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On the dual quaternion geometry of screw
motions

Tülay Erişir, Gökhan Mumcu, Sezai Kızıltuğ and Yusuf Yaylı

Abstract

In this study, the screw motions are studied using dual quaternions
with the help of different perspectives. Firstly, orthogonality definition
of dual quaternions is given and geometric interpretation of orthogonal-
ity condition is made. Then, the definition of dual circle is given using
orthogonal dual quaternions and it is proved that this dual circle can
represent the set of all screw motions. Also, these given theorems are
reinforced with some conclusions. In addition, it is seen that a dual
quaternion represents a screw motions as a screw operator therefore,
other dual quaternions derived from the same dual quaternion represent
the same screw motions. Then, it is seen that a screw motions symbol-
ized by a dual quaternion transforms one dual vector to another, and
when the sign of the dual vectors changes, it provides the same screw
motions. Consequently, the answer of the question “Which dual circles
symbolizing screw motions are dual orthonormal to each other?” is given
and an important conclusion is obtained regarding this.

1 Introduction

Quaternions were first obtained in 1843 by Irish mathematician William R.
Hamilton by generalizing complex numbers [1]. Quaternions, an alternative
way of describing rotation motions play important role not only in mathe-
matics but also in physics, engineering and many application areas of science.
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Quaternions are used in many different areas such as solving the gimbal lock
problem in the motions of aircraft, forward and backward kinematics prob-
lems in robotics, and smooth transitions in computer games. It is also used in
many disciplines such as graphic designs and physical problems [2, 3, 24, 25].
On the other hand, dual numbers were first put forward by mathematician
scientist W. Clifford in 1873 [10]. Dual numbers, in short, are pairs that can
be expressed as x + εx∗ where x, x∗ are real numbers and the unit ε is a
dual unit that satisfies ε2 = 0. The discovery of dual numbers has led to
many studies. One of them is the finding of dual quaternions. Also, dual
quaternions which are an extension of real quaternions were proposed by Clif-
ford [10]. The dual quaternions represent both rotations and translations [11].
Majernik emphasized that the set of dual quaternions is a vector space on the
field of real numbers and its dimension is eight [4]. In another study, Ma-
jernik expressed Galilean space-time transformations using dual quaternions
[5]. The dual quaternions are a compact representation that combines dual
numbers and real quaternions and offers useful analytical features. Although
dual quaternion are eight dimensional, they are the most efficient and useful
way to represent screw motions, i.e both translation and rotation transforma-
tions. In addition, Kula and Yaylı showed the commutative multiplication of
dual numbers by using multiplication in dual quaternions [8]. Later, Yaylı
and Tütüncü studied generalized Galilean transformations and dual quater-
nions [6]. In addition to these studies, Yaylı et al. have studies with dual
quaternions [15, 16, 17, 18, 19]. In addition, Güngör and Sarduvan gave dual
quaternion and dual quaternion matrices [20]. Euler’s formula, De-Moivre
formula and matrix representations of dual quaternions were given by Ercan
and Yüce [7]. Later, many scientists presented many studies on quaternions
and dual quaternions [12, 13, 14, 15, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32].
Examples of dual quaternion applications are applications such as robotics
studies, back and forth kinematics problems, improvements in digital imag-
ing, computer games. In geometry, on the other hand, it has attracted a lot
of attention recently by geometers, thanks to the fact that a very short and
pleasant representation of motions with dual quaternions is obtained. As is
known, dual quaternions are isomorphic to four-dimensional dual space D4.
In addition, the points of the unit dual sphere D − Module match one to
one with the directional lines of the real space R3 with the aid of E. Study
transformation given by the German mathematician E. Study [11]. Therefore,
thanks to the E. Study transformation defined in dual space, the motions in
space R3 can be expressed with dual quaternions. The motions in this study,
which is expressed with dual quaternions, are the screw motions. These mo-
tions that express a rotation around a dual axis and a translation through
same axis are called screw motions. The operator which makes these motions
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is called the screw operator. Therefore, dual quaternions can be considered as
screw operators. Hence, dual quaternions are the operator that superimposes
a line in R3 by rotating and translation on another line with the help of the
E. Study transform [2]. In addition, since the motions in the space R3 can be
easily expressed with dual quaternions, these quaternions are used in robotic
applications and to obtain kinematic expressions. Dual quaternions offered
alternative solutions in robot kinematics. In addition, extensive information
is given about the application of dual number theory to kinematic problems
in the book of Bottema and Roth in 1979 [9].

