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Abstract

The Steiner distance of a subset of vertices in a graph is the minimum
size among all the connected subgraphs containing this subset. This pa-
per focuses on the study of Steiner distances in both generalized vertex
corona (GVC) and generalized edge corona (GEC) products, and the
relationship with their corresponding center and outer graphs. Particu-
larly, we show how Steiner distances in GEC products can be computed
from those ones in GVC products, and we also establish sharp bounds
for their Steiner numbers, eccentricities, radii, diameters and k-Wiener
indices. In this way, we extend some known results on corona products.

1 Introduction and preliminaries

This paper deals with finite, simple and undirected graphs. We denote re-
spectively by V(G) and E(G) the set of vertices and the set of edges of any
graph G, so that each pair of adjacent vertices u,v € V(G) gives rise to the
edge uv € E(G). In 1989, Chartrand et al. [3] introduced the Steiner distance
da(S) of a non-empty subset of vertices S C V(G) as the minimum size among
all connected subgraphs of G containing S. Any such a subgraph of minimum
size is necessarily a tree, which is termed Steiner S-tree [12, 17].

If |S| = 2, then the Steiner distance coincides with the classical geodetic
distance. More generally, dg(S) > |S| — 1. If the equality holds, then it is
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said that the vertices of S induce a Steiner tree in G. Furthermore, if H is a
connected spanning subgraph of G, then dg(S) < dg(S). Finally, a Steiner
set of G is any subset S C V(@) such that every vertex in G is contained in
a Steiner S-tree. The minimum cardinality of any such a set is the Steiner
number s(Q).

Let k € {2,...,|V(G)|} be a positive integer. The Steiner k-eccentricity of
a vertex v € V(Q) is defined as

ecck (v, G) :== Seg,lc%ff,c) da(S),

where 8;(G) denotes the set of k-subsets S C V(G) such that v € S. If
k < |V(G)|, then

k —1 < eccy(v,G) < eccpy1(v,G) < ecepyay (v, G) = [V(G)|[-1. (1)

The Steiner k-radius srad,(G) and the Steiner k-diameter sdiamy (G) are re-
spectively defined as the minimum and maximum Steiner k-eccentricity for
every vertex v € V(G). If k = 2, then all the previous parameters coincide
respectively with the classical eccentricities, radius and diameter of G.

The problem of computing the Steiner distance of a graph is NP-hard
[14]. This problem has relevant applications in designing communication and
electrical networks [4, 8, 22], and also in chemical graph theory [10, 20]. In
this last regard, the Steiner k- Wiener index [18] of the graph G,

SWi(G) =Y da(9),
SCV(G)
1S|=k

is a natural generalization of the classical Wiener index, which arises for k = 2.
These applications have brought about the study of Steiner distances for dif-
ferent families of graphs. (See [20] for a comprehensive survey on this issue.)
Of particular interest for the aims of this paper, we remark those studies deal-
ing with Steiner distances in graph products, and the relationship with their
components. In this regard, one may found some results on tensor [2], lexico-
graphic [1, 21], join, Cartesian, vertex corona [24] and edge corona products
[21, 23]. This paper delves into this topic by dealing with Steiner distances of
generalized vertex corona products and generalized edge corona products.

Recall here that the corona product [7] G @ H of a center graph G and an
outer graph H is the graph obtained from G and a set {H(v): v € V(G)}
formed by |V(G)| vertex-disjoint copies of H so that every vertex in H(v) is
adjacent to v.

Steiner distances in G ® H do not depend on the topology of H. In this
regard, the following theorem was proven in [23, Theorem 4.1] for k-subsets
S CV(G® H), with k > 2, but it also holds readily for geodetic distances.
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Theorem 1. [25] It is verified that
doon(S) = da(S) + S| — 1SN V(G
where S := {v € V(G): SN (V(H(v))U{v}) # 0}.
The Steiner number of a corona product is established in the next result.
Proposition 2. [24, Proposition 2.4] It is verified that

s(GOH) = V(G- [V(H)|.

The next result describes the Steiner k-diameter of a corona product GOH.
It was proved in [23, Proposition 4.1] for the case k > 2, but it also holds
readily for geodetic distances.

