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Similarity relations and exponential of
dual-generalized complex matrices

Nurten Gürses and Gülsüm Yeliz Şentürk

Abstract

In this study, taking into account the fundamental properties of dual-
generalized complex (DGC) matrices, various types of similarity relations
are introduced considering coneigenvalues/coneigenvectors via different
conjugates. The exponential version of DGC matrices are identified and
then their theoretical characteristic theorems are obtained. Finally, ex-
amples for DGC matrix exponential are given.

1 Introduction

Matrix applications are broadly utilized in various branches of science and
engineering such as applied mathematics, data analysis, scientific computing,
graphic software, optimization, electronics networks, airplane and spacecraft,
robotics and automation etc. (see detailed information in [15], [36], [38]).
Also, a comprehensive study about matrix theory is presented by Zhang [12]
considering quaternions [41]. Inspired by Zhang, many studies considering
different types of quaternions are conducted over matrix theory in [18], [30],
[42]. Various types of similarity relations considering numbers and quaternions
are introduced in [27], [37] and [19], [28], [39], respectively. Several proper-
ties of matrices and matrix exponential are discussed in [4], [5], [20]. In these
studies, non-commutativity of quaternions leads to numerous challenges in ap-
plications of quaternions. Unlike quaternions, dual-generalized complex (DGC)
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numbers ([32]) are constructed via the Cayley-Dickson doubling process with
the combination of generalized complex numbers ([1], [21]) and dual numbers.
Generalized complex numbers includes complex numbers ([22]), hyperbolic
numbers ([14], [23], [35]) and dual numbers ([8], [10], [23]) under special cases.
Additionally, over the years, many approaches have been taken by researchers
while studying these number systems. It is to mention that complex-dual num-
bers ([7], [16], [17], [40]), hyperbolic-dual numbers ([29], [40]) and hyper-dual
numbers ([2], [24], [25]).

It should be noted that DGC numbers are commutative. Hence, the selection
of these numbers among the others gives a convenient and a functional way
for application. From this regard, the generalization of the classical matrix
theory is discussed in [33]. It proves that well-known results in matrix theory
hold for DGC matrices as well.

This paper is organized as follows: Section 1 presents a general information
and discussion about the existing studies in the literature. Section 2 includes
fundamental concepts about DGC numbers, DGC vectors and DGC matrices. Sec-
tion 3 is devoted to various similarity relations for DGC matrices considering
coneigenvalues and coneigenvectors. Section 4 deals with the exponential of
DGC matrices and their characteristic theorems. Especially, Theorem 6 gives
the answer for the question: When does the matrix exponential satisfies the
same properties as the usual number exponential? The answer depends on the
commutativity of matrices. In this section, examples for matrix exponential
are also presented. In the last section, the conclusion is given.

2 Preliminary Information

In this section, some information about DGC numbers, DGC vectors and DGC

matrices are given to make sense of our work. In this respect, our main
reference sources are [32], [33] and [34]. Note that here and elsewhere p 6= 0
and k = 1, 2, 3.

2.1 DGC Numbers and DGC Vectors

Let us consider the set of DGC numbers as ([32])

DCp :=
{
ã = z1 + z2ε : z1, z2 ∈ Cp, ε

2 = 0, ε 6= 0, ε 6∈ R
}
.
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The aforementioned set Cp is the set of generalized complex numbers∗ ([1],
[21])

Cp :=
{
z = a+ bJ : a, b ∈ R, J2 = p, p ∈ R, J 6∈ R

}
.

Let ã1 = z11 + z12ε, ã2 = z21 + z22ε ∈ DCp and λ ∈ R. Then, the alge-
braic operations on DGC numbers are given as follows: ã1 = ã2 ⇔ z11 = z21,
z12 = z22, ã1 + ã2 = (z11 + z21) + (z12 + z22) ε, λã1 = λ (z11 + z12ε) and
ã1ã2 = (z11z21) + (z11z22 + z12z21) ε. Here the real part of ã1 is characterized
by Re(ã1) = Re(z̃11).

The notation †k represents the different conjugates and these conjugates
are defined as follows: ã†1 = z̄1 + z̄2ε, ã

†2 = z1− z2ε and ã†3 = z̄1− z̄2ε. Here
z̄1 and z̄2 represent the usual conjugate of z1, z2 ∈ Cp. Hence, the norms†k

are identified by |ã|2†k = ãã†k , k = 1, 2, 3. The multiplication of the base

elements are Jε = εJ and (Jε)2 = 0. Every DGC number ã can be written
as ã = z1 + z2ε = a1 + a2J where a1, a2 are dual numbers, (see details in
[32]). Null (isotropic) DGC numbers are the numbers with zero norm and they
identified by the following forms for a, b, c, d ∈ R:

â 0, cε, dJε, and cε+ dJε with respect to †k ;

â ±√pa+ aJ with respect to †1 and †3 where p > 0;

â ±√pa + aJ ± √pcε + cJε with respect to †1 and †3 where p > 0 and
a 6= 0.

