional cosmological theories and provides a useful starting point for
future research.
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