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Abstract

The fundamental aim of this research is to analyze the configu-
ration of F4R submodules, skew cyclic codes over F4R and establish
their connection with DNA codes, where F4 is a field of order 4 and
R = F4 + uF4 + vF4 + wFs with u? = u, v? = v, w? = w, uv = vu =
0, vw = wv = 0, wu = ww = 0 is a finite ring. This is achieved by exam-
ining particular subclasses like reversible codes. Ultimately, this study
aims to utilize Gray maps to derive codes that possess the characteris-
tics of DNA structures. At the end of this paper, we have provided the
necessary and sufficient condition for skew cyclic codes to be reversible
complement.

1 Introduction

Cyclic codes, a significant category of block codes have been researched for
over fifty years. Various rings, including those referenced as [10, 14, 16, 19],
have been used to investigate cyclic codes. Apart from cyclic and negacyclic
codes, constacyclic and quasi-cyclic codes are generalizations within this field.
Many coding theory articles employ the non-commutative ring, also known as
the skew polynomial ring. One particular generalization of cyclic codes is the
skew cyclic code, introduced by Boucher et al. in [8] using the skew polyno-
mial ring. In addition, Ulmer et al. [9] focused on studying skew constacyclic
codes utilizing the Galois ring. Irfan Siap et al. [18] examined the structure
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of skew cyclic codes of arbitrary length.

Furthermore, San Ling et al. [13] investigated skew constacyclic codes over
the finite chain ring. Many authors studied skew cyclic codes over the rings
Fy + vy, Fy + oFy, Fy + ulFy + vF,, where u? =wu, v2 =v, wv =vu =0
and F, + uF, + vF, + uwoF,, where u? = u, v?> = v, uwv = vu in [2, 4, 12, 20].
In the beginning, specifically in 1997, Rifa et al. [17] established the concept
of codes using a mixed alphabet. Subsequently, Borges et al. [6, 7] explored
additive codes and additive cyclic codes over ZsZ,.

In [3], Adleman studies on DNA computing by solving an instance of an
NP-complete problem over DNA molecules. A single DNA strand is a se-
quence of four possible nucleotides: adenine (A), guanine (G), cytosine (C)
and thymine (7). DNA has two strands governed by the rule called Watson
Crick complement (WCC), i.e., A pairs with 7' and G pairs with C. We denote
the WCCas A=T, T=A, C =G, G = C. The structure of DNA is used
as a model for constructing good error-correcting codes. Conversely, error-
correcting codes with similar properties to DNA structure are also used to
understand DNA. Several papers have proposed different techniques to con-
struct a set of DNA codeword. Several authors have also extensively used
linear and cyclic codes to construct DNA codes.

There are various constraints that a DNA code must satisfy, such as the
Hamming constraint for minimum distance, the reverse constraint, the reverse-
complement constraint, the GC-content constraint, the melting temperature
constraint, the thermodynamic constraint, and the uncorrelated-correlated
constraint. The challenge for DNA code design is constructing a DNA code of
a given length, size, and distance that satisfies the maximum set of constraints.
Classical algebraic block codes have been extensively used to construct DNA
codes. In this approach, a block code that satisfies the reverse-complement
constraint is usually called a DNA code [15]. Among many methods of con-
structing DNA codes from classical codes is using skew cyclic codes over var-
ious fields and rings [5, 15]. In [5], the authors show how to construct DNA
codes from skew cyclic codes over the mixed alphabet Fy(Fy + vFy), where
v? = v. They state a condition on the associated generator polynomial of
a skew cyclic code that guarantees the code to be a reversible complement.
Further, Dertli et al. [11] investigated the utilization of skew cyclic codes for
DNA codes over the mixed alphabet Fy(F;+uF,+vF,), where u? = u, v? = v.
Motivated by this work, In this research article, we examine the application of
skew cyclic codes over Fy(Fy+uF,+vFs+wFy),where u? = u, v? = v, w? = w
to construct DNA codes.
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2 Preliminaries

Let Fy be defined as the set {0, 1, A, 72 = i+ 1} be the field with order 4 and
let R = {a + ub+ vd + we : a,b,d,e € Fy}, where u? = u, v?> = v, w? = w,
uv =ovu =0, vw = wv = 0, wu = uw = 0 be the finite commutative ring with
ideals <1 + u>, <1 + v>, <1 —|—w> and <u+ v+ w> Let p1 = u, o = v, u3 = w
and pg =1+ u+ v+ w. Then, we can show that

s ife=y
Hebly = 0; ife#y

and Zle t, = 1. Therefore, we have R = 1R @ poR & pusR ® pa R and
R = p,Fy for ¢ € {1,...,4}. In other words, any element 2z € R can be
uniquely expressed as x = Zle wa,, where a, € Fy for ¢ € {1,...,4}. Now,
the Gray map is defined as follows:

¢: R— T}
a+ub+ vd + we — (a,b,a+d,d+¢) (1)
pia1 + p2az + pzas + praay — (a1, a1 + az, az, a3 + ag) (2)

The Lee weight of € R is defined as the Hamming weight of ¢(«) denoted
as wtr (z) = wty(p(x)), where wtr, and wty denote the Lee weight and the
Hamming weight, respectively. We can extend ¢ componentwise to R" as
follows:

¢: R" — Fy"

Let = (z1,22,...,2,) € R", then ¢(z) = (¢(x1), ¢(22),...,d(xn)) € Fi™.
Furthermore, wty () = > wtr(z,) =Y . wtg(¢(z,)). The map ¢ serves
as an isometry from (R",dr) to (Fi{",dy). In other words, for any x,y €

R, dp(z,y) = du((x), ¢(y))-

Throughout this article, the ring homomorphism 6 on R is defined as fol-
lows:
0:R— R

0(a + ub + vd + we) = a* + ub® + vd* + we? (3)
9(M1a1 + poag + pzas + /J4Cl4) = /1,19((11) + ,uze(az) + ,u39(a3) + M40(a4) (4)

Note that, the order of the homomorphism 6 is two and the subring
Fy + ulFy + vFy + wFy remains fixed under 6.
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Definition 2.1. Let A,(¢ = 1,2) be codes over R. Then, its direct sum and
the Plotkin sum are defined as follows:

Ay @Ay ={(ug +uz) : up € Ay, ug € Ag} and
A @p Ag = {(ug,u1 +u2) : u, € A, t=1,2}.
Definition 2.2. Let C be a linear code of length n over R. Then we define
C,={a, €F}|Ta,eF}, 3% | priar + poas + pzas + paaqs € C},

for ¢, = 1,2,3,4. Clearly, C, for ¢ € {1,...,4} is a linear code over Fy,
C = 1 C1 & paCs @ pu3Cs © 14Cy and |C| = |C1]|Co||Cs]|Cy.