Hence, the non-null DGC number has an inverse†k where ã−1†k =
ã†k

|ã|2†k
. Besides,

the set consists of DGC vectors is denoted by Vn and defined as

Vn := {V = (ã1, ã2, ..., ãn) : ãt ∈ DCp, t = 1, 2..., n} .

Vn is a module over DCp. The conjugate of V ∈ Vn is the conjugate of

its components. For V = (ã1, ã2, ..., ãn) , U =
(
b̃1, b̃2, ..., b̃n

)
∈ Vn and, the

standard scalar product and Hermitian†k scalar product over Vn are defined by

〈V,U〉 =
n∑
r=1

ãr b̃r = V TU and 〈V,U〉†k =
n∑
r=1

ãr b̃
†k
r = V TU†k , respectively.

The standard norm and norm†k of DGC vector V in Vn are defined as follows:
‖V ‖2 = 〈V, V 〉 and ‖V ‖2†k = 〈V, V 〉†k , respectively. If the norm of a vector
V ∈ Vn equals 1, then it is called unit vector. There exists an analogy between

∗Cp is a vector space over R. It is analogue to complex numbers ([22]) C for p = −1,
hyperbolic numbers ([14], [23], [35]) H for p = 1 and dual numbers ([8], [10], [23]) D for
p = 0. Additionally, the function theory over these numbers can be seen in the studies [11],
[31].



SIMILARITY RELATIONS AND EXPONENTIAL OF DGC MATRICES 148

V = (ã1, ã2, ..., ãn) ∈ Vn and V = V1 + V2J + V3ε + V4Jε where Vi ∈ Rn,
i = 1, 2, 3, 4. Also, null (isotropic) DGC vector in Vn is a vector which has zero
norm.

2.2 DGC Matrices

The matrix with DGC number entries is called DGC matrix (see details and
main results in [33], [34]). The DGC matrix Ã of the order m × n is of
the form Ã = [ãij ] =

[
a0ij + a1ijJ + a2ijε+ a3ijJε

]
, where ãij ∈ DCp,

i = 1, 2, ...,m and j = 1, 2, ..., n. The set of all m × n matrices with DGC

number entries is denoted by

Mm×n (DCp) :=
{
Ã = [ãij ]m×n : ãij ∈ DCp, i = 1, 2, ...,m, j = 1, 2, ..., n

}
.

A DGC matrix with all of the entries are zero is called a DGC zero matrix and
denoted by 0̃. If m = n, then Ã is called DGC square matrix. Every DGC matrix
of the order m × n can be written as Ã = A0 + A1J + A2ε + A3Jε, where
A0, A1, A2, A3 are real matrices of the same order.

Standard elementary matrix operations establish the following operations

on DGC matrices. Let Ã = [ãij ], B̃ =
[
b̃ij

]
∈ Mm×n (DCp),

C̃ = [c̃js] ∈ Mn×r (DCp) and c ∈ R. Ã and B̃ are equal if ãij = b̃ij .

The addition (and hence subtraction) is defined as Ã + B̃ = [ãij ] +
[
b̃ij

]
=[

ãij + b̃ij

]
= D̃ ∈Mm×n (DCp). The scalar multiplication of Ã by c is defined

as cÃ = [c ãij ] ∈Mm×n (DCp) . The product ÃC̃ is defined as

ÃC̃ =

 n∑
j=1

ãij c̃js

 = [ẽis] = Ẽ ∈Mm×r (DCp) .

The DGC square matrix Ã of the order n is said to be an invertible if
ÃB̃ = B̃Ã = Ĩn for DGC square matrix B̃ of the same order. The trans-
pose of Ã is denoted by ÃT and defined as ÃT = [ãji] ∈ Mn×m (DCp) or

ÃT = AT0 +AT1 J +AT2 ε+AT3 Jε. The trace of square matrix Ã, denoted

by tr(Ã), is defined as tr(Ã) =
∑n
i=1 ãii = tr(A0) + tr(A1)J + tr(A2)ε +

tr(A3)Jε. The conjugations of Ã are defined as follows:

Ã†1 = A0 −A1J +A2ε−A3Jε = (A0 +A2ε) + (−A1 −A3ε)J,

Ã†2 = A0 +A1J −A2ε−A3Jε = (A0 −A2ε) + (A1 −A3ε)J,

Ã†3 = A0 −A1J −A2ε+A3Jε = (A0 −A2ε) + (−A1 +A3ε)J.
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Moreover, for any DGC square matrix Ã of the order n, Ã is symmetric
(skew-symmetric) if and only if Ã = ÃT (Ã = −ÃT ), Ã is Hermitian†k(skew-
Hermitian†k) if and only if ÃT = Ã†k(ÃT = −Ã†k), Ã is orthogonal if and only
if ÃÃT = ÃT Ã = Ĩn, Ã is unitary†k if and only if ÃÃ?k = Ã?kÃ = Ĩn, where(
ÃT
)†k

=
(
Ã†k

)T
= Ã?k . Also, the DGC matrix Ã is said to be normal†k

if ÃÃ?k = Ã?kÃ. The identity, diagonal, scalar, upper/lower triangular and
triangular DGC matrices are defined by in a familiar way.