Proposition 3. [23] It is verified that

sdiamg (G © H) = sdiammin {x, ‘v(g)‘}(G) + min{k, |V(GQ)|- |V(H)|}

Finally, the following theorem establishes the Steiner k-Wiener index of a
corona product G ® H.

Theorem 4. [21, Theorem 2.9] It is verified that

SWi(G © H) f: <m“) g <m$ 1) - SW(G)+

<k—1> (k=1)+ <k> k-

(s (n) ) em= () o)
i£]

where Zf:l ri =k, r; > 1, and x and each x; are, respectively, the number of
k- and rj-subsets S C V(H) whose vertices induce a Steiner tree in H.

+n- +

+
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A first main aim of this paper is to generalize all the previous results for
generalized vertex corona products, and also to describe their relationship with
the corresponding Steiner parameters for generalized edge corona products.
Recall here that Daykin et al. [5] generalized the corona product G ® H by
replacing each copy H(v) by the graph H, of an ordered set of vertex-disjoint
graphs

H:= {Hvl,. .. ’H'U\V(G)\} ,

where V(G) = {v1,...,vv(g)}. The resulting graph is the generalized vertex
corona product G ® H. We say that this product is degenerate if the ordered
set H contains the order-zero graph K, among its components. Otherwise, it
is non-degenerate. By abuse of notation, we assume that H is itself a graph.
From here on, we term GVC product to any degenerate or non-degenerate
generalized vertex corona product. Thus, for instance, Figure 1 (left) illus-
trates the GVC product having the complete graph K3 as center, and the
complete graphs K; and K5, and the path P; as outer graphs. Here, and in
the subsequent figures, we highlight with dashed lines those edges joining the
corresponding center and outer graphs.

s / > -
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Ul\ ()] \1/
[ [

K3 ®{Ky, Ky, P} K0 {Ki. Ko, Py}

Figure 1: Examples of GVC and GEC products.

In 2010, Hou and Shiu [13] defined the edge corona product G o H of a
center graph G and an outer graph H as the graph resulting from G and a set
{H(e): e € E(GQ)} formed by |E(G)| vertex-disjoint copies of H so that every
vertex in H (e) is adjacent to both vertices in e. Luo and Yan [19] generalized
this product by replacing each copy H(e) by the graph H. of an ordered set
of vertex-disjoint graphs

H:={He,, ..., Hepio, )

where E(G) = {e1,...,¢g@)}- The resulting graph is the generalized edge
corona product denoted by G ¢ .
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Thus, for instance, Figure 1 (right) illustrates the GEC product K3 ¢
{Ki, K3, P;}. Similarly to GVC products, we say that the graph G o H is
degenerate if the ordered set H contains the order-zero graph Ky among its
components. Otherwise, it is non-degenerate. By abuse of notation, we assume
that J is itself a graph. In addition, we term GEC product to any degenerate
or non-degenerate generalized edge corona product.

In recent years, (generalized) corona products have attracted considerable
attention because they constitute the topological structure of some commu-
nication and distribution networks [6, 9, 11, 15]. Nevertheless, to the best of
authors’ knowledge, even if one may find in the literature some results con-
cerning Steiner distances in corona products [16, 23, 24], no result exists on
Steiner distances in GVC or GEC products. This paper delves into this last
topic as follows. Steiner distances in GVC products are studied in Section
2. Particularly, we extend to GVC products all the known results on Steiner
distances of corona products that we have enumerated in this introductory
section. In addition, we establish some sharp bounds for Steiner eccentricities
and Steiner radii of GVC products, which have not previously been studied
even for corona products. Exact values of all these parameters are described
for non-degenerate GVC products. Finally, Section 3 deals with the study
of Steiner distances in GEC products. To this end, we first show how the
computation of Steiner distances in GEC products derives from that of GVC
products. Then, we establish some sharp bounds on the same Steiner param-
eters previously considered.