2 Preliminaries

In this section, we give some definition and theorems about dual quaternions.

Definition 1. Assume that q = q0+q1i+q2j+q3k and q∗ = q∗0+q∗1i+q∗2j+q∗3k
are two real quaternions in quaternion space H where i2 = j2 = k2 = −1,
ij = −ji = k, jk = −kj = i, and ki = −ik = j. Therefore, the quaternion

Q = q + εq∗

is called dual quaternion in HD where ε2 = 0 [2].

Moreover, if we take the dual numbers as

Q0 = q0 + εq∗0, Q1 = q1 + εq∗1, Q2 = q2 + εq∗2, Q3 = q3 + εq∗3

then, we get the dual quaternion Q in HD as

Q = Q0 +Q1i+Q2j +Q3k.

Now, we consider ScQ = Q0 and V ecQ = ~Q = Q1i + Q2j + Q3k. Hence,
the dual quaternion Q can be written by Q = ScQ + V ecQ where ScQ is
called as the scalar part and V ecQ is also called the vectorial part of the dual
quaternion Q. If Q is chosen by Q = ~Q ∈ V ecHD ∼= D −Module then, Q
is called as pure dual quaternion. In addition to that, the set of all scalars
(dual numbers) can be denoted ScHD ∼= D. Therefore, D and D−Module are
embedded in HD [2].

Now, we suppose that any two dual quaternions are P = P0 +P1i+P2j +
P3k, Q = Q0 + Q1i + Q2j + Q3k ∈ HD. Hence, the dual quaternion product
of P,Q ∈ HD is given by

Q× P = Q0P0 − 〈 ~Q, ~P 〉+Q0
~P + P0

~Q+ ~Q∧~P (1)
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where 〈 , 〉 and ∧ are scalar and vectorial product in D−Module. Therefore,
we can write

i) Sc(Q× P ) = Q0P0 − 〈 ~Q, ~P 〉

ii) V ec(Q× P ) = Q0
~P + P0

~Q+ ~Q∧~P .

Moreover, if the dual quaternion multiplication in equation (1) reduces for
pure dual quaternions Q,P ∈ V ecHD then, we have the equation

Q× P = ~Q× ~P = −〈 ~Q, ~P 〉+ ~Q∧~P

where Sc(Q×P ) = −〈 ~Q, ~P 〉 and V ec(Q×P ) = ~Q∧~P for pure dual quaternions
Q,P ∈ V ecHD [2].

Definition 2. Let the dual quaternion be Q = ScQ+V ecQ = Q0+Q1i+Q2j+
Q3k. In this case, there are three definitions of dual quaternion conjugate as
follows

i) Quaternion Conjugate : Q = ScQ− V ecQ = Q0 −Q1i−Q2j −Q3k,

ii) Dual Conjugate : Q∗ = (ScQ)∗ + (V ecQ)∗ = Q∗0 +Q∗1i+Q∗2j +Q∗3k,

iii) Total Conjugate : (Q)∗ = (ScQ)∗ − (V ecQ)∗ = Q∗0 −Q∗1i−Q∗2j −Q∗3k,

[2].

