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A mathematical note about a FLRW universe
embedded in a universe without time

Cristina Sburlan

Abstract

In this paper we propose to study a six-dimensional Friedmann-
Lemâıtre-Robertson-Walker (FLRW) universe without time. The way
we study this timeless universe is the classic one: we highlight future
oriented time-like loops and closed chains of future oriented time-like
curves. Inside this six-dimensional FLRW universe it is embedded a
four-dimensional classical FLRW universe.

1 Introduction

In this article we obtain an example of a FriedmannLemâıtreRobertson Walker
(FLRW) six-dimensional expanding universe that is timeless according to
Gödel’s meaning (see [5]).

There is a series of articles published by W.G. Boskoff (see [1], [2], [3]) re-
lated to timeless universes. In [3], a family of timeless universes is constructed.
This model has led us to consider the possibility of a six-dimensional timeless
universe containing a four-dimensional FLRW physical universe, where the
time exists.

The four-dimensional spacetime is studied in special and general relativity,
and theoretical models for the physical expanding universe are described (see
[4], [7]), while the importance of the FLRW metrics to model our universe is
highlighted (see [6]).

Key Words: Einstein’s field equations, FLRW universe, expanding universe, timeless
universe.
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The concept of a timeless six-dimensional universe housing our expanding
four-dimensional reality represents a different approach from the conventional
cosmology (see [8]). While the mathematical framework presented here demon-
strates that it is theoretically feasible, one possible implication is that the time
of our universe is arising from a higher-dimensional structure.

2 Main result: A six-dimensional timeless FLRW uni-
verse containing a four-dimensional FLRW physical
universe

We first consider a six-dimensional metric on a set. Using an appropriate
change of coordinates, we can transfer the metric to another set and obtain a
new six-dimensional metric satisfying Einstein’s field equations, describing a
FLRW expanding universe.

Consider the metric

ds2 = ex
3

(dx0)2 − e2
√

(x4)2+(x5)2 ·
[
(dx1)2 + (dx2)2 + (dx3)2

]
+

+(dx4)2 + (dx5)2 (1)

on M1 = R6 and, in order to simplify the computations, we apply to this
metric the following change of coordinates

F1 :



x0 = t,
x1 = x
x2 = y
x3 = z
x4 = r cos θ
x5 = r sin θ,

where t, x, y, z, θ ∈ R, r ∈ (0,∞).
Therefore, we obtain the following metric connected with (1) through the

above transformation

ds̃2 = ezdt2 − e2r(dx2 + dy2 + dz2) + dr2 + r2dθ2 (2)

on the set M2 = R4 × (0,∞)×R described by the coordinates (t, x, y, z, r, θ).
Denoting (t, x, y, z, r, θ) := (y0, y1, y2, y3, y4, y5), the metric (2) becomes

ds̃2 = ey
3

(dy0)2 − e2y
4

·
[
(dy1)2 + (dy2)2 + (dy3)2

]
+ (dy4)2 + (y4)2(dy5)2.

So, the nonzero components gij of this metric tensor are

g00 = ey
3

, g11 = g22 = g33 = −e2y
4

, g44 = 1, g55 = (y4)2.
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We compute the Christoffel symbols for metric (2) and they are

Γ0
03 = Γ0

30 =
1

2
; Γ3

00 =
1

2
ey

3−2y4 ;

Γ1
14 = Γ1

41 = Γ2
24 = Γ2

42 = Γ3
34 = Γ3

43 = 1;

Γ4
11 = Γ4

22 = Γ4
33 = e2y

4

;

Γ4
55 = −y4;

Γ5
45 = Γ5

54 =
1

y4
.

All the other Christoffel symbols are zero.
Therefore, the components Rij of the Ricci tensor for metric (2) are

R00 =
1

4
ey

3−2y4 ;

R11 = R22 = 3e2y
4

+
e2y

4

y4
;

R33 = 3e2y
4

+
e2y

4

y4
− 1

4
;

R34 = R43 =
1

2
;

R44 = −3;

R55 = −3y4.

All the other components Rij of the Ricci tensor are zero.
So, we obtain that the Ricci scalar curvature is

R =
e−2y

4

2
− 6

y4
− 12.

Therefore, the Einstein’s field equations

Rij −
1

2
Rgij = 8πGTij ,

are verified for the stress-energy tensor Tij = 1
8πG T̃ij , where G is the gravita-

tional constant and

T̃00 =
3ey

3

(1 + 2y4)

y4
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T̃11 = T̃22 =
1

4
− e2y

4

(2 + 3y4)

y4

T̃33 = −e
2y4(2 + 3y4)

y4

T̃44 =
12(y4 + 1)− y4e−2y4

4y4

T̃55 =
(y4)2(24− e−2y4)

4

T̃34 = T̃43 =
1

2

and the rest of T̃ij are zero.
The coordinates (x, y, z) from the second metric completely determine the

coordinates (x1, x2, x3) from the first metric. The coordinate t from the second
metric completely determines the coordinate x0 from the first metric. The
coordinates (r, θ) from the second metric completely determine the coordinates
(x4, x5) from the first metric.