2 Steiner distances in GVC products

In this section, we extend to GVC products those known results on Steiner dis-
tances of corona products that we have mentioned in the introductory section.
That is, Theorems 1 and 4, and Propositions 2 and 3. In addition, we study
Steiner eccentricities and Steiner radii of GVC products, which, to the best
knowledge of the authors, have not previously been studied in the literature.

Let G @ H be a GVC product. For each vertex v € V(G @ H), we define
the vertex v € V(G) as follows.

S if v e V(Q),
| w, ifveV(H,) for some u € V(G).

Then, for each non-empty subset S C V(G ® H), we also define the subset
S:={0: ve S} CV(Q).

The next lemma generalizes Theorem 1.
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Lemma 5. If S C V(H,) for some v € V(G), then
daos(S) = min{dg, (5), |S]}.

Otherwise, _
dc@}((S) = dG(S) + |S n V(j‘f)‘

Proof. First, we assume that S C V(H,) for some v € V(G). If the vertices of
S induce a Steiner tree in H,,, then dgesc(S) = du, (S) = |S| — 1. Otherwise,
the star graph having the vertex v as center and the vertices of S as pendant
vertices constitutes a Steiner S-tree in G ® H of size |S].

_ Now, under the assumption of the second statement, let T' be a Steiner
S-tree in G. Then, the graph resulting after adding to T" all the pendant edges
vu, with v € S and v € SNV (H,), is a Steiner S-tree in G ® H of size
da(S) + SNV (H). O

Based on the previous lemma, the following result establishes lower and
upper bounds on the Steiner number of any GVC product. It constitutes a
natural generalization of Proposition 2.

Proposition 6. We have

—_~—

V(I < s(GoXH) <[V(H)|+ [V(G)| = [V(FH)]-

Particularly, if the GVC product G ® H is non-degenerate, then s(G ® H) =
V30l

Proof. The lower bound holds because, according to the constructive proof of
Lemma 5, every Steiner set of the graph G ® H must contain all the vertices in

—_~—

V(H). Then, the upper bound holds because any vertex in V (H) is superfluous
in the description of a Steiner S-set of G ® H. Finally, the consequence holds

because, if the GVC product G ® K is non-degenerate, then V(H) = V(G),
and hence, both lower and upper bounds coincide. O

Both bounds in Proposition 6 are sharp. Thus, for instance, we highlight
with black triangles A in Figure 2 all the vertices of a Steiner set S in both
GVC products P3 ® {K;, Ko, K2} and Ps ® {Ky, K1 UKy, Kp}. In addition,
we highlight with blue color all the edges of a pair of related Steiner S-trees.
Particularly,

5 (Ps © {K1, Ko, Ka}) = |V ({K1, Ko, Ka2})| =3
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and

s (P30 {Ko, K1 UK, Ko}) = o
= |V({Ko, K1 UKy, Ko})| + |V (P3)] — |V({Ko, K1 UK, Ko})| =

Z34+3-1=5.
A A—A A r—A
/ \ \ s
/ \ 7 N\, 7
A v a
U1 V2 U3 U1 Vo U3
P30 {Ky, Ky, Ko} Py {Ko, K1 U Ky, Ko}

Figure 2: Steiner sets related to minimum and maximum Steiner numbers.

From now on, let k € {2,...,|V(G ® H)|} be a positive integer. The next
result establishes a relationship among Steiner k-eccentricities in the center
graph G and the outer graph H.

Proposition 7. Ifv € V(G ® H), then
ecc (v, G © H) < ecci(v, G © K).

Proof. The inequality holds readily for v = v. Thus, we focus on the case
v € V(H). Let S € 8(v, G®H) be such that dgegc(S) = ecc, (v, GO KH). If
v € 5, then S € 8§ (v, G ® H), and hence, ecci(v, G ©® H) < ecci(v, G ® H).
Otherwise, if v ¢ S then we define 5" := (S\ {v}) U {v} € Sk(v, GO H). If
S' CV(H,), then

ecck (U, GO H) =dges(S) =k —1 < eccx(v, GO XH).

Otherwise, S’ ¢ H,, for any w € V(G). Since SNV (G) # 0 and S = 5’,
Lemma 5 implies that

ecck (v, GO H) = dger(S) = dgos(S") — 1 < ecci(v, G ® H).