Lemma 2.1. [20] Let C = p;C1 ® paCo @ uzCs @ pusCy be a linear code of
length n over R and G, be the generator matrices of C, for v € {1,...,4},
respectively. Then, the generator matriz of C is

M1G1

H2Go
G =

u3Gs

M4G4

Lemma 2.2. Let C be a linear code of length n over R with generator matrix
G as given in Lemma 2.1. Then, the generator matriz of ¢(C) is

d(p1Gr) G, G 0 0

_ ¢)(N2G2) - 0 G2 O 0
A= g(aGa) | =0 0 Gs G
d(1aGy) 0 0 0 Gy

Moreover, ¢(C) = (C1 &, Ca) @ (C3 &, C4), where ® and &, stand for direct
product and the Plotkin sum, respectively.

3 Skew Cyclic Codes Over R

Definition 3.1. The set R[z,0] = {ap + 12+ ...+ ap_12" ':a, €R, 0 <
t < n—1, n € N} of polynomials constitutes a ring referred to as a skew
polynomial ring with the usual addition of polynomials and the multiplication
is defined as follows: (az")(bx®) = af”(b)z" %, where 0" is the composition of
O(repeated r-times).

For an element x = (z1,%2,...,2,) € R", the cyclic shift T(x) and the
skew cyclic shift Ty(x) of = are defined by T(x) = (zy, z1,22,...,2p—1) and
Ty(z) = (0(xy),0(x1),...,0(xn_1)), respectively.



SKEW CYCLIC CODES OVER F4R AND THEIR APPLICATIONS TO DNA
CODES CONSTRUCTION 161

Definition 3.2. A linear code C C R" is said to be cyclic over R if for any
x = (z1,2a,...,2,) € C, the cyclic shift T(z) = (xn,z1,22,...,2p—1) € C
and C is called a skew cyclic code over R if for any « = (z1,z2,...,2z,) € C,
the skew cyclic shift Ty(z) = (0(xy),0(z1),...,0(zn_1)) € C.

Theorem 3.3. Let C' = pu1C1 & puaCs & usCs & ugCy be a linear code over
R, where C, is a linear code over Fy for each v € {1,...,4}. Then, C is a
skew cyclic code over R if and only if C, is a skew cyclic code over Fy for
te{l,... 4}

Proof. Suppose that C = p1C1 @ paCs @ usCs @ pusCy is a linear code over
R and C, is a linear code over Fy for ¢ € {1,...,4}. Let x = (x1,29,...,%y)
be any codeword in C, where =, = pyia, + pb, + psd, + pse, € R, a,, b,,
¢,, and d, belongs to Fy for 1 < ¢ < n. Let a = (a1,a2,...,a,) € C1, b =
(bl,bg,...,bn) € Cy, d= (dhdg,...,dn) € (3 and e = (61762,...,€n) € Cy.
Then, we have © = pya+pusb+psd+pge. I C, for v € {1,...,4} is a skew cyclic
code over Fy, then skew cyclic shifts Ty(a) = (8(an),0(a1),...,0(an—1)) € Cy,
Te(b) = (G(bn)7 9(b1)7 cees a(bn—l)) € Cy, TG(d) = (e(dn)v e(dl)v ceey a(dn—l» €
Cs and Ty(e) = (O(en),0(e1),...,0(en—1)) € Cy4. Therefore, we have Ty(x) =
(0(zn), 0(21), ..., 0(xn-1)) = mTo(a) + pu2To(b) + psTo(d) + palp(e) € C.
Hence, C' is a skew cyclic code over R.

Conversely, assume that C'is a skew cyclic code, then for any codeword x =
(x1,x2,...2y,) in C, its skew cyclic shift is Tp(x) = (6(zn),0(z1),...,0(zn_1)) =
p1Ty(a) + p2To(b) + p3To(d) + paTy(e) € C = p1Cy ® pCy @ p3Cs @ paCy.
This implies that, Ty(a) € C1, Ty(b) € Cq, Ty(d) € Cs and Ty(e) € Cy. Hence,
C, is a skew cyclic code over Fy for ¢ € {1,...,4}. O

Theorem 3.4. [20] Let C = 1 Cy @ p2Co ® usCs ® puaCy be a skew cyclic code
of length n over R. If g,(x) is a generator polynomial of skew cyclic code C,
forve {1,...,4} over Fy, respectively. Then, C = {u1g1(x), p2ga(x), u3gs(x),

4

paga(z)) and |C| = 4*n=2Xi=1dee(0.(2))  Purthermore, C = (g(z)), where
g(x) = Zle w.9.(z) € R[z, 0] is unique and g(x)|(z™ — 1).

Theorem 3.5. Let C = p1C1 @ puoCo @ pusCs ® psCy be a skew cyclic code of
length n over R, where C, is a skew cyclic code with parameters [n,k,,d,] for
v€{1,...,4}, respectively. Then, ®(C) = (C1®,C2) R (C3®,Cy). Moreover,
O(C) is a code with parameters [4n, k1 + ka + k3 + kg, min{2dy, da, 2d3, d4 }].