Considering Definition 2, we have

i) ScQ = Q0 =
1

2
(Q+Q)

ii) V ecQ = ~Q =
1

2
(Q−Q)

iii) V ecQ = −V ecQ

(2)

for Q ∈ HD. Moreover, for pure dual quaternion Q we get

Q = −V ecQ = − ~Q = −Q

and for pure dual quaternions P,Q ∈ HD, we have

i) Sc(P ×Q) = Q0 = −1

2
(P ×Q+Q× P ) = 〈~P , ~Q〉,

ii) V ec(P ×Q) = −1

2
(P ×Q−Q× P ) = −~P∧ ~Q

[2].
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Definition 3. The norm of any dual quaternion Q in HD is defined as

‖Q‖2 = Q×Q = Q2
0 +Q2

1 +Q2
2 +Q2

3

and called the norm of Q where ‖‖ is norm in D4 [2].

The norm of dual quaternions coincides with the norm of HD regarded as
an element of the dual space D4.

If ‖Q‖ = (1, 0) = 1 then, Q is called unit dual quaternion. We know that
each non-zero dual quaternion Q has a unique inverse

Q−1 =
Q

‖Q‖

where ‖Q−1‖ = ‖Q‖−1 [2]. If we assume that the dual quaternion Q is unit
hence, Q−1 = Q. If the dual quaternion Q is considered both pure and unit
then, one can get

Q−1 = Q = −Q =⇒ Q×Q = −1.

In this case, the scalar part of the dual quaternion multiplication P ×Q cor-
responds to the dual scalar product in D4 and we also know

Sc(P ×Q) = 〈P,Q〉

where (P ×Q) = Q×P and ‖P×Q‖ = ‖P‖‖Q‖ and 〈, 〉, ‖‖ are scalar product
and norm in D4 [2].

Now, let Q be an arbitrary dual unit quaternion Q 6= 0. Therefore, we can
demonstrate this quaternion as

Q = cos
Θ

2
+ ~S sin

Θ

2
(3)

where the unit dual vector ~S =
~Q

‖~Q‖
is axis of the dual quaternion Q. Moreover,

Θ = θ + εθ∗ is dual angle, θ = 2 arccos q0 and θ∗ =
−2q∗0√
q21+q22+q23

where Q0 =

q0 + εq∗0 , Q1 = q1 + εq∗1 , Q2 = q2 + εq∗2 , Q3 = q3 + εq∗3 [2].

Any screw motions A ∈ ˆSO(3) mapping the unit dual vector ~H ∈ V ecSD2

onto the unit dual vector ~R ∈ V ecSD2 according to

A~H = ~R

can be written in terms of its dual quaternion representation Q ∈ HD

Q× ~H ×Q−1 = ~R.
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Moreover, for Q ∈ SD3 the previous expression becomes

Q× ~H × Q̄ = ~R (4)

which explicitly reads then

~R = cos Θ ~H + sin Θ(~S ∧ ~H) + (1− cos Θ)〈~S, ~H〉 (5)

where Q = cos Θ
2 + ~S sin Θ

2 is unit dual quaternion, Θ = θ + εθ∗ is dual angle
and 〈, 〉 and ∧ are the scalar and vectorial product in D−Module. The unit
dual quaternion Q ∈ SD3 represents the screw motions about the unit dual

axis ~S =
~Q

‖~Q‖
by the rotation angle θ and the translation θ∗ where Q0 = cos Θ

2

and Θ = 2 arccosQ0. Moreover, since Θ = θ + εθ∗ one can get θ = 2 arccos q0

and θ∗ =
−2q∗0√
q21+q22+q23

. Therefore, each unit dual quaternion Q ∈ SD3 can be

seen as a representation of a screw motions in D −Module. Hence, the unit
dual quaternion Q can be considered as a screw operator [2].

3 Main Theorems and Results

In this section, we give the screw motions mapping the dual vectors ~H to
~R with the aid of dual quaternions using different perspectives. Firstly, we
express the definition of dual orthogonal quaternions and the geometric inter-
pretation of these quaternions. Then, using the dual orthogonal quaternions
we introduce the dual circles and say that these dual circles can represent
the set of all screw motions mapping ~H to ~R. Moreover, for the pure dual
quaternions H and R we give some conclusions. Also, we express that the
screw motions mapping ~H to ~R symbolized by a unit dual quaternion de-
pends on the common sign of H and R. Consequently, we conclude that the
dual circles represent the screw motions mapping ~H to ~R and − ~H to ~R are
dual orthonormal.