O

The following result establishes lower and upper bounds on the Steiner
k-eccentricities of G ® .
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Theorem 8. Ifv € V(G ® H), then

€CCrin{k, ‘V(G)‘}(57 G) < eccg (’U7 Goe j‘f) < €CCrmin{k, |V(G)|} (E, G) + min{kv, |V(j‘f)|}

where k, = k—1if v = v, and k, = k otherwise. The upper bound is
reached whenever there is a set S € Swyingk, |v(c)3 (U, G) such that da(S) =
€CCmin{k, |v(c)|} (U, G) and H, # Ko for allu € S. As a consequence, if G ©H
is non-degenerate, then this upper bound is sharp.

Proof. We claim that

€CCmin{k, ‘v(g)‘}(a, G) < €CCrmin{k, \V(G)l}(i’ G@j‘f) < eccg (5, G@J‘C) < eccg (U, G@g{)

The first inequality holds from the definition of Steiner k-eccentricity, together
with the topology of the GVC product G ® H. The second one follows from
(1). Finally, Proposition 7 implies the third one. Thus, the lower bound holds.

In order to prove the upper bound, let S € 8;(v,G ® H) be such that
daes(S) = ecci(v,G @ H). Since |S| < min{k, |V(G)|}, we have from (1)

that dg(S) < eccminfk, |v(@)} (U, G). Then, the upper bound holds readily
from Lemma 5.

Now, let S C V(G) be a subset satisfying the conditions described in the
hypothesis. For each vertex u € S\ {v}, let w, € V(H,). In addition, we
define wy = v. Then, let 8" C V(H) be a k-subset formed by the |S| vertices
Wy, With u € S, together with any other min{k, |V (H)|} — |S| vertices in
V(H), and k — min{k, |V(H)|} vertices in S. Let T be the Steiner S’-tree in
G © H resulting from adding to a given Steiner S-tree in G all the pendant
edges ww, with w € S’ \ S. Then, the size of T coincides with the upper
bound. O

Both bounds in Theorem 8 are sharp. Thus, for instance, Figure 3 shows
examples for the whole spectrum of Steiner 3-eccentricities of an outer vertex
v9 in the star K7 3 for three distinct GVC products K7 3 ©H, with |V (H)| = 2.
According to Theorem 8, we have

3 = eCCmin{3, 4} (U2, K1,3) < eccz(va, K1 30KH) < ecemings, 43 (U2, K1,3)+min{3, 2} = 5.

In Figure 3, we highlight with a black triangle A all the vertices of the corre-
sponding set S such that dg, .. (S) = ecc3(ve, K13 ® H). In addition, the
edges of the corresponding Steiner S-trees are highlighted with blue colour.



STEINER DISTANCE IN GENERALIZED CORONA PRODUCTS 29

V9 V2
)
~
~
V1, U1,
~
~
A
v V4 V3 V4
eccy(vy, K13) =3 eccs(ve, K130 {2K1, Ko, Ko, Ko}) =3
Vo V2
U1 - — @ U1
AN \ /7
U3 V4 V3 U4
eccs(va, K130 {K1, Ko, Ky, Ko}) =4 eccy(va, K130 {Ko, Ko, K1, K1}) =5

Figure 3: Steiner 3-eccentricities in distinct GVC products.

Based on Theorem 8, we describe a pair of lower and upper bounds on both
the Steiner k-radius and the Steiner k-diameter of the graph G ®H. The lower
bounds only depends on the center graph G, whereas the upper bounds also
depends on the order, but not the topology, of the outer graph H. The bounds
concerning the Steiner k-diameter extends Proposition 3 to GVC products.

Theorem 9. [t is verified that
stadmin(k, |v (@)} (G) < srady (G © H) < sradminx, |v (e} (G) + min{k — 1, [V(F)[}
and

sdiamumin(x, |v(e)} (G) < sdiamg (G @ H) < sdiamumin(k, |v(c)3 (G) + min{k, |V (H)[}.