Proof. Assume that C' = p1C1 @ psCy @ u3Cs @ uyCy is a skew cyclic code
over R. Additionally, let ® : R — F} be a Gray map defined as ®(uja; +
paas + psas+paas) = (a1, a1+ asz, as, az+ay). To establish the result, consider
x € ®(C). Then x = ®(y) for some y = pyra1 + p2a2 + pizas + peay € C, where
a, € C, for v € {1,...,4}. Thus, we have © = (a1,a1 + ag,a3,a3 + a4) €
(Ol @p CQ) X (03 @p 04) Consequently, @(C) Q (Ol @p CQ) X (Cg @p 04)
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Conversely, assume that © = (b1, b1 +bs, bs, bs +ba4) is an element in (C1 @),
Cy) ® (C3 @ Cy), where b, € C, for ¢+ € {1,...,4}. Then, there exist a
y = by + pabs + psbs + paby € C such that ®(y) = x. Thus, we have
(C18,C2)®(C3®,Cy) C ®(C). Moreover, by the definition of direct product
and the Plotkin sum if C, is a code with parameters [n, k,,d,] for . € {1,...,4}
over Fy, respectively. Then ®(C) is a code with parameters [4n, ki + ko + k3 +
k4,mm{2d1,d2,2d3,d4}]. O

Example 3.1. Suppose that n = 6 then 2° — 1 = (22 + 1)(2% + h) (2% + h?) €
Fy[z,0]. Let C1 = (22 +1), and Cy = C3 = Cy = (22 +1h?) be skew cyclic codes
with parameters [6,4,2] over Fy. Assume that g(x) = p191(x) + page(z) +
p393(x) + paga(x) = 2% + 1+ h(u + v + w), then C = (g(x)) is a skew cyclic
code, and the Gray image ®(C) is a code with parameters [24, 16, 2] over Fy.

4 Generator polynomials of skew cyclic codes over F,R

The polynomial representation of an element p = (ag, a1, ...,ay—1,bo,b1,. ..,
bs—1) € FJR? is p(x) = (a(w),b(x)), also denoted as (a(x)|b(z)), where a(z) =

ap + a1x + -+ av,laﬂfl € (;F;‘[f]l), and b(z) = by + bz + -+ bs_12°71 €

(i[;x_’gl]). Consequently, there is a one-to-one correspondence between IFZR5 and

Fylx R[x,0
R,Y’(; = (:l):lf[f]l) X (;c‘[;—ll)

Let F4R = {(a,b) : a € F4,b € R}. Define a ring homomorphism

n:R—Ty

a+ub+ve+wdr— a (5)

Under the multiplication operation defined as r - (a,b) = (n(r)a,rb), the set
F4R is an R-module, where r € R, n(r)a represents multiplication in Fy and
rb signifies multiplication in R.

Consider the set ]FZR‘S = {(a1,a2,...,a4|b1,b2,...,b5) : a, € Fq, b, €
R, 1<:<7~, 1<)<46}. Then, for any r € R and p = (a1, as,...,a|b1, bs,
..., bs) € FZR‘S, we can extend the multiplication operation as follows:

r-p=(n(r)a,n(r)as,...,n(r)ay|rbi,rba, ..., rbs). (6)

With this operation, the set IFXR‘s is an R-module. The «d-cyclic shift of an
element p € FJR? is defined as T (p) = (ay,a1,...,a,—1|bs,b1,...,bs—1).
The vd-skew cyclic shift of an element p € F]R° is defined as 7°Ty(p) =
(ay, A1y..., a,y,l‘a(b(s), 9(1)1), ey (9(()5,1)).

Definition 4.1. Let C C F]R’. Then



SKEW CYCLIC CODES OVER F4R AND THEIR APPLICATIONS TO DNA
CODES CONSTRUCTION 163

(1) C is said to be an FyR-linear code with a block length (v, ), if it is an
R-submodule of F] R°.

(43) C is said to be an F4 R-cyclic code with a block length (v, 6), if °T(C) =
C, where 7T is a yd-cyclic shift.

(79i) C' is said to be an FyR-skew cyclic code with a block length (v, ), if
Ty(C) = C, where 7Ty is a 6 skew cyclic shift.

Theorem 4.2. AnF4R-linear code C with a block length (v, ) is an FyR-skew
Fylz] R[xz,0]
(z7—1) (z%-1)"

cyclic code, if and only if it is a left R[z, 0]-submodule of

Proof. Suppose that C' is an F4R-skew cyclic code. Assume that p(z) =
(p1(z)|p2(x)) is an element in C, where p1(z) = ap + a1z + -+ + ay_12771 €
(fjf[_x]l), and po(z) = by + bix + -+ + bs_12°71 € (I;[fl(i]). Here p(z)
is identified with the codeword p = (ag,a1,...,ay—1|bo,b1,...,bs—1) € C.
Now, for any positive integer 7, the polynomial 27p(x) = (ay—,+ay—,p 12+ -+
Uy g1 27109 (b5— ) + 07 (bs—y1)T + - -+ 607 (bs—,—1)x° 1) belongs to C, which
can be identified with the vector (ay—,, @y—j;41, ..., @y—;—1|67(bs_,), 87 (bs_,41),
...,07(bs—,—1)) € C. Let r(z) be any polynomial in R[z, 6] and p(z) be any
codeword in C. Then, by the FyqR-linearity of C, we have r(z) - p(z) € C.
Thus, C is a left R[z, 6]-submodule of —2l » £z

7 —1 z0—1)"

Conversely, assume that C' is a left g%[x, 9)]—su(bm0(iule of Ry 5. Then r(x) -
p(z) € C for any polynomial r(z) € R[z,6] and a codeword p(z) € C. In
particular, z-p(z) € C, where z-p(z) = (ay—1+aox+--+ay_ox7 |0(bs_1)+
0(bo)x + -+ - +0(bs—2)x°~1), can be identified with the codeword (a1, ag, . . .,
ay—2|0(bs—1),0(bo), . ..,0(bs—2)) € C. Hence, C is an F4R-skew cyclic code.

O

Assume that C is an FyR-skew cyclic code with a block length (v, d) and
let p(z) = (p1(z)|p2(x)) represent any codeword within C. Consequently, we
proceed to define the projection maps II; and Il; on R, 5 as follows:

IF4 [{,C]

11, - —
1 R’y,& — (.137—1)’

(p1(2)|p2(2)) — p1(x) and
Rz, 0]
(z0 = 1)
(p1(@)[p2(2)) — p2(x).
The set C, = f{a(z) € 2 | (a(),0) € C} is an ideal of 2.
Therefore, a cyclic code of length 7 over Fy, is generated by f(x) (say) such

HQ : R’Y-,‘; —
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that f(z)|(2¥—1). Similarly, the set Cs = {b(x) R[x (i}) : there exists h(z) €

%, (h(z),b(x)) € C} is a left Rz, 0]- submodule of R[ %L is generated by

g(2) (say) such that g(z)|(z° —1). Therefore, Cj is a skew cychc code over R.
By Theorem 3.4, g(x) = Zle 1.9, (x). Thus, we have the following result.