Theorem 4. Consider that P,Q ∈ SD3 are two arbitrary unit dual quaternions
where Q represents the rotation about the axis ~S with the angle θ and the
translation about the axis ~S by θ∗ (i.e. screw motions) and SD3 is unit dual
sphere in D4. Therefore, P ×Q× P̄ ∈ SD3 represents the same screw motions
which have the dual axis is P × ~S× P̄ where Θ = θ+εθ∗ is dual angle of screw
motions.

Proof. Let P,Q ∈ SD3 be two arbitrary unit dual quaternions. We know that
the dual quaternion Q is a screw operator providing the screw motions. In
that case, we can write Q as

Q = cos
Θ

2
+ ~S sin

Θ

2
.
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Hence, we get

P ×Q× P̄ = P × (cos
Θ

2
+ ~S sin

Θ

2
)× P̄

= cos
Θ

2
(P × P̄ ) + sin

Θ

2
(P × ~S × P̄ )

and consequently, we obtain

P ×Q× P̄ = cos
Θ

2
+ (P × ~S × P̄ ) sin

Θ

2

where Θ = θ + εθ∗ is dual angle of screw motions. Therefore, we can express
that the dual quaternion P × Q × P̄ is screw operator providing the screw
motions with dual angle Θ = θ + εθ∗ and dual axis P × S × P̄ .

Definition 5. Let P,Q be any two dual quaternions in HD. In this case, the
dual quaternion Q is orthogonal with the dual quaternion P if P ×Q is a pure
dual quaternion. Moreover, if the dual quaternions P,Q are both orthogonal
and unit then, they are called dual orthonormal quaternions.

Now, we analyze the condition of dual orthogonality for dual quaternions.
Considering the equation (2), the condition of dual orthogonality is also indi-
cated as

Sc(P ×Q) =
1

2
(P ×Q+Q× P ) = 0.

Therefore, we can say that the orthogonality of these quaternions is character-
ized by the fact that the scalar product of the dual vectors corresponding to
this dual quaternions in four dimensional dual space D4 is zero. We can also do
the same geometric interpretation for pure dual quaternions. The vector parts
of pure dual quaternions are dual orthogonal then, they are dual orthogonal.
In addition to that, we consider that the dual quaternions Q,P ∈ HD are pure
hence, the condition of pure dual orthogonality is

P ×Q = ~P∧ ~Q

where V ecP = ~P and V ecQ = ~Q.

Proposition 6. Consider that SD3 is unit dual sphere in D4 and P,Q ∈ SD3

are any two unit dual orthogonal quaternions. Therefore, there is a pure unit
dual quaternion V ∈ V ecHD satisfying the condition P = V ×Q.

Proof. Let P,Q ∈ SD3 be two unit dual orthogonal quaternions. In this case,
the dual quaternion multiplication P ×Q is pure dual quaternion. Hence, one
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can take P ×Q = V ∈ V ecHD. Consequently, we obtain

V = P ×Q ⇐⇒ V ×Q = (P ×Q)×Q
⇐⇒ V ×Q = P × ‖Q‖2

⇐⇒ P = V ×Q

where Q is unit dual quaternion and ‖Q‖ = 1.

Definition 7. Suppose that Q1 and Q2 are two unit dual orthogonal quater-
nion in HD. Therefore, the set of dual quaternions

Q(φ) = Q1 cosφ+Q2 sinφ

is defined as a dual circle in the dual quaternionic space HD and is denoted by
CD(Q1, Q2) where φ = ϕ+ εϕ∗ ∈ D (ϕ ∈ [0, 2π)) is dual angle.