The determinant of Ã is defined by a familiar way and it exhibits the
features of the standard determinant. Namely, it act same as real matrices. If
det(Ã) is a non-null DGC number, then Ã is invertible and its inverse can be
obtained by the formula

Ã−1 =
1

det(Ã)
adj(Ã), (1)

where adj(Ã) is the classical adjoint of a matrix. Ã is not invertible when
det(Ã) is a null DGC number. In other respects, it is also possible to calculate
Ã−1 considering conjugate†k denoting as Ã−1†k , where the notation †k represents

det(Ã) is non-null for conjugate†k . For instance, if det(Ã) is null†1 but non-
null†2 for a DGC matrix Ã, then Ã−1†2 can be obtained but Ã−1†1 does not exist

([33], [34]).
For dual matrices A1 and A2, every Ã = A1 + A2J ∈ Mn (DCp) has a dual

matrix representation

χ(Ã) =

[
A1 pA2
A2 A1

]
∈ D∗ (2)

where

D∗ :=

{[
A1 pA2
A2 A1

]
: A1, A2 ∈Mn (D)

}
⊂M2n (D) .

Here χ(Ã) is called dual fundamental matrix of Ã.

Any DGC square matrix Ã can be rewritten as Ã ∼=
[
A1
A2

]
. Then, for DGC

square matrices Ã and B̃ = B1+B2J , we have ÃB̃ =

[
A1 pA2
A2 A1

] [
B1
B2

]
= χ(Ã)B̃.

Let Ã ∈Mn (DCp) and V ∈ Vn be a non-null vector. If ÃV = λV for some

λ ∈ DCp, then λ is called an eigenvalue of Ã and V is called an eigenvector of

Ã associated with λ. Those eigenvalues are said to be the standard eigenvalues
of Ã. Besides, if λ is an eigenvalue of Ã corresponding to the eigenvector V ,
then cλ is an eigenvalue of cÃ corresponding to the same eigenvector V , where
c is a non-zero real scalar.
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3 Similarity Relations for DGC Matrices

In this section, the similarity relations for DGC matrices considering coneigen-
values and coneigenvectors are discussed. It is known that the eigenvalue/
eigenvector theory is one of the key stage for different disciplines of sciences.
They are widely used in engineering applications to utilize efficient and accu-
rate computation way. Moreover, they have been further applied in differential
equation theory, information system design, nonlinear optimization, economics
and etc.

The studies [27], [37] motivate the rest of this paper. It is interesting to
express a DGC matrix as a product of DGC matrices with special nature.

The following definition is an analog of the standard eigenvalues and eigen-
vectors. As compared to the standard eigenvalues and eigenvectors, we present
their extended versions here.

Definition 1. Let Ã ∈Mn (DCp) and V ∈ Vn be a non-null vector with

ÃV †k = λV (3)

for some λ ∈ DCp. Then, λ is called a coneigenvalue†k of Ã and V is called a

coneigenvector†k of Ã associated with λ. The set of all coneigenvalues†k of Ã
is denoted by σ†k(Ã).

Lemma 1. If λ is a coneigenvalue†k of DGC matrix Ã corresponding to the
coneigenvector†k V , then cλ is an coneigenvalue†k of cÃ corresponding to the
same coneigenvector†k V , where c is a non-zero real scalar.

Theorem 1. For any DGC square matrix Ã, if λ is a coneigenvalue†k of Ã
then γ†kλγ−1 ∈ DCp is also a coneigenvalue†k of Ã for non-null DGC number
γ.

Proof. Let λ be a coneigenvalue†k of Ã ∈Mn ∈ (DCp). From equation (3), we
can write that

ÃV †kγ−1 =
(
γ†kλγ−1

) (
V γ−1†k

)
.

Hence γ†kλγ−1 ∈ DCp is a coneigenvalue†k of Ã that corresponds to the vector
V γ−1†k .

Definition 2. Let Ã, B̃ ∈Mn (DCp), the following definitions are given:

â Ã and B̃ are called similar if there exists an invertible DGC matrix of the
same order P̃ such that

B̃ = P̃−1ÃP̃ . (4)
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â Ã and B̃ are called consimilar†k if there exists an invertible DGC matrix
of the same order P̃ such that

B̃ = P̃ †kÃP̃−1. (5)

Here, we need to remind equation (1) for invertible DGC matrices.

Theorem 2. For any DGC matrices of the same order Ã and B̃;

â if Ã is similar to B̃, then Ã and B̃ has same eigenvalues.

â if Ã is consimilar†k to B̃, then Ã and B̃ has same coneigenvalues†k .