The first upper bound (respectively, the second one) is reached if there exists
a min{k, |V(G)|}-subset S C V(G) such that dg(S) = sradmingr, |v (e} (G)
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(respectively, dq(S) = sdiamuyin(k, |v(e)3(G)), and H, # Ko for allv € S.
Thus, both upper bounds are reached whenever G ©® H is non-degenerate.

Proof. The result follows readily from Theorem 8 once we take minimum and
maximum values in the lower and upper bounds therein described. Note here
from Proposition 7 that the Steiner k-radius requires to deal with a vertex
v € V(G), so that k, = k — 1 in Theorem 8. O

All the bounds in Theorem 9 are sharp. Thus, for instance, all the Steiner
3-eccentricities of the GVC products K; 3 © H described in Figure 3 refer
indeed to Steiner 3-diameters. For the same graphs, Figure 4 shows the whole
spectrum of Steiner 3-radii. According to Theorem 9, we have

2= sradmin{3,4}(K1,3) S Srads(KLg ® j‘f) S sradmin{3,4}(K173) + min{2, 4} =4.

In Figure 4, we highlight with a black triangle A all the vertices of the corre-
sponding set S € 83(v1, K13 ® H) such that di, ,03¢(S) = sradz (K13 ® H),
and we highlight with blue color the edges of a related Steiner S-tree.
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V2 V2
o
~
~
U1 U1
~
~
A
v V4 V3 V4
Sradg(Kl.g) =2 Sradg(K]‘g O) {2](17 Ky, K, Ko}) =2
Vo V2
V1 —_ (%}
A A A
N\ \ /7
(%) V4 (% V4
sradg(Kl‘;; ® {Kl, [(07 Kl, K()}) =3 Srad3(K1,3 (O] {KU7 KW K17 Kl}) =4

Figure 4: Steiner 3-radius spectrum in distinct GVC products.

We finish this subsection by extending Theorem 4 to GVC products.
Proposition 10. [t is verified that

SWi(GoOH) = ag + Bk

where
oy 1= Z min{dgy, (5), |S|}
SESk(HU)
veV(G)
and

b= % (6@ +150vo0l) - T (gh i)

S€SK(GONH) veS
|S|>1

Proof. The result holds readily from Lemma 5 once we consider all the possi-
bilities of choosing a k-subset of V(G ® H). Thus, oy, refers to those k-subsets
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in each set H,, whereas i refers to the remaining k-subsets of V(G ® X)
formed by j vertices in G and k — j vertices in H. O

3 Steiner distances in GEC products

Steiner distances in GEC products can be computed from those ones in GVC
products. To prove it, for each GEC product GoH, we denote by GVC(G oK)
the set of GVC products GO H' that are constructed as follows. For each edge
wv € E(G), we choose a vertex wy, € {u,v}. Then, we remove from G ® H’
all those edges wy,w € E(G ¢ H) such that w € V(Hy,). In this way, the
graph H,, € J{ becomes a subgraph of the graph H, & H'. Moreover,
VIGOH) =V(GoH) and E(G®H') C E(G o H). Thus, for instance, the
GVC product K3 ® {K1, Ko, P3} in Figure 1 (left) arises in this way from the
GEC product K30{K1, K5, P3} in the same figure (right). Furthermore, Figure
2 shows two distinct GVC products, Ps@{ K7y, 0, K2} and Ps&{0, K1UK,, 0},
both of them arisen from the GEC product P; ¢ {K;, K5}, which is shown in
Figure 5.

€1 €2

Figure 5: The GVC product Ps ¢ { K7, K»}.

The following result shows a relevant relationship among Steiner trees in a
GEC product G ¢ H and Steiner trees in its associated set of GVC products.

Lemma 11. Let S CV(GoH). If T is a Steiner S-tree in G o H, then there
exist a GVC product GOH' € GVC(GoH) and a Steiner S-tree T in GO H'
such that V(T') = V(T) and |E(T")| = |E(T)|.