Lemma 4.1. [11] Let C be an FyR-skew cyclic code with a block length (v, 9).
Then, I11(C) is a cyclic code of length v over Fy and II(C) is a skew cyclic
code of length § over R.

Theorem 4.3. Let C be an FyR-skew cyclic code with a block length (v,0)
and Cs has a non-zero polynomial g(x) of the lowest degree with a unit leading

coefficient. Then C = ((f(z),0), (h(x),g(x))), where h(x) € (;Fj‘,[f]l), cy =

(f(2)), where f(2))(z" — 1) and Cs = (g(x)), where g(z)|(z® —1).

Proof. Suppose that C' is an FyR-skew cyclic code with a block length of
(7,6), such that C, = (f(x)), where f(z)|(z¥ — 1) and Cs5 = (g(x)), where
g(z)|(z° —1) and g(z) is a non-zero polynomial of the lowest degree with a unit
leading coefficient. Now, consider an arbitrary codeword p(z) = (p1(z)|p2(z)) €

C'. It can be expressed as

p(x) = (p1(2),0) + (0,p2(2)) = (q(x) f(2),0) + (0,7(2)g(x)),

for some ¢(x) € (f;‘[wll) and r(z) € ( Rl ’(i]) Let h(x) be a member of ]F;‘ ]1)
such that (n(r(z))h(z)|r(z)g(z)) € C, then

(z
p(x) = (q(z)f(x),0) + (n(
= (q(2) f(x) +n(r(z)

= t(x)(f(x),0) +r(z

where t(x) € (]5;‘7[9011) and g(z)f(z) + n(r(z))h(x) is a member of C,. There-

fore, C C ((f(z),0), (h(z)|b(z))). Conversely, as (f(z),0) and (h(z)|b(z))
belongs to C. So, we have ((f(x),0), (h(z)[b(x))) C C. Hence, C' = {(f(z),0),

(h(2)b(x)))- O

Two outcomes concerning skew cyclic codes over the ring Fy(Fy4ulF4+vFy)
hold valid in the expanded ring Fy(F4 + uF4 + vFy + wFy) as well.

r(@))h(@)[r(x)g(x)) + (n(r(z))h(z),0)
(), 0) + (n(r(z))h(z)[r(z)g(x)
)(h

Theorem 4.4. An F4R-skew cyclic code C with a block length (v,d) is
equivalent to an FyR-cyclic code, provided both ~v and § are odd integers.

Theorem 4.5. An F4R-skew cyclic code C with a block length (v,0) is equiv-
alent to an FyR-quasi-cyclic code of index 2 provided both ~v and § are even
integers.
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Theorem 4.6. An F4R-skew cyclic code C' with a block length (v,0), where
v and § are multiple of some positive integer k is equivalent to an FyR-quasi-
cyclic code with index k.

Proof. Suppose that C' is an FyR-skew cyclic code with a block length (v, ),
where v = km and § = kn for k,m,n € Z*. Assume that o = lcm(y,d), then
« is a multiple of positive integer k with ged(a, k) = k. Consequently, there
exist integers [; and Iy, such that aly + kls =k = kls = k 4+ aD for some
D > 0 and D = —li(moda).
Let ¢ = (a171, BN 3 W PPN ¢ 2738 R 7(Zn7k|b1,1, ey bl,ka ce ,bm,ly ey bm,k) be
any codeword in C. If 7Ty(c) represents the vyd-skew cyclic shift of ¢, then
Tpa(c) = ¢ and " Tyan(c) = c for any ¢ € C. Consider

'YngkJraD (C) :'Y(STG(ID (an’l, ceey O ks Q115+ -5 Bl ks - - -3 On—1,15---,0n—1k
bm’l, N bmJ€7 bl,la ceey bl,kH N bmflyl, ey bmfl’k)
:(an,la ey O ks A1 1y ey Bl ke ooy An—1,1y -+« anfl,k|
bm71, ceey bch, b171, ceey bl,kv caey bm—l,l, ceey bm—l,k)-

Since Tyrtan(c) = "Tyu(c) for arbitrary ¢ € FJR®. Consequently, C is
equivalent to an F4qR-quasi-cyclic code with a block length (v,0) and index
k. O

Example 4.1. For n = 4, we have #* — 1 = (z + 1)* € F4[z,0]. Assume that
f(z) = (z+1) and Cy = (f(z)) be the skew cyclic code with parameter [4, 3, 2]
over Fy. Also, for n = 6, we have 2° — 1 = (z+1)%(z + h)?(z + h?)? € Fylx, 6].
Let C; = (x + 1), Co = C3 = Cy; = (v + h?) be skew cyclic codes with
parameters [6, 5, 2] over Fy. Let g(x) = p1g1(2)+p2g2(x)+psgs(x)+pags(z) =
x4+ 1+ fi(u+ v+ w), then the code C = (g(x)) is a skew cyclic code of length
6 over R. Therefore, the code C = ((f(z,0)), (0,¢9(x))) is an F4R-skew cyclic
code with a block length (4, 6), equivalent to an F4R-quasi-cyclic code of block
length (4,6) with index 2. Moreover, the Gray image ®(C) is a code with
parameters 28, 23, 2].

5 The Gray Map

The map ¢ : R — F} defined as ¢(a + ub + vd + we) = (a,b,a + d,d + €)
can be extended to a map ¢* : F4R — F}, where ¢*(z,y) = (z,0(y)) =
(z,a,b,a + d,d +e). Here, z € Fy and y = a + ub + vd + we € R. This
extended map ¢* further can be expanded to FZR‘S as follows:

®:F]R) — F]™
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(X,Y) — (X, 0(Y)),

where X = (zg,21,...,2y-1) € F] and Y = pya + pob+ pad + pae = (prao +
p2bo + pado + faco, ..., pias—1 + pobs—1 + psds—1 + praes—1) € R°. For any
(X,Y) € F]R?, its Gray weight is defined as wtg(X,Y) = wty(X) +wtr (Y),
where wtg(X) represents the Hamming weight of X and wt(Y) represents
the Lee weight of Y.