Proof. We sketch the steps for consimilar†k and leave the details for similar to
the reader. For Ã, B̃ ∈Mn (DCp), let Ã be consimilar†k to B̃ and λ ∈ DCp be

a coneigenvalue†k of Ã. By supposing U†k = P̃ V †k and considering equations
(3) and (5), we have

B̃U†k = P̃ †kÃP̃−1U†k

= P̃ †kÃV †k

= P̃ †kλV
= λU.

Thus λ ∈ DCp is a coneigenvalue†k of B̃.

Definition 3. If Ã is DGC diagonalizable, then there exists an invertible DGC

matrix P̃ such that Ã = P̃ D̃P̃−1 where D̃ is a DGC diagonal matrix. Here the
column vectors of P̃ are eigenvectors of Ã, and the diagonal entries of D̃ are
the corresponding eigenvalues of Ã.

The following definition describes another similarity relations.

Definition 4. Let Ã, B̃ ∈Mn (DCp), the following definitions are given:

â Ã and B̃ are called semi-similar if there exist DGC matrices of the same
order X̃ and Ỹ such that

Ỹ ÃX̃ = B̃ and X̃B̃Ỹ = Ã. (6)

â Ã and B̃ are called semi-consimilar†k if there exist DGC matrices of the
same order X̃ and Ỹ such that

Ỹ †kÃX̃ = B̃ and X̃†kB̃Ỹ = Ã. (7)

Theorem 3. Let Ã, B̃, X̃, Ỹ ∈Mn (DCp). If Ã is semi-similar to B̃, then the
following statements hold:
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i) Ã2qX̃ = X̃B̃2q and B̃2qỸ = Ỹ Ã2q,

ii) (X̃Ỹ )qÃ(X̃Ỹ )q = Ã and (Ỹ X̃)qB̃(Ỹ X̃)q = B̃,

where q is positive integer.

Proof. Let Ã be semi-similar to B̃.

i) According to equations (6) and (7), we can write that{
Ã = X̃B̃Ỹ = (X̃Ỹ )Ã(X̃Ỹ )

B̃ = Ỹ ÃX̃ = (Ỹ X̃)B̃(Ỹ X̃).
(8)

With these two facts in mind, one can calculate{
Ã2X̃ = (X̃B̃Ỹ )(X̃B̃Ỹ )X̃ = X̃B̃2

B̃2Ỹ = (Ỹ ÃX̃)(Ỹ ÃX̃)Ỹ = Ỹ Ã2.

Using the same procedure, the proof is completed for q ∈ Z+.

ii) Based on equation (8), we have

Ã = (X̃Ỹ )Ã(X̃Ỹ )

= (X̃Ỹ )(X̃B̃Ỹ )(X̃Ỹ )

= (X̃Ỹ )X̃(Ỹ ÃX̃)Ỹ (X̃Ỹ )

= (X̃Ỹ )2Ã(X̃Ỹ )2.

Similarly we obtain B̃ = (Ỹ X̃)2B̃(Ỹ X̃)2. Upon these, we complete the
proof by applying the same process for q ∈ Z+.

Theorem 4. Let Ã, B̃, X̃, Ỹ ∈ Mn (DCp). If Ã is semi-consimilar†k to B̃,
then the following statements hold:

i) (X̃†k Ỹ †k)qÃ(X̃Ỹ )q = Ã and (Ỹ †kX̃†k)qB̃(Ỹ X̃)q = B̃,

ii) (ÃÃ†k)qX̃†k = X̃†k(B̃B̃†k)q and Ỹ †k(ÃÃ†k)q = (B̃B̃†k)qỸ †k ,

where q is positive integer.

Proof. Let Ã be semi-consimilar†k to B̃.
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i) From equation (7), we can write that

Ã = X̃†kB̃Ỹ

= X̃†k(Ỹ †kÃX̃)Ỹ

= (X̃†k Ỹ †k)Ã(X̃Ỹ )

= (X̃†k Ỹ †k)X̃†kB̃Ỹ (X̃Ỹ )

= (X̃†k Ỹ †k)X̃†k( ˜Y †kÃX̃)Ỹ (X̃Ỹ )

= (X̃†k Ỹ †k)2Ã(X̃Ỹ )2.

In same manner, we have (X̃†k Ỹ †k)qÃ(X̃Ỹ )q = Ã for q ∈ Z+. The proof
of (Ỹ †kX̃†k)qB̃(Ỹ X̃)q = B̃ is completed by repeating these arguments.

ii) Considering equation (7), we have

ÃÃ†kX̃†k = (X̃†kB̃Ỹ )(X̃†kB̃Ỹ )†kX̃†k

= (X̃†kB̃Ỹ )(X̃B̃†k Ỹ †k)X̃†k

= X̃†kB̃(Ỹ X̃B̃†k Ỹ †kX̃†k).