Proof. Let T be a Steiner S-tree in G ¢ H. In what follows, we describe a
procedure to construct both the GVC product G© H' € GVC(G oK) and the
Steiner S-tree T” in the statement. We initialize this procedure by defining
the graphs G; := G o H and G5 := T, from which the graphs G ® H’ and T’
will respectively arise. For each edge uwv € E(G), we do the following.

e If there exists one vertex w € {u,v} such that ww’ ¢ E(G2) whatever
the vertex w’ € V(Hy,) is, then we remove from G; those edges ww' €
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E(G1) such that w' € V(H,,). If both vertices u and v satisfy the
mentioned condition, then we only remove all those edges corresponding
to one of them.

e Otherwise, if there are two vertices wy, we € Hy, such that {uw;, vws} C
E(Gs2), then we remove from G; those edges vw € E(Gp) such that
w € Hy,. In order to construct the Steiner S-tree T” from Ga, we also
modify the set of edges in the graph Gs as follows. First, we remove
from Go all those edges appearing also in E(H,,), together with all
those edges vw € E(G2) such that w € Hy,. Then, we add to G5 all the
edges in the set

U {uw: Jw’ € V(Hy,) U {v} such that ww' € E(T)}.
WEV (Hyy)

If TN((GoXH)\ Hyp) is a connected tree, then the new graph Gs is
a Steiner S-tree in the graph G; having the same size than 7', and
containing its same set of vertices. Otherwise, if TN ((G o XH) \ Hyy)
is disconnected, then the new graph Gs has size |E(T)| — 1, and it is
formed by two disconnected trees. If this is the case, then we also add
the edge uv to Go. In this way, we get a Steiner S-tree in the graph G,
having the same size than 7', and containing its same set of vertices.

Once this procedure is done for every edge in E(G), the resulting graphs G,
and Go constitute, respectively, the GVC product G ® H' and the Steiner
S-tree 1" of the statement. O

In general, if S C V(G ¢ H) is non-empty, and G ©® H} and G ® 3,
are two GVC products in GVC(G ¢ H), then dgeg (S) and dgeg, (S) may
be different. Thus, for instance, if S is the set formed by the two vertices
highlighted with a black triangle » in Figure 5, then dp,o(x,, 0, k1 (S) = 4
and dp,o (0, K,UK,, 0} (S) = 2 (see Figure 2). The following result shows how
the study of Steiner distances in GVC products arisen from the same GEC
product is useful to establish Steiner distances in the latter.

Proposition 12. If S C V(G o H) is non-empty, then
dGo}((S) = min {dG@j—C/ (S) GO H e GVC(G o g‘f)} .

Proof. Since every graph in GVC(G ¢ H) is a connected spanning subgraph of
G o H, the described minimum value is an upper bound of dges¢(S). Lemma
11 implies readily that this upper bound is indeed sharp. O
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Proposition 12 enables one to compute Steiner parameters on GEC prod-
ucts minimizing those ones on their related GVC products. In general, this
procedure requires a comprehensive study of cases, as it happens for comput-
ing Steiner k-Wiener indices of GEC products from the computation described
in Proposition 10. However, some lower and upper sharp bounds can readily
be determined for some Steiner parameters. Thus, for instance, the following
result establishes a pair of lower and upper bounds for the Steiner number of
the graph G ¢ H.

Theorem 13. It is verified that
H%%NSdGoﬂ)gﬂd%ﬂ+ﬂ%GN7mm{Wzﬁﬂ:GQ}UGGVQGQH&.

Proof. The upper bound follows readily from Propositions 6 and 12. To prove
the lower bound, let S be a Steiner set of the graph G ¢ 3 such that |S| =
s(G o H), and let T be a Steiner S-tree in G ¢ H. From Lemma 11, there
exists a Steiner S-tree T” in a graph GOH' € GVC(G oK) such that V(T") =
V(T) = V(GOH'). Thus, S is a Steiner set of G®H', and hence, Proposition
6 implies that |V(H)| < s(G © H') < s(G o H). O