It is clear that, the dual circle CD(Q1, Q2) is the intersection of the dual
plane ED(Q1, Q2) ⊂ HD spanned by Q1, Q2 and passing through the origin
with the unit dual sphere SD3 ⊂ HD. In this case, we can write

CD(Q1, Q2) = E(Q1, Q2) ∩ SD3. (6)

Proposition 8. Let ( ~H, ~R) ∈ SD2 × SD2 be unit dual vector pair, where ~H ∧
~R 6= 0 (i. e. their axes are not coincident) and SD2 is unit dual sphere in

D − Module. Therefore, the set GD( ~H, ~R) ⊂ ˆSO(3) of all screw motions

A~H = ~R (A ∈ ˆSO(3)) can be represented as the dual circle CD(Q1, Q2) of unit
dual quaternions Q where

Q× ~H × Q̄ = ~R, ∀ Q ∈ CD(Q1, Q2)

with dual orthogonal quaternions

Q1 : =
1

‖1−R×H‖
.(1−R×H) = cos

Ψ

2
+

H∧R
‖H∧R‖

sin
Ψ

2
,

Q2 : =
H +R

‖H +R‖
and

‖1−R×H‖ =
√

2(1 + cos Ψ) = 2 cos
Ψ

2
,

‖H +R‖ = 2 cos
Ψ

2

where Ψ is dual angle for the unit pure dual quaternion H,R.
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Proof. We assume that the dual axis of any screw motions A~H = ~R in the
dual plane spanned by

~S1 =
~H∧~R
‖ ~H∧~R‖

=
1

sin Ψ
~H∧~R

~S2 =
~H + ~R

‖ ~H + ~R‖
=

1

2 cos Ψ
2

( ~H + ~R)

(7)

where the dual angle Ψ is Ψ = ψ + εψ∗ ∈ D. Therefore, the dual plane
ED( ~S1, ~S2) = 〈 ~S1, ~S2〉 ∈ D−Module of screw motions axes can be written by
the unit normal of this dual plane as

~S1 ∧ ~S2 =
1

2 sin Ψ cos Ψ
2

[
( ~H∧~R)∧( ~H + ~R)

]

=
1

2 sin Ψ cos Ψ
2

(
〈 ~H, ~H〉~R− 〈 ~H, ~R〉 ~H
−〈~R, ~R〉 ~H + 〈 ~H, ~R〉~R

)

=
1 + cos Ψ

2 sin Ψ cos Ψ
2

(~R− ~H)

and consequently, we get

~S1∧ ~S2 =
1

2 sin Ψ
2

(~R− ~H). (8)

Now, the dual angles of screw motions about the axes ~S1 and ~S2 are Ψ =
ψ + εψ∗ ∈ D and π ∈ R (only rotation), respectively. Therefore, we can give
that the dual quaternions Q1 and Q2 are

Q1 = cos
Ψ

2
+ ~S1 sin

Ψ

2

Q2 = ~S2.

Obviously, the dual quaternions Q1 and Q2 are dual orthogonal quaternions.
Then, we get

Q1 : = cos
Ψ

2
+

~H∧~R
‖ ~H∧~R‖

sin
Ψ

2
,

Q2 : =
~H + ~R

‖ ~H + ~R‖
.
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The proof is completed.

The normalized dual axis ~SΩ of any screw motions, i.e. the normalized
dual vector part of a unit dual quaternion Q with Q × ~H × Q̄ = ~R, is an
element of dual circle CD( ~S1, ~S2) where CD( ~S1, ~S2) = ED( ~S1, ~S2) ∩ SD2. Now,
we assume that Ω = ω + εω∗ ∈ D is dual angle and the Euclidean angle ω in
this dual angle is in between ψ and 2π−ψ. Hence, the group of screw motions
between ~H and ~R can be written by