Assume that C is an FqR-skew cyclic code with a block length (7,9).
Consider

Co = {X €F] | (X, pa + pab+ pzd + pse) € C | a,b,d, e € F3},

Cy ={a €W | (X, p1a+ pab+ pzd + pse) € C | X € F), b,d,e € F3},
Cy = {beF | (X,pa+ pob+ pzd + pse) € C | X €F), a,d,e € F}},
Cs ={d € F | (X, 10+ pab + pzd + pse) € C | X € F), a,b,e € Fy},
Cy={e €T | (X,pa+ pgb+ psd + pse) € C | X € F}, a,b,d € F3}.

Lemma 5.1. Let C be an F4R-skew cyclic code of block length (vy,0). Then,
B(C) = Co @ (Ch By Cz) @ (C3 @, Ca) and |B(C)| = [T,y |C.].

Proof. Suppose that C is an Fy R-skew cyclic code of block length (v, ¢) and the
Gray map ® : F]R? —s F] ™ as defined above. Let u € ®(C), then u = ®(v)
for some v = (X, pya + p2b + psd + pge) € C. So u = (X, a,a + b,d,d + e),
which implies that v € Cy ® (C1 &, C2) ® (C5 &, C4). Therefore, &(C) C
Co® (C1 &) C2) ® (C3 B, Cy).

Conversely, for any u € Co®(C18,C2)®(C3®,Cy4), we have u = (X, a,a+
b,d,d+e) = (X, u1a + pb + psd + pge), where X € Cy, a € Cy, b € Cy,
d € C3, e € Cy. Hence, u € ®(C) implies that Cyp @ (C1 @), C2) @ (C3 @, Cy) C
®(C). Finally, we conclude that ®(C) = Cy ® (Cy &, Ca) ® (C3 &, C4) and
[2(C)| =T~ IC.- O

Theorem 5.1. Let C be an FyR-skew cyclic code of block length (v, d) over
R. Then, Cy is a cyclic code of length ~ over Fy and C, for v € {1,...,4} is
a skew cyclic code of length § over Fy.

Proof. Suppose that C is an FyR-skew cyclic code with a block length (v, d)
and II,(: = 1,2) are projection maps as defined above. Then, by Lemma 4.1,
Hl(C) =Cpisa CyCliC code over F,; and HQ(C) = ,U,101 EB,LLQCQ EB,LLgCg EB,LL4C4
is a skew cyclic code over R. So by Theorem 3.3 C, for ¢ € {1,2,3,4} is a
skew cyclic code over Fy. O
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6 DNA (Deoxyribonucleic acid) Codes Over F R

DNA has emerged as a potential medium for data storage and computation in
recent years due to its remarkable properties, such as high storage capacity,
longevity, and data density. These properties have sparked interest in develop-
ing DNA code encoding schemes that allow digital data representation using
DNA sequences. Moreover, the concept of DNA codes is not limited to data
storage but extends to error-correction coding and cryptography. Beyond its
role in biology, DNA has also inspired researchers in various fields, including
computer science and information theory.

Here, skew cyclic codes over R and F4R are provided with necessary and
sufficient conditions to be a reversible complement. Let C' be a DNA code and

x = (x1,%2,...,%,) be any codeword in C. Then, 2" = (2, Tpn-1,...,21),
is the reverse of z, z¢ = (Z1,T2,...,T,) is the complement of = and 2" =
(Tns Tn_1,-..,Z71) is the reverse complement of z. The fundamental building

blocks of DNA structure are the set of nucleotides ¥ = {A, T, C, G}, which
satisfies the Watson-Crick complement rule (A = T, C = G) and vice-versa.
For example, ACCTAG is connected with TGGATC.

Let C' be a DNA code with parameters [n, M, d], then the constraints on
the Hamming distance wtg(z,y) > d and wtg(z",y¢) > d for all z,y € C
are put in place. When constructing DNA codes using algebraic techniques,
rings and fields of order 4 and 4% are utilised because the DNA alphabet has
a size of 4. Abualrub et al. [1] examined the F4-DNA codes by employing the
bijection between the set of DNA alphabets ¥ and Fy, such as A,T,C and G
are mapped to 0,1,/ and h?, respectively. Benbelkacem et al. [5] extended
this bijection to a bijection from F4 +vF, to the DNA codons in ¥ and Dertli
et al. [11] from Fy + uF, + vF, to the DNA codons in 3.