We conclude from equation (7) that B̃†k = (Ỹ †kÃX̃)†k = Ỹ Ã†kX̃†k and
Ã†k = (X̃†kB̃Ỹ )†k = X̃B̃†k Ỹ †k , hence that

B̃†k = Ỹ Ã†kX̃†k = Ỹ X̃B̃†k Ỹ †kX̃†k

and finally that
ÃÃ†kX̃†k = X̃†kB̃B̃†k .

We leave the details to the reader for q ∈ Z+. A similar reasoning allows
us to prove that the second one.

The general inverse of DGC square matrix which one is different from the
standard one establish another similarity relations.

Definition 5. Let Ã ∈ Mn (DCp). If there exists a DGC square matrix of the

same order X̃ such that ÃX̃Ã = A, then X̃ is called generalized inverse of Ã
and denoted by Ã−.

Definition 6. For any Ã, B̃ ∈Mn (DCp), the following definitions are given:

â Ã is pseudo-similar to B̃ if there exist DGC square matrices X̃ and X̃−

such that

X̃−ÃX̃ = B̃, X̃B̃X̃− = Ã and X̃X̃−X̃ = X̃.

â Ã is pseudo-consimilar†k to B̃ if there exist DGC square matrices X̃ and
X̃− such that(

X̃−
)†k

ÃX̃ = B̃, X̃†kB̃X̃− = Ã and X̃X̃−X̃ = X̃.
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4 Exponential of DGC Matrices

Exponential function which has applications in many real-world situations,
such as finding exponential decay or exponential growth, can be extended
to the complex numbers or generalized to other mathematical objects like
matrices. It is also commonly used in many areas such as biological sciences
for modelling. Besides, the exponential notion is an efficient for Lie algebra
since it enables to determine many structures.

In this section, we will introduce the definition of DGC matrix exponential
function through a series of DGC square matrix of the order n and obtain some
related results. It is worth to note that the definition of the matrix exponential
transform into the usual definition of the exponential for DGC numbers for
n = 1.

For each DGC square matrix Ã of the order n, let us define the exponential
of Ã to be the DGC matrix

eÃ =

∞∑
s=0

1

s!
Ãs = Ĩn + Ã+

1

2!
Ã2 + ...+

1

s!
Ãs + ... (9)

Similar to the ordinary exponential function, the above matrix exponential
is a matrix function on square DGC matrices.

Lemma 2. If D̃ = diag{d̃1, d̃2, ..., d̃n} is a DGC diagonal matrix with
d̃i ∈ DCp, 1 ≤ i ≤ n , then

eD̃ = diag
{
ed̃1 , ed̃2 , ..., ed̃n

}
.

Proof. If D̃ = diag{d̃1, d̃2, ..., d̃n} is DGC diagonal, then according to equation
(9) the following is written:

eD̃ = Ĩn + D̃ + 1
2!D̃

2 + 1
3!D̃

3 + ...

=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

+


d̃1 0 · · · 0

0 d̃2 · · · 0
...

...
. . .

...

0 0 · · · d̃n

+


d̃21
2! 0 · · · 0

0
d̃22
2! · · · 0

...
...

. . .
...

0 0 · · · d̃2n
2!

+ ...

We thus get

eD̃ =


1 + d̃1 +

d̃21
2!

+
d̃31
3!

+ · · · 0 · · · 0

0 1 + d̃2 +
d̃22
2!

+
d̃32
3!

+ · · · · · · 0
...

...
. . .

...

0 0 · · · 1 + d̃n +
d̃2n
2!

+
d̃3n
3!

+ · · ·

 .
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This final matrix gives eD̃ =


ed̃1 0 · · · 0

0 ed̃2 · · · 0
...

...
. . .

...

0 0 · · · ed̃n

. So the proof is com-

pleted.

Lemma 3. Let Ã =

[
ã b̃
0 c̃

]
∈M2 (DCp). Then,

â If ã = c̃, eÃ = eã
[
1 b̃
0 1

]
,

â If ã 6= c̃ and ã− c̃ is non-null, eÃ =

eã b̃(eã−ec̃)
ã−c̃

0 ec̃

.

Proof. Using induction on n = 1, 2, ..., the proof can be easily completed.
Here equation (9) is considered with the powers of the upper triangular matrix

Ã =

[
ã b̃
0 c̃

]
∈M2 (DCp).

Proposition 1. For any DGC square matrices of the same order Ã and B̃, the
followings hold:

i) e0̃ = In where 0̃ represents DGC zero matrix,

ii) ÃmeÃ = eÃÃm for every integer m,

iii)
(
eÃ
)T

= e(Ã
T ),

iv) If ÃB̃ = B̃Ã then ÃeB̃ = eB̃Ã and eÃeB̃ = eB̃eÃ.

Proof. i) Using equation (9), we have e0̃ = Ĩn+0̃+ 1
2! 0̃

2+...+ 1
s! 0̃

s+... = In.

ii) Considering equation (9), we obtain

ÃmeÃ = Ãm
(
Ĩn + Ã+ 1

2! Ã
2 + 1

3! Ã
3 + ...