The nature of this coordinates, time type or space type, will be settled
defining the orientation of M2. We will define the orientation such that x, y, z
are space type coordinates and t, r, θ are time type coordinates in M2 (and,
corresponding to them, x1, x2, x3 are space type coordinates and x0, x4, x5

are time type coordinates in M1). The orientation will be defined following
Gödel’s model.

The vectors in the tangent spaces of M2 can be split in three types of
vectors: time-like, space-like and light-like vectors.

A vector u = (u0, u1, u2, u3, u4, u5) of a tangent space of M2 is a time-like
vector if ds̃2(u, u) = giju

iuj > 0, it is a space-like vector if ds̃2(u, u) < 0 or it
is a light-like vector if ds̃2(u, u) = 0.

We see that considering the vectors

e0 := (1, 0, 0, 0, 0, 0), e4 := (0, 0, 0, 0, 1, 0), e5 := (0, 0, 0, 0, 0, 1),

we have that ds̃2(e0, e0) = ez > 0, ds̃2(e4, e4) = 1 > 0, ds̃2(e5, e5) = r2 > 0,
so the vectors e0, e4, e5 are time-like and considering the vectors

e1 := (0, 1, 0, 0, 0, 0), e2 := (0, 0, 1, 0, 0, 0), e3 := (0, 0, 0, 1, 0, 0),

we have that ds̃2(e1, e1) = −e2r < 0, ds̃2(e2, e2) = −e2r < 0, ds̃2(e3, e3) =
−e2r < 0, so the vectors e1, e2, e3 are space-like.
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Therefore the coordinates t, r, θ are time type and the coordinates x, y, z
are space type in M2 (and, consequently, x0, x4, x5 are time type coordinates
and x1, x2, x3 are space type coordinates in M1).

The vector ẽ = (e0, e1, e2, e3, e4, e5) = (1, 0, 0, 0, 1, 1) is time-like because
ds̃2(ẽ, ẽ) = ez + 1 + r2 > 0. We choose this vector to establish the future
oriented time-like vectors.

We say that a time-like vector u = (u0, u1, u2, u3, u4, u5) is future oriented
if ds̃2(ẽ, u) = gije

iuj > 0 and it is past oriented if ds̃2(ẽ, u) = gije
iuj < 0. If

a time-like vector u is future oriented, then the vector −u is a time-like past
oriented vector.

We say that a curve c(s) in M2 is a time-like future oriented curve if all
its tangent vectors ċ(s) are time-like future oriented vectors. In this case, the
curve F (c(s)) in M1 is also considered a future oriented time-like curve.

We can now formulate the following result.

Theorem 1. The set M1 with the metric (1) allows future oriented time-like
loops.

Proof. Consider in M2 the curve c(s) := (0, R1 cos s,R1 sin s, 0, lnR2, s), where
s ∈ [0, 2π]. This curve is modeling the movement of a point in M2 (which
moves in space and also in time).

The corresponding moving point

F (c(s)) := (0, R1 cos s,R1 sin s, 0, lnR2 · cos s, lnR2 · sin s)

in M1 has also a movement in space (for the second and the third coordinates)
and a movement in time (for the fifth and the sixth coordinates).

We assume that R2 > 1, so lnR2

R2
> 0 and we can choose R1 such that

0 < R1 <
lnR2

R2
. Therefore R2

1 <
ln2 R2

R2
2

, so R2
1R

2
2 < ln2R2 and we obtain that

−R2
1R

2
2 + ln2R2 > 0.

The velocity vector of c(s) is

ċ(s) = (0,−R1 sin s,R1 cos s, 0, 0, 1) = (v0, v1, v2, v3, v4, v5),

therefore

ds̃2(ċ(s), ċ(s)) = gijv
ivj = g11(v1)2 + g22(v2)2 + g55(v5)2 =

= −e2 lnR2(R2
1 sin2 s+R2

1 cos2 s) + ln2R2 = −R2
1R

2
2 + ln2R2 > 0,

hence ċ(s) is a time-like vector.
Moreover,

ds̃2(ẽ, ċ(s)) = gije
ivj = g55e

5v5 = ln2R2 > 0,
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and consequently ċ(s) is a future oriented time-like vector.
The points c(0) = (0, R1, 0, 0, lnR2, 0) and c(2π) = (0, R1, 0, 0, lnR2, 2π)

are connected in M2 by the future oriented time-like curve c(s). But they
have the same image in M1, that is the point A(0, R1, 0, 0, lnR2, 0) ∈ M1,
because F (c(0)) = F (c(2π)) = (0, R1, 0, 0, lnR2, 0). We obtain that the image
in M1 of the curve c(s), which is also a future oriented time-like curve, starts
from A = F (c(0)) and it is returning to the same point A = F (c(2π)) when
s ∈ [0, 2π], so it is a future oriented time-like loop in M1.