GD = ( ~H, ~R) = {A ∈ ˆSO(3) | A = A(Ω, SΩ)}

where the dual axis of screw motions ~SΩ is

~SΩ = ~S1 cos Γ + ~S2 sin Γ (Γ = γ + εγ∗, γ ∈ [0, 2π)). (9)

In addition to that, the dual angle Ω = ω+ εω∗ is related to the dual axis ~SΩ

and one can write

Q = cos
Ω

2
+ ~SΩ sin

Ω

2

Q = cos
Ω

2
+

(
Q1 − cos Ψ

2

sin Ψ
2

)
cos Γ sin

Ω

2
+Q2 sin Γ sin

Ω

2

and since Q ∈ CD(Q1, Q2) one can get (cos Ω
2 sin Ψ

2 = cos Ψ
2 cos Γ sin Ω

2 ) and
consequently,

tan
Ω

2
=

sin Ψ
2

cos Ψ
2 cos Γ

where

sin
Ω

2
=

sin Ψ
2

(sin2 Ψ
2 + cos2 Ψ

2 cos2 Γ)1/2
,

cos
Ω

2
=

cos Ψ
2 cos Γ

(sin2 Ψ
2 + cos2 Ψ

2 cos2 Γ)1/2
.

(10)

Therefore, the set of unit dual quaternions Q(Γ), i.e.

Q(Γ) = cos
Ω

2
+ ~SΩ sin

Ω

2
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represent the set of all screw motions. If we use the equation (9) and (10),
then we get

Q(Γ) =
1

(sin2 Ψ
2 + cos2 Ψ

2 cos2 Γ)1/2

[
(cos

Ψ

2
+ ~S1 sin

Ψ

2
) cos Γ+ ~S2 sin

Ψ

2
sin Γ

]
.

Now, we assume that

A1(Γ) =
cos Γ

(sin2 Ψ
2 + cos2 Ψ

2 cos2 Γ)1/2
,

A2(Γ) =
sin Ψ

2 sin Γ

(sin2 Ψ
2 + cos2 Ψ

2 cos2 Γ)1/2
,

hence, we obtain
Q(Γ) = Q1A1(Γ) +Q2A2(Γ). (11)

One can easily see that

A2
1(Γ) +A2

2(Γ) =
cos2 Γ + sin2 Γ sin2 Ψ

2

sin2 Ψ
2 + cos2 Ψ

2 cos2 Γ
,

=
1− sin2 Γ + sin2 Γ sin2 Ψ

2

sin2 Ψ
2 + (1− sin2 Ψ

2 )(1− sin2 Γ)

=1

and consider that
A1(Γ) = cosφ, A2(Γ) = sinφ

with a new parameter φ = ϕ+ εϕ∗ (ϕ ∈ [0, 2π)). Therefore the equation (11)
can be written as

Q(φ) = Q1 cosφ+Q2 sinφ (12)

where φ = ϕ + εϕ∗ and ϕ ∈ [0, 2π). In that case, we write a conclusion that
the dual circle CD(Q1, Q2) corresponding to the equation (12) represents all

screw motions mapping ~H to ~R. Moreover, we can see that for ϕ = 0 and
ϕ = π

2

Q(0) = Q1,

Q(
π

2
) = Q2
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where ϕ∗ = 0.
Now, we obtain some useful equations as follows.

Conclusion 9. We assume that the dual vectors ~H and ~R are two pure unit
dual quaternions ~H and ~R. Therefore, we get

R× (1−R×H) = (1−R×H)×H = H +R. (13)

Proof. Consider that the dual vectors ~H and ~R as pure unit dual quaternions.
Then we get

R× (1−R×H) =R−R× (R×H)

=R+ 〈R,R ∧H〉+ 〈R,H〉R−R ∧ (R ∧H)

=R+ 〈R,H〉R−R ∧ (R ∧H)

=R+H

and similarly we obtain

(1−R×H)×H =H − (R×H)×H
=H + 〈R ∧H,H〉+ 〈R,H〉H − (R ∧H) ∧H
=H +R.