)
= Ãm + Ãm+1 + 1

2! Ã
m+2 + 1

3! Ã
m+3 + ...

=
(
Ĩn + Ã+ 1

2! Ã
2 + 1

3! Ã
3 + ...

)
Ãm

= eÃÃm

for every integer m.
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iii) It is obvious from equation (9) by applying (Ãs)T = (ÃT )s, s = 0, 1, . . .

iv) Supposing ÃB̃ = B̃Ã and using equation (9), we get

ÃeB̃ = Ã
(
Ĩn + B̃ + 1

2! B̃
2 + 1

3! B̃
3 + ...

)
= Ã+ ÃB̃ + 1

2! ÃB̃ + 1
3! ÃB̃ + ...

= Ã+ B̃Ã+ 1
2! B̃Ã+ 1

3! B̃Ã+ ...

= eB̃Ã.

With similar thought, eÃeB̃ = eB̃eÃ can be proved† quickly.

Proposition 2. For any DGC square matrix Ã and real numbers x1, x2, the
following equality hold:

eÃ(x1+x2) = eÃx1eÃx2 .

Proof. Considering equation (9), an easy calculation gives that

eÃx1eÃx2 =
(
Ĩn + Ãx1 + 1

2! Ã
2x21 + ...

)(
Ĩn + Ãx2 + 1

2! Ã
2x22 + ...

)
=

( ∞∑
i=0

1
i! Ã

ixi1

)( ∞∑
j=0

1
j! Ã

jxj2

)
=

∞∑
i=0

∞∑
j=0

1
i!j! Ã

i+jxi1x
j
2.

Taking n = i+ j, we conclude that

eÃx1eÃx2 =
∞∑
n=0

∞∑
j=0

1
(n−j)!j! Ã

nxn−j1 xj2

=
∞∑
n=0

1
n! Ã

n
∞∑
j=0

n!
(n−j)!j!x

n−j
1 xj2

=
∞∑
n=0

1
n! Ã

n (x1 + x2)
n
.

This completes the proof.

Lemma 4. The DGC matrix exponential is always invertible.

Proof. Writing x1 = 1 and x2 = −1 in Proposition 2 yields

eÃe−Ã = eÃ−Ã = e0 = Ĩn.

†It can also be proved by using Theorem 5.
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Extending classical identities of matrix exponential to DGC matrices, we
obtain the following theorems in light of dual fundamental matrix (see equation
(2)).

Theorem 5. For any DGC square matrix Ã, the exponential of dual funda-
mental matrix of Ã and dual fundamental matrix of exponential of Ã is equal,
that is

eχ(Ã) = χ
(
eÃ
)
. (10)

Proof. Let Ã ∈Mn (DCp) be given and χ
(
Ã
)

be dual fundamental matrix of

Ã. Then using equation (9) and properties‡ of χ
(
Ã
)

, we obtain

eχ(Ã) = Ĩ2n + χ
(
Ã
)

+ 1
2!

((
χ(Ã

))2
+ 1

3!χ
((
Ã
))3

+ ...

= χ
(
Ĩn + Ã+ 1

2! Ã
2 + 1

3! Ã
3 + ...

)
.

It is clear that eχ(Ã) = χ
(
eÃ
)

.

The previous auxiliary relation will be used in the proof of next theorems.

Theorem 6. For any DGC square matrices of the same order Ã and B̃, if
ÃB̃ = B̃Ã, then we have

eÃ+B̃ = eÃeB̃ . (11)

Proof. Let Ã and B̃ be any commute DGC matrices of same order. Then ÃB̃ =

B̃Ã ⇔ χ
(
ÃB̃
)

= χ
(
B̃Ã
)

(see in [33]). Hence the properties

χ(ÃB̃) = χ(Ã)χ(B̃) and χ(B̃Ã) = χ(B̃)χ(Ã) (see in [33]) clearly forces χ
(
Ã
)

and χ
(
B̃
)

are also commute. As the statement true for dual matrices§, we

can write that
eχ(Ã+B̃) = eχ(Ã)+χ(B̃) = eχ(Ã)eχ(B̃).

Equation (10) and now leads to

χ(eÃ+B̃) = χ(eÃeB̃).

We thus get eÃ+B̃ = eÃeB̃ .

‡see properties in [33]: for Ã, B̃ ∈ Mn (DCp) and c ∈ R, χ
(
Ã+ B̃

)
= χ

(
Ã
)

+ χ
(
B̃
)

,

χ
(
Ĩn

)
= I2n, χ

(
cÃ

)
= cχ

(
Ã
)

, χ
(
ÃB̃

)
= χ

(
Ã
)
χ
(
B̃
)
.

§For commutative dual matrices A and B of the same order, we have eA+B = eAeB consid-
ering their real fundamental matrices.
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This means that it makes no difference for exponential whether Ã and B̃
are numbers or matrices under the condition that Ã and B̃ commute.