Consequence 1. The coordinates x4 and x5 in M1 with the metric (1) are
not proper time coordinates.

Proof. We use the time-like loop F (c(s)) ⊂ M1, constructed in the proof
of Theorem 1. The curve F (c(s)), s ∈ [0, 2π] is a future oriented time-like
curve startig with the point A = F (c(0)), so each point of the time-like curve
F (c(s)) (with s ∈ (0, 2π]) is an event in the future of the initial event A.
Because A = F (c(2π)), we obtain that the point A is in the future of A, that
is impossible. The time coordinates involved in this situation are x4 and x5,
therefore they are not proper time coordinates.

Consider now the following

Remark 1. Let t1, t2 ∈ R and choose R1, R2 > 0 such that R2 > 1 and
0 < R1 <

lnR2

R2
(like in the proof of theorem 1). For R2 big enough we have

that both inequalities(
t2 − t1

2π

)2

−R2
1R

2
2 + ln2R2 > 0 (3)

t2 − t1
2π

+ ln2R2 > 0 (4)

hold.

We can now formulate

Theorem 2. Consider t1, t2 ∈ R and R1 > 0, R2 > 1 satisfying relations (3)
and (4).

Any two points At1 and At2 , which are images in M1 respectively of the
points (t1, R1, 0, 0, lnR2, 0) and (t2, R1, 0, 0, lnR2, 2π) in M2 can be connected
in M1 by a future oriented time-like curve such that At2 is in the future of
At1 .

Proof. Let Bt1 and Bt2 be the two points in M2 having the coordinates
(t1, R1, 0, 0, lnR2, 0) and (t2, R1, 0, 0, lnR2, 2π), respectively.
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Consider now the curve

γ(s) =

(
t1 +

t2 − t1
2π

· s,R1 cos s,R1 sin s, 0, lnR2, s

)
,

connecting in M2 the points Bt1 = γ(0) and Bt2 = γ(2π).
The tangent vector of γ(s) is

γ̇(s) =

(
t2 − t1

2π
,−R1 sin s,R1 cos s, 0, 0, 1

)
= (v0, v1, v2, v3, v4, v5).

We have that along the curve γ(s) the tangent vector satisfies

ds̃2(γ̇(s), γ̇(s)) = gijv
ivj = g00(v0)2 + g11(v1)2 + g22(v2)2 + g55(v5)2 =

= e0 ·
(
t2 − t1

2π

)2

− e2 lnR2(R2
1 sin2 s+R2

1 cos2 s) + ln2R2 =

=

(
t2 − t1

2π

)2

−R2
1R

2
2 + ln2R2 > 0,

and, moreover,

ds̃2(ẽ(s), γ̇(s)) = gije
ivj = g00e

0v0 + g55e
5v5 =

=
t2 − t1

2π
+ ln2R2 > 0,

therefore γ(s) is a future oriented time-like curve in M2.
The image of γ(s) in M1 is

F (γ(s)) =

(
t1 +

t2 − t1
2π

· s,R1 cos s,R1 sin s, 0, lnR2 · cos s, lnR2 · sin s
)
,

s ∈ [0, 2π], connecting in M1 the points

At1 = F (Bt1) = F (γ(0)) = (t1, R1, 0, 0, lnR2, 0)

and
At2 = F (Bt2) = F (γ(2π)) = (t2, R1, 0, 0, lnR2, 0).

The curve F (γ(s)) is a future oriented time-like curve in M1, because it
is the image of the future oriented time-like curve γ(s) in M1, therefore the
event At2 is in the future of At1 .

Using Theorem 2, we can prove the following result



ABOUT A FLRW UNIVERSE EMBEDDED IN A
UNIVERSE WITHOUT TIME 142

Theorem 3. The set M1 with the metric (1) allows closed chains of future
oriented time-like curves.