Now we define a bijection between the elements of R = F4+ulF 4 4+vF,+wFy
to the DNA codons in X* = {A, T, C, G}* by ¢(a + ub + vd + we) = (a,b,a +
d,d + e). This bijection is defined in the table below.
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reR codon reR codon reR codon reR codon
0 AAAA v AATT vh AACC vh? AAGG
1 TATA 1+v TAAT 1+vh TAGC 1+ vh? TACG
h CACA h+wv CAGT h+vh CAAC I+ vh? CATG
i GAGA R +v GACT B2 + vh GATC % + vh? GAAG
u ATAA u—+uv ATTT u+vh ATCC u+ vh? ATGG
1+u TTTA 14+u+v TTAT 1+u+ovh TTGC 1+ u+ vh? TTCG
h+u CTCA h+u+v CTGT h+u+vh CTAC h+u+vh? CTTG
W +u GTGA W +utv GTCT h? +u+vh GTTC h? +u + vh? GTAG
uh ACAA uh+v ACTT uh + vh ACCC uh + vh? ACGG
1+uh TCTA 1+uh+wv TCAT 1+ uh+vh TCGC 1+ uh + vh? TCCG
h+uh CCCA h—+uh+v CCGT h+ uh+vh CCAC I+ uh + vh? CCTG
h? +uh GCGA h? +uh+v GCCT h? 4+ uh + vh GCTC h? + uh + vh? GCAG
uh? AGAA uh? + v AGTT uh? + vh AGCC uh? + ol AGGG
1+ uh? TGTA 1+uli +v TGAT 1+ uh?® +oh TGGC 1+ uh?® + vh? TGCG
h+ uh? CGCA h+uh?® +v CGGT h+uh? + vh CGAC h+ uh? + vh? CGTG
B2 + uh? GGGA R 4 uh® + v GGCT 2 + uh? + vh GGTC n? 4 uh? + vh? GGAG
w AAAT v+ w AATA vh+w AACG vh? +w AAGC
1+w TATT 1+v+w TAAA 1+ vh+w TAGG 1+vh? +w TACC
h+w CACT h+v+w CAGA h+vh+w CAAG B4 vh? 4w CATC
"+ w GAGT B +vt+w GACA W +oh 4w GATG h? +oh? +w GAAC
u+w ATAT utvtw ATTA u+ vl +w ATCG u+vh? +w ATGC
l+u+w TTTT l+u+v+w TTAA 1+u+vh+w TTGG 1+u+vh? +w TTCC
h+u+w CTCT h+u+v+w CTGA h+u+vh+w CTAG B4 u+vh? +w CTTC
R 4u+w GTGT P4+u+tv+w | GTCA | R +u+vh+w | GTTG | A tu+vi?+w GTAC
uh+w ACAT uh+v+w ACTA uh + vh+w ACCG uh +vh? +w ACGC
1+uh+w TCTT l1+uh+v+w TCAA 1+uh+vh+w TCGG 1+ uh+vh? +w TCCC
h+uh+w CCCT h+uh+v+w CCGA h+uh+vh+w CCAG h+uh+vh? +w CCTC
h? +uh+w GCGT | R +uh+v+w | GCCA | h4uh+vh+w | GCTG | B2 +uh+vh®>+w | GCAC
uh? +w AGAT uh? +v+w AGTA uh? + v+ w AGCG uh? + vh? +w AGGC
1+ uh?+w TGTT 1+uh?+v+w | TGAA 1+uh?+vh+w | TGGG | 1+uh?+vh?+w | TGCC
h+uh® +w CGCT h+uh?® +v+w CGGA fi4uh? +vh +w CGAG I+ uh? + vh? +w CGTC
R+uh®+w | GGGT | R +uh’4+v+w | GGCA | B2 +uh?+vh+w | GGTG | A2 +uh®+vh?+w | GGAC
wh AAAC v+ wh AATG vh + wh AACA vh? + wh AAGT
1+ wh TATC 1+v+4+wh TAAG 1+ vh+ wh TAGA 1+ vh? + wh TACT
h+wh CACC h+v+wh CAGG h+ vh+ wh CAAA h+ vh? 4+ wh CATT
n? + wh GAGC R +v+wh GACG 2 + vli + wh GATA h? 4+ vh? + wh GAAT
u+ wh ATAC u+ v+ wh ATTG u + vh+ wh ATCA u+ vh? + wh ATGT
1+u+wh TTTC 1+u+v+wh TTAG 1+ u+vh+wh TTGA 1+ u+ vh? + wh TTCT
h+u+wh CcTCC h+u+v+wh CTGG h+u+ vh+wh CTAA fi4u + vh? + wh CTTT
h? +u+wh GTGC 2 +u+v+wh GTCG h? +u + vh+ wh GTTA h? +u+vh? +wh GTAT
uh + wh ACAC uh+ v+ wh ACTG uh 4+ vh + wh ACCA uh + vh? + wh ACGT
1+ uh +wh TCTC 14+ uh+v+wh TCAG 1+ uh + vh + wh TCGA 1+ uh + vh? + wh TCCT
h+ uh + wh ccce h+uh+v+wh CCGG h+ uh + vh + wh CCAA h+uh + vh? + wh CCTT
h?+uh+wh | GCGC | h*+uh+v+wh | GCCG | h?+uh+vh+wh | GCTA | h*+uh+vh*+wh | GCAT
uh? 4+ wh AGAC uh? + v +wh AGTG uh? + vh +wh AGCA uh? +vh? + wh AGGT
1+uh®+wh | TGTC | 14uh*+v+wh | TGAG | 1+uh®+vh+wh | TGGA | 14uh*+vh?+wh | TGCT
h+uh®+wh | CGCC | h+uh?+v+wh | CGGG | h+uh?+vh+wh | CGAA | h+uh®+vh?+wh | CGTT
R +uh® +wh | GGGC | K2 +uh®+v+wh | GGCG | h? +uh®+vh+wh | GGTA | h% +uh® +vh® + wh | GGAT
wh? AAAG v+ wh? AATC vh + wh? AACT vh? + wh? AAGA
1+ wh? TATG 1+ v+ wh? TAAC 1+ vh + wh? TAGT 1+ vh? + wh? TACA
i 4 wh? CACG h+v +wh? CAGC I+ vh + wh? CAAT 4 vh? 4+ wh? CATA
h? + wh? GAGG 2 4+ v+ wh? GACC h? 4 vh 4+ wh? GATT h? + vh? 4+ wh? GAAA
u+ wh? ATAG u+ v+ wh? ATTC u+ vh + wh? ATCT u+ vh? + wh? ATGA
1+u+wh® | TTTG | 14u+v+wh® | TTAC | 14u+vh+wh? | TTGT | 14+u+vh?+wh? | TTCA
h+u -+ wh? CTCG h+u+ v+ wh? CTGC h+u+ vh 4+ wh? CTAT h+u+ vh? + wh? CTTA
P +u+wh?® | GTGG | h*+u+v+wh® | GTCC | h*+u+vh+wh® | GTTT | h*+u+oh®+wh® | GTAA
uh + wh? ACAG uh + v + wh? ACTC uh + vh + wh? ACCT uh + vh? + wh? ACGA
1+uh+wh?® | TCTG | 1+uh+v+wh® | TCAC | 1+uh+vh+wh? | TCGT | 1+uh+vh?+wh? | TCCA
B+ uh + wh? CCCG | h+uh+v+wh? CCGC | h+uh+ vh+wh? CCAT | h+uh+vh?® + wh? CCTA
h? +uh+wh? | GCGG | A% +uh+v+wh? | GCCC | h? +uh+vh+wh? | GCTT | h? +uh+vh? +wh® | GCAA
uh? + wh? AGAG uh? + v + wh? AGTC uh? + vh + wh? AGCT ul? + vi? + wi? AGGA
1+uh?+wh? | TGTG | 1+uh?+v+wh? | TGAC | 1+uh?+vh+wh? | TGGT | 1+ uh?®+vh? +wh® | TGCA
h+uh® +wh?® | CGCG | h+uh®+v+wh? | CGGC | h+uh®+vh+wh® | CGAT | h+uh®+vh® +wh® | CGTA
n? 4+ uh® + wh? | GGGG | h? + ul® + v+ wh? | GGCC | h? + uh® + vi+ wh® | GGTT | A% + uh® + vh? + wh? | GGAA
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An element y € R is referred to as the complement of © € R if ¢(y) is the
complement of ¢(z) in F}. Let x = a + ub + vd + we € R with a,b,d,e € Fy.
Then x€ is given by