Both bounds in Theorem 13 are sharp. Thus, for instance, we highlight
with black triangles A in Figure 6 all the vertices of a Steiner set .S in both
GEC products K30{K;, K1, K1} and P3o{K, K5}. In addition, we highlight
with blue color all the edges of some related Steiner S-trees. Particularly, for
K30 {K;, K1, K1} we describe two Steiner S-trees so that every vertex in the
GEC product is contained in at least one of them. Note that

s (K3 0 {K1, Ky, K1}) = |V ({Ki, K1, K1})[=3

and

5 (Ps © {K1, Ka}) = |V({Ky, Ka})| + |V(Ps)|-
—min {[V({Ky, Ka})|: Py © {K1, Kz} € GVC(Pyo {K1, Kz}) } =
=3+3-1=5
From now on, let k € {2,...,|[V(GoH)|}. We finish our study by describing

some lower and upper bounds on the Steiner k-eccentricities, Steiner k-radius
and Steiner k-diameter of G ¢ XH.

Theorem 14. Let v € V(GoXH). If v € V(G), then

€Clmin{k, V(&)}V, G) < eccr(v, GoXH) < ecemingk, |v ()|} (v, G)+min{k—1, |V (H)[}.
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A A

/ N\ / A\
/ \ / \
€9 €2
A — — — — A K — — — — A
K3 © {K1, K1, K1}
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Figure 6: Steiner sets in GEC products.

Otherwise, if v € Hy,y, for some vive € E(G) such that

eCCmingk, |V ()|} (V1, G) < ecCmingr, jv(c)} (V2, G)
then
€Clmin{k, |V ()|} (V1, G) < ecck (v, G o H) < ecemin(r, |v (@)} (v2, G) + min{k, [V (F)|}.

Proof. The lower bounds hold similarly to the reasoning described in the proof
of Theorem 8. Further, the upper bounds hold readily from the mentioned
proposition and the fact that every graph in GVC(G ¢ H) is a connected
spanning subgraph of G ¢ H. O

Corollary 15. It is verified that

stadmin{, |v(¢)[} (G) < stade(G o H) < sradmingk, |v(e)3 (G) + min{k — 1, [V/(3)|}
and
sdiamumin(k, [v(e))} (G) < sdiamy (G o H) < sdiatmin(s, jv(e))3 (G) + min{k, [V(3H)[}.

Proof. The result follows readily from Theorem 14 once we take minimum and
maximum values in the lower and upper bounds therein described. O



STEINER DISTANCE IN GENERALIZED CORONA PRODUCTS 36

Unlike GVC products, the upper bound of the Steiner diameter described
in Corollary 15 is not always reached for non-degenerate GEC products. The
next result illustrates this fact.

Proposition 16. If srad2(G) = 1, then
sdiamy (G o H) = min{k, |V(G o H)| — 1}.

Proof. Let v € V(G) be such that ecca(v,G) = srada(G) = 1. Then, the
vertex v is adjacent to any other vertex in GG, and hence, to any other vertex
in G o H. Thus, v is the center of the star graph K |y (goac)|—1, which is a
connected spanning subgraph of G ¢ H. Hence,

sdiamy, (G o H) < sdiamy, (K4, |v(Gosc)|—1) = min{k, [V(G o H)| — 1}.

If k < |V(Go3)|, then this upper bound is reached for any k-subset of vertices
in G ¢ H not containing the vertex v, but containing at least one vertex in
min{|F(G)|, k} distinct components of the outer graph H. If k = |V (G o H)|,
then the upper bound is readily reached. O]

4 Conclusion and further work

This paper has delved into the study of Steiner distances in generalized ver-
tex corona (GVC) and generalized edge corona (GEC) products. We have
extended to GVC products some known results on corona products, and also
some related parameters as the Steiner number, the Steiner diameter and the
Steiner index of corona products. We have also established some sharp bounds
for the Steiner eccentricities and Steiner radius of a GVC product.

Concerning GEC products, we have described how the computation of
their Steiner distances derives from those ones in GVC products, and we have
established some sharp bounds for the mentioned Steiner parameters. A more
comprehensive study is required to deal with some other Steiner concepts
and parameters in both GVC and GEC products, as the Steiner center, the
Steiner median, the Steiner interval, the Steiner convexity, the Steiner distance
hereditary graph, or the Steiner distance stable graph, amongst others. It is
proposed as further work.
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