Theorem 7. For any DGC square matrix Ã, if the DGC matrix P̃ is invertible,
then we have

eP̃
−1ÃP̃ = P̃−1eÃP̃ .

Proof. Let Ã ∈Mn (DCp) and assume that P̃ is invertible. Considering prop-

erties χ
(
ÃB̃
)

= χ
(
Ã
)
χ
(
B̃
)

and χ
(
Ã−1

)
= χ

(
Ã
)−1

(see in [33]), we write

that
χ(P̃−1ÃP̃ ) = χ(P̃ )−1χ(Ã)χ(P̃ ). (12)

As the statement true for dual matrices¶, we have

eχ(P̃ )−1χ(Ã)χ(P̃ ) = χ(P̃ )−1eχ(Ã)χ(P̃ ). (13)

Equations (12) and (13) gives

eχ(P̃
−1ÃP̃ ) = χ(P̃ )−1eχ(Ã)χ(P̃ ). (14)

Then by applying equations (10) and (12) to equation (14) yields

χ
(
eP̃
−1ÃP̃

)
= χ

(
P̃−1eÃP̃

)
.

According to the property χ
(
Ã
)

= χ
(
B̃
)
⇔ Ã = B̃ (see in [33]),

eP̃
−1ÃP̃ = P̃−1eÃP̃ is obtained.

Corollary 1. If Ã is DGC diagonalizable, then from Definition 3, there exists
an invertible DGC matrix P̃ such that Ã = P̃ D̃P̃−1 where D̃ is a DGC diagonal

matrix. Hence considering Theorem 7, we can write eÃ = P̃ eD̃P̃−1.

Theorem 8. For a DGC square matrix Ã and λ ∈ R, if λ is an eigenvalue of

Ã, then eλ is an eigenvalue of the DGC matrix eÃ.

Proof. Suppose that λ ∈ R is an eigenvalue of Ã ∈ Mn (DCp). Then we can

write ÃV = λV where V is non-null eigenvector associated with λ. Bearing
in mind this fact and using equation (9), we have

eÃV = V + ÃV + Ã2

2! V + Ã3

3! V + ...

= V + λV + λ2

2! V + λ3

3! V + ...
= eλV.

¶For dual matrix A, if P is invertible dual matrix then we have eP
−1AP = P−1eAP considering

real fundamental matrix.
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We thus get eλ is an eigenvalue of the DGC matrix eÃ with the same corre-
sponding eigenvector V.

Corollary 2. For any DGC square matrix Ã, if λ ∈ R is an eigenvalue of

χ
(
Ã
)

, then eλ is also an eigenvalue of the DGC matrix eÃ.

Theorem 9. For any DGC square matrix Ã of order n, we have

i) Ã = B̃ + xIn,

ii) eÃ = exeB̃,

where x is a real number and B̃ is a DGC matrix of order n satisfied that

Re
(

tr
(
B̃
))

= 0.

Proof. Let Ã = [ãij ] ∈Mn (DCp).

i) We get

Re
(

tr(Ã)
)

= Re

(
n∑
i=1

ãii

)
=

n∑
i=1

Re (ãii) .

Suppose that x = 1
n

n∑
i=1

Re (ãii) . Thus, we obtain

n∑
i=1

Re (ãii − x) =
n∑
i=1

Re (ãii)− nx

=
n∑
i=1

Re (ãii)− n 1
n

n∑
i=1

Re (ãii) = 0.

Taking

B̃ =
[
b̃ij

]
=

{
b̃ij = ãij − x, i = j

b̃ij = ãij , i 6= j,

we can assert that Ã = B̃ + xIn, which satisfied that Re
(

tr
(
B̃
))

= 0.

ii) By the above, we have Ã = B̃+ xIn. Then considering equation (11), it
happens that

eÃ = exIneB̃

since (xIn)B̃ = B̃(xIn). Furthermore, using equation (9), we can write

exIn = exIn. Finally, we have eÃ = exeB̃ .
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We end this section presenting examples about exponential of DGC square
matrices. For the convenience of the study, we prefer to use the same coeffi-
cients for the DGC square matrices Ã in [33] to compute their exponential.

Example 1. Let us take Ã =

[
1 0
0 J + ε

]
for p > 0. Then χ

(
Ã
)

=


1 0 0 0
0 ε 0 p
0 0 1 0
0 1 0 ε


with eigenvalues λ1 = λ2 = 1, λ3 = −√p + ε, λ4 =

√
p + ε and corresponding

eigenvectors α1 =
[
0 0 1 0

]T
, α2 =

[
1 0 0 0

]T
,

α3 =
[
0 −√p 0 1

]T
, α4 =

[
0
√
p 0 1

]T
, respectively. We thus get

χ
(
Ã
)

= P diag{1, 1,−
√
p + ε,

√
p + ε}P−1,

where P is the regular matrix whose columns are formed from the eigenvectors

of χ
(
Ã
)

such that P =
[
α1 α2 α3 α4

]
(see [33]).