T=z+1l4+utw=a+14+ulb+1)+vd+wle+1).
Lemma 6.1. If r,r1,72 € R, then the following results hold:
Lrit+ro=r+rnt+ltutw=r+m+1l+utw,
ru=ru+1l1+ut+w=ru+1+u+w,
m=rv+1l+utw=rv+14+u+w,

e b

Tw=rw+1l+ut+w=7w+1+u+w,

S r(l4ut+v+w)=r(l+ut+vtw)+l1+ut+w=71+uv+v+w)+w.

Definition 6.1. An R-linear code C of length § over R is said to be a DNA-
skew cyclic code if C' is an R skew cyclic code of length 4, and for any codeword
x € C, x # x"° with the reverse complement 2" € C'. A code C is called a
reversible complement code if 2™ € C, for any codeword = € C.

For any polynomial f(z) = ap+ajx+---+a,_12" ! with non-zero leading
coefficient, its reciprocal is defined as f*(z) = 2" 1 f(1/2) = an_1 + an_ox +
c 4 a12"? + apz™ L. Note that, deg(f*(z)) < deg(f(z)) depend on the
constant term of f(x). The polynomial f(x) is referred to as self-reciprocal

provided f*(z) = f(x).

Lemma 6.2. Let pi(x) and pa(x) be any two polynomials over R satisfying
the condition deg(p1(x)) > deg(pa(x)). Then,

1. (p1(z) - p2(2))* = pi(z) - p3(z),
2. (pr(x) + pa(z))* = pi(z) + zdeg(m(r))fdeg(m(r))p;(z),

Theorem 6.2. Let C' = (g(x)) be an R-skew cyclic code of length §. Then,

C' is reversible complement if and only if (1 + u + w)(”f__ll) € C and g(z) is
a self-reciprocal polynomial.

Proof. Suppose that C' = (g(z)) is an R-skew cyclic code of length J, where
g(x) = ug1(z) +vg2(z) +wgs(x)+ (1+u+v+w)gs(x). The monic polynomial
g.(x) divides (2% —1) in Fy[z] for € {1,...,4}. Assume that C is a reversible
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complement code, then 0 = (0,0,...,0) € C implies that, its complement
0=(0,0,...,0) € C. Thus, we have the corresponding polynomial

0=(1+ut+wl+ut+w,...,1+u+w)
=14+u+w)(l1,...,1)
=(1+u+w)(l+z+a24+-- +2°71)

0 —1
z—1

=1+ u+ w) )eC.

Let g1(2) = ap+a1x+- - +a,_12" 14", go(x) = bo+byo+--+bs 12571+
x%, g3(x) = co+crx+- - +e 2t 4t and ga(z) = do+diz+ - Adp_F T+
x¥ where r < s <t < k. Assume that A, = ua, +vb, +we, + (1 +u-+v+w)d,
for 0 < ¢ <r, B, =vb +we, + (1+u+v+w)d, for r+1 <1 < s,
C,=we, + l+u+v+w)d, fors+1<:<tand D, = (1 +u+v+w)d, for
t+1<:<k. Then

9(x) = ugi(x) + vg2(x) + wys(z) + (1 + u+ v+ w)ga(z)

T s t k
:ZALxL—i— Z B,z + Z C,xt + Z D,z* + 0kt + . 4020 h
=0 t=r+1 t=s+1 t=t+1

Since C' is a reversible complement code and g(xz) € C. Thus the reverse
complement g(z)"® becomes a member of C', where

k
g<m)rc :(1+u+’w)(1+$+"'+x‘s_k—2)+ Z E.’I?(S_L_l—f— Z al‘é_L_l
—

L=

+ zs: E(Eé_b_l-i-zr:zx&_b_l

v=r+1 =0

=(14ut+w)(d+z+---F+227FH 4 Z (D, +14u+w)zd~!
t=t+1
t s
+ > (Cotltutwa® " > (B A1+ u+w)z’ !
1=s+1 v=r+1
+) (A 14 u+w)z’
=0

Since C'is a linear code over R, g(x)"® and (1+ u + w)(i:ll) are members of
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C'. Therefore, we can deduce that g(z)™ + (1 +u + w)(

ZAfE&Ll"FZBI'&Ll

t=r+1

+ Z CL$6_L_1+ Z DLZL'(S_L_l.

1=s+1 t=t+1

=1) € C, where

9(@)" + (1 +u+w)(

Since C is an R-skew cyclic code, the result of multiplying on the right by
k+1-0 ;
x is

()™ + (1t ut w) (o Ly h1-9) E:Axk“FE:Bxkb

z—1
t=r+1

+ Z C,zk + Z D,zF*

1=s+1 t=t+1
=g" ().

Thus, ¢g*(z) is an element of C' and given that C = (g(x)), there exists
a polynomial p(z) € R[z,0] such that g*(x) = p(z)g(xz). However, since
deg(g*(x)) < deg(g(z)), we conclude that p(z) = 1 leading to g*(z) = g(z).
Consequently, g(x) demonstrates a self-reciprocal property.

Conversely, assume that C is an R-skew cyclic code of length ¢ generated

by a self-reciprocal polynomial g(z) and (1 + u + w)(% 5*1) € C. Then we

r—1
show that C is a reversible complement code. For this, suppose that ¢(z) =

co + c1z + -+ + cpz® is an arbitrary codeword in C. Then the reciprocal
c*(z) = cp +cp_1z + -+ + coz* € C. Now, we have

6—k:—2) — , 0—k—1 ~ 06—k 5—1

+ cox + iz + -+ Ckx

S—k 5—1
+tor

(@) = (I+utw)l+a+t - +a
=(1+u+w)(1+x+...+x671)+60m

5
z° —1

=(1
(L u+w)(C—

—k—1
+cix

)%—c(m)xafk*l.