Proof. Consider t1, t2, t3 ∈ R and let R1, R2 > 0 such that R2 > 1 and 0 <
R1 <

lnR2

R2
. For R2 big enough we have that the inequalities(

tj − ti
2π

)2

−R2
1R

2
2 + ln2R2 > 0

tj − ti
2π

+ ln2R2 > 0

hold, for any (i, j) ∈ {(1, 2), (2, 3), (3, 1)}.
Using the idea in the proof of Theorem 2, we consider in M2 the following

future oriented time-like curves:

α(s) =

(
t1 +

t2 − t1
2π

· s,R1 cos s,R1 sin s, 0, lnR2, s

)
,

β(s) =

(
t2 +

t3 − t2
2π

· s,R1 cos s,R1 sin s, 0, lnR2, s

)
,

γ(s) =

(
t3 +

t1 − t3
2π

· s,R1 cos s,R1 sin s, 0, lnR2, s

)
,

with s ∈ [0, 2π].
Their images in M1 are the curves

F (α(s)) =

(
t1 +

t2 − t1
2π

· s,R1 cos s,R1 sin s, 0, lnR2 · cos s, lnR2 · sin s
)
,

F (β(s)) =

(
t2 +

t3 − t2
2π

· s,R1 cos s,R1 sin s, 0, lnR2 · cos s, lnR2 · sin s
)
,

F (γ(s)) =

(
t3 +

t1 − t3
2π

· s,R1 cos s,R1 sin s, 0, lnR2 · cos s, lnR2 · sin s
)
,

with s ∈ [0, 2π], which are future oriented time-like curves in M1.
We see that

F (α(0)) = F (γ(2π)) = (t1, R1, 0, 0, lnR2, 0),

F (β(0)) = F (α(2π)) = (t2, R1, 0, 0, lnR2, 0),

F (γ(0)) = F (β(2π)) = (t3, R1, 0, 0, lnR2, 0).

Therefore this curves are connecting in M1 the points:
F (α(0)) and F (α(2π)) = F (β(0)), F (β(0)) and F (β(2π)) = F (γ(0)), F (γ(0))
and F (γ(2π)) = F (α(0)), therefore we obtain in M1 a closed chain of future
oriented time-like curves (the concatenation of the curves α(s), β(s), γ(s), with
s ∈ [0, 2π]).
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We can now formulate

Consequence 2. The coordinates x0, x4 and x5 in M1 with the metric (1)
are not proper time coordinates.

Proof. We see from the proof of Theorem 3 that the event E2 = F (α(2π))
is in the future of the event E1 = F (α(0)), the event E3 = F (β(2π)) is in
the future of E2 = F (β(0)) and the event E1 = F (γ(2π)) is in the future of
E3 = F (γ(0)). We obtain that the event E1 is in its own future, which is not
possible for proper time coordinates.

The coordinates involved in this situation are x0, x4 and x5, so they cannot
be proper time coordinates.

Remark 2. We have that M1 with the metric (1) is modeling a Friedmann
LemâıtreRobertsonWalker (FLRW) expanding universe. Using the above re-
sults, we obtain that M1 is a timeless FLRW universe.

If we restrict the set M1 = R6 for x0 = x5 = 0, the metric (1) becomes a
four-dimensional FLRW physical expanding universe, where the time exists:

ds2 = (dx4)2 − e2|x
4| ·
[
(dx1)2 + (dx2)2 + (dx3)2

]
. (5)

In this universe representing the region 0×R4× 0 of M1 = R6, the coordi-
nate x4 is a proper time coordinate and the spatial component of the metric
is time dependent.

This special region is in fact a physical four-dimensional spacetime of
FLRW type, where the classical time exists and the expansion of the space is
given by a scale factor depending on this physical time. The scale factor of
this FLRM universe has a positive second derivative, therefore the expansion
of this universe is accelerating.

Similarly, we obtain a four-dimensional FLRW-universe in the region of
M1 = R6 where x0 = x4 = 0:

ds2 = (dx5)2 − e2|x
5| ·
[
(dx1)2 + (dx2)2 + (dx3)2

]
. (6)

Here, x5 is a proper time coordinate.

3 Conclusions

In this paper, we constructed a six-dimensional timeless FLRW universe,
demonstrating that it contains a four-dimensional FLRW spacetime which
may be our physical universe. This theoretical model offers a new perspective
on the nature of time and the underlying structure of the physical universe,
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providing the idea that our universe may be embedded in a higher-dimensional
universe.

We proved that a six-dimensional FLRW-like metric can provide a con-
sistent framework for a four-dimensional FLRW physical expanding universe.
This model challenges traditional cosmology by suggesting that the observable
dynamics may be projections of a higher-dimensional geometry. The absence
of the proper time coordinates in the six-dimensional universe raises more
questions about the origin of temporal flow in our universe. The possibility
that our universe is a region of a larger timeless reality invites us to reconsider
the conventional cosmological theories and provides a useful starting point for
future research.
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