Using the property of the exponential of dual matrices‖, we can write

eχ(Ã) = PeDP−1 where D is the diagonal matrix whose main diagonal entries

are eigenvalues of χ
(
Ã
)

. Then we have

eχ(Ã) =


0 1 0 0
0 0 −√p √

p
1 0 0 0
0 0 1 1



e 0 0 0
0 e 0 0

0 0 e−
√
p+ε 0

0 0 0 e
√
p+ε




0 0 1 0
1 0 0 0
0 − 1

2
√
p

0 1
2

0 1
2
√
p

0 1
2



=


e 0 0 0

0 e−
√

p+ε+e
√

p+ε

2 0
−√pe−

√
p+ε+

√
pe
√

p+ε

2
0 0 e 0

0 −e−
√

p+ε+e
√

p+ε

2
√
p

0 e−
√

p+ε+e
√

p+ε

2

 .
By using equations (2) and (10), we get

eÃ =

[
e 0

0
(
√
p−J)e−

√
p+ε+(

√
p+J)e

√
p+ε

2
√
p

]
. (15)

Alternatively, Lemma 2 is applicable since Ã is a DGC diagonal matrix.
Considering Lemma 2, one can see the result as

eÃ =

[
e 0
0 eJ+ε

]
. (16)

‖For further information of dual numbered matrices, we refer to study [9].
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It is worth to note that equations (15) and (16) are same bearing in mind the
expansion of eJ+ε.

Example 2. Let us consider Ã =

[
1 0

J + ε J

]
for p = 9. Then

χ
(
Ã
)

=


1 0 0 0
ε 0 9 9
0 0 1 0
1 1 ε 0

 with eigenvalues λ1 = −3, λ2 = 3, λ3 = λ4 = 1

and corresponding eigenvectors α1 =
[
0 −3 0 1

]T
, α2 =

[
0 3 0 1

]T
,

α3 =
[
− 8

1+ε
9+ε
1+ε 0 1

]T
, α3 =

[
− 9+ε

1+ε
9

1+ε 1 0
]T

, respectively. Thus

we have χ
(
Ã
)

= P diag{−3, 3, 1, 1}P−1, where P =
[
α1 α2 α3 α4

]
(see

[33]). Writing eχ(Ã) = Pdiag{e−3, e3, e, e}P−1, eχ(Ã) is computed as follows:

eχ(Ã) =


e 0 0 0

−−3+ε−2e
6(3+ε)+e4(9+ε)
8e3

1+e6

2e3
3(−3+ε−3e4(1+ε)+2e6(3+ε))

8e3
3(−1+e6)

2e3

0 0 e 0

−3+ε−3e4(1+ε)+2e6(3+ε)
24e3

−1+e6
6e3 −−3+ε−2e

6(3+ε)+e4(9+ε)
8e3

1+e6

2e3

 .

Finally, by using equations (2) and (10), eÃ can be written such that

eÃ =

[
e 0

−−3+ε−2e
6(3+ε)+e4(9+ε)
8e3

1+e6

2e3

]
+J

[
0 0

−3+ε−3e4(1+ε)+2e6(3+ε)
24e3

−1+e6
6e3

]
.

(17)

Additionaly, by writing Ã = B̃ + 1
2In, where B̃ =

[
1
2 0

J + ε J − 1
2

]
,

Re
(

tr
(
B̃
))

= 0 (see Theorem 9), equation (17) can also be obtained. By

calculating eχ(B̃) = Pdiag{e− 7
5 , e

5
2 , e

1
2 , e

1
2 }P−1 and considering equations (2)

and (10), eÃ = e
1
2 eB̃ is clear.

The given examples provide an application of how the matrix exponential
is applied to a DGC matrix. It is worth to point that the computing the
exponential of a DGC matrix is more elaborated than computing the exponential
of a real, complex or dual matrices. Hence, in this applications, the role of the
dual fundamental matrix is quite considerable for computing.
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5 Conclusion

This paper develops various types of similarity relations and the exponential
form of DGC matrices by proving several characteristic theorems. It is surely
beyond doubt that, considering the dual fundamental matrix of any DGC square
matrix is the main advantage of performing this construction. The sparked in-
terest over dual matrix theory in science and engineering is one of the primary
motivation of considering DGC matrices with their dual fundamental matrices.
Dual matrices have a wide application area in fields of science and engineer-
ing, such as the kinematic analysis and synthesis of spatial mechanisms, robot
manipulators [3], [6], [9], [13], [26].

Another point worth mentioning is that one can establish the results and
discussions of this study for dual-complex matrices for p = −1 and dual-
hyperbolic matrices for p = 1 matrices. We hope that the results obtained in
this study will become an important guide in many scientific fields and enables
a more accurate way for computing. Also, for future work, we are planning to
study on many different DGC matrix decompositions and discuss the solution
methods of linear equation systems with DGC matrices taking into account the
commutativity advantage of DGC numbers.
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