Since ¢*(z) = p*(z)g(x) € C for some polynomial p(x) € Rz, 0] and given
that C is a linear code, it follows that (¢*(z))™ = (1 +u + w)(’f:ll) +
c(x)x®~F=1 € C. Thus, we conclude that C is a reversible complement
code. O

Example 6.1. Suppose that § = 5, then we have 2° — 1 = (z + 1)(2? + ha +
1)(2® + h?z + 1) € Fyz,0]. Let g1(x) = g2(2) = g3(2) = ga(w) = 2 + ha + 1
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and define g(z) = p191(z) + p2g2(x) + psgs(x) + paga(z) = x* + ha + 1.
Then, C' = (g(x)) is skew cyclic over R. Since g(z) exhibits self-reciprocal
characteristics and (1+u+w)( 3;6:11
code over R.

) € C leads C' to be a reversible complement

Example 6.2. Suppose that § = 7 then, we have 2% — 1 = (2 + 1)(2% +
25 +at + 23 + 22 + 2+ 1) € Fyfz,0]. Now, let g1(x) = g2(z) = g3(x) =
ga(z) =28+ 2° + 2t + 2% + 22 + 2 + 1 and define g(z) = p1g1(x) + p2ge(z) +
ps3gs(z) + paga(z) = 2® + 25 + 2* + 2% + 22 + 2 + 1. Then, C = (g(x)) is
a skew cyclic code over R. Since g(x) exhibits self-reciprocal characteristics,

and (1+u+ w)(g”;:ll) € C, leads C to be a reversible complement code over
R.

Definition 6.3. An F4R-linear code C is a DNA-skew cyclic code if it satisfies
the following conditions:

1. C is an F4R-skew cyclic code, and

2. If ¢ = (¢1,¢2) be any codeword in C, then the reverse complement ¢ =
(che,che) € C and ¢ # ™.

Theorem 6.4. Let C = ((f(x),0), (h(z)|g(z))) = Cy ® Cs be an F4R-skew
cyclic code with a block length (v, ), where h(x)) = 0. Then, C is reversible
complement if and only if f(x) and g(x) are both self-reciprocal polynomials,

(2= e C, and (1 —l—u—|—w)(ztl) € Cs.

x—1 z—1
Proof. Suppose that C' = ((f(z),0), (0, g(x))) = C,®Cs be an F4 R-skew cyclic

code with a block length (v, d), where f(z) € (fj[f]l) and g(x) € (};([{i’éi]). Then,

by Lemma 4.1 II; (C) = C, is cyclic over Fy and II;(C) = Cs is skew cyclic
over R. Assume that C is a reversible complement code and ¢ = (¢1,¢2) €
C = C, ® Cs is an arbitrary codeword. Then ¢ = (cf%, ¢5°) € C = C, ® Cs.
For any ¢; € C,, ¢{® € C, and for any ¢y € Cs, ¢5° € Cs. Hence, C,, (resp. Cs)
is a reversible complement code over Fy (resp. R).

Since Cy, = (f(z)) is cyclic reversible complement code over Fy, where
f(@)=fo+ fiz+---+ frz” and 0 = (0,0, ...,0) € C. Complement of a € Fy
is defined as @ = a + 1. So, we have 0 = (1,1,...,1) =1+a2+ - -+ 27 =
(£=1) € C and

x—1

(F@)e=1+z+-+2" 24 F2? "4 2 4 fa" T e C

Since C, is an Fy-linear code, so (f(z))" + (=) € C, where

7 —1

r—1

)=+ D)2+ (fra+ D2 4+ (fo+ 127!

— frxvfrfl + frg T4 foxwfl.

(F (@)™ +(



SKEW CYCLIC CODES OVER F4R AND THEIR APPLICATIONS TO DNA
CODES CONSTRUCTION 173

Since C is a cyclic code, ((f(x))™® + (%))CE’"“’V = fr+ froiz+ -+
fox" = f*(x) € C. Thus, we can find a polynomial p(x) € F4[z] that satisfies
f*(z) = p(z)f(z). But deg(f*(z)) < deg(f(x)) asserted that p(z) = 1, leads
f(z) = f*(z). Hence, f(z) is a self-reciprocal polynomial.

Since C5 = (g(z)) is an R-skew cyclic code, which is also a reversible
complement code. So, by Theorem 6.2 g(x) is self-reciprocal and (1 + u +
w)(£=1) e C.

Conversely, suppose that f(z) and g(z) are both self-reciprocal polynomials
with (£=1) € ¢, and (1 +u + w)(mé_l) € Cs. Then, by Theorem 6.2, it is

evidentxtﬁat C, (resp. Cs) is a reversziblle complement code over Fy (resp. R).
Now, assuming C,, and Cj are both reversible complement codes. For any
c1 € C, and ¢y € Cs, we have ¢ € C, and ¢3¢ € Cs. Consequently, for any
c=(c1,¢2) € C = C,®Cy5, we can deduce that ™ = (cf%, ¢5°) € C = C,®Cs.
Thus, it becomes apparent that C' is a reversible complement code. O

Example 6.3. For v = 17, consider the polynomial f(z) = z*+23+ha?+2+1
then f(x)|(z'" — 1) over Fy[z,0] and f(z) is self-reciprocal. So, C; = (f(x))
is a reversible complement code with parameters [17,13,5] over R. Next, for
§ =13, let g(x) = 25 + h?2® + ha® + h%z + 1, then g(x)|(z'® — 1) over Fy[z, 0]
and g(z) is self-reciprocal. Hence, Cy = (g(z)) is a reversible complement code
with parameters [13,7,5] over R. Therefore, C' = C; ® C5 is an FyR-reversible
complement code with parameters [30, 20, 5].

7 Conclusion

The primary objective of this research is to analyze the configuration of
F4R-submodule and establish their connection with DNA codes, where R =
Fy + uFy + vFy + wFy with ©? = u, v2 = v, w? =w, ww =vu =0, vw =
wv = 0, wu = uw = 0. This is achieved by examining particular subclasses
like reversible codes. Ultimately, the aim of this study is to utilize Gray maps
to derive codes that possess the characteristics of DNA structures. At the end
of this paper, we have provided the condition under which skew cyclic codes
are reversible.
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