Consequently, we easily obtain

R× (1−R×H) = (1−R×H)×H = H +R.

Conclusion 10. Assume that the dual vectors ~H and ~R are two pure unit
dual quaternions and the dual quaternions Q1 and Q2 are dual orthogonal
quaternions. Therefore, the equation

R×Q1 = Q1 ×H = Q2 (14)

is held.

Proof. Let Q1, Q2 be dual orthogonal quaternions and H,R be pure unit dual
quaternions. Hence, we take the norm of dual quaternions in equation (13)
and we get

‖H +R‖ = ‖R× (1−R×H)‖ = ‖1−R×H‖. (15)

On the other hand, from the equation (13) and (15) we get

R×Q1 =
1

‖1−R×H‖

(
R× (1−R×H)

)
=

1

‖H +R‖
(H +R) = Q2
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and

Q1 ×H =
1

‖1−R×H‖

(
(1−R×H)×H

)
=

1

‖H +R‖
(H +R) = Q2.

Consequently, we have

R×Q1 = Q1 ×H = Q2.

We conclude that the dual quaternions R × Q1 and Q1 × H also represents
screw motions mapping ~H to ~R.

Moreover, we can give the conclusion as the result of the equation (14).

Conclusion 11. Consider that the unit dual quaternions Q1 and Q2 are dual
orthogonal quaternions and the unit dual vectors are ~H and ~R providing the
condition Q× ~H ×Q = ~R where Q ∈ CD(Q1, Q2). Therefore, the equations

Q2 × ~R×Q1 = 1, Q1 × ~H ×Q2 = 1

are held. These equations emphasize a magnificent factorization of number 1.
In addition to that, the pure dual quaternions H and R can be written as

H = Q1 ×Q2, R = Q2 ×Q1.

Theorem 12. Let the dual quaternion Q in HD be element of the dual circle
CD(Q1, Q2). Therefore, the dual quaternions R × Q, Q ×H and R × Q ×H
represent the screw motions mapping the unit dual vectors ~H to ~R.

Proof. We know that the dual quaternion Q represent the screw motions map-
ping ~H to ~R with Q× ~H ×Q = ~R. In that case;
• If the dual quaternion R×Q is written instead of the dual quaternion Q

in the last equation, then the equation

(R×Q)×H × (R×Q) = R× (Q×H ×Q))×R = R

is obtained. This means that the dual quaternion R×Q represents the screw
motions mapping ~H to ~R.
• If the dual quaternion Q×H is considered, the equation

(Q×H)×H × (Q×H) = Q×H ×Q = R

is held. Hence, the dual quaternion Q × H also represents the same screw
motions.
• A similar proof can be easily made for the dual quaternion R×Q×H.
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Proposition 13. Assume that the dual circle CD(Q1, Q2) is defined by the
circle with origin centre in dual plane ED(Q1, Q2) ⊆ HD spanned by the dual
orthonormal quaternions Q1, Q2 ∈ SD3. There is the pair of unit dual vectors
( ~H, ~R) ∈ SD2 × SD2 such that

Q× ~H ×Q = ~R

∀Q ∈ CD(Q1, Q2) and the dual circle CD(Q1, Q2) is the set of all screw motions

mapping ~H to ~R. Therefore, this pair of unit dual vector depends on the
common sign of ~H and ~R i.e

Q× (− ~H)×Q = −~R.

Proof. We know that the dual circle CD(Q1, Q2) with origin centre can be
written as

Q(φ) = Q1 cosφ+Q2 sinφ (φ = ϕ+ εϕ∗, ϕ ∈ [0, 2π))

and since the dual quaternions Q1 and Q2 are dual orthogonal to each other,
we write

Sc(Q1 ×Q2) = Sc(Q2 ×Q1) = 0.

Hence, the dual circle CD(Q1, Q2) represent all screw motions mapping the

dual vector ~H = Q1 ×Q2 to the dual vector ~R = Q2 ×Q1. Consequently, for
∀Q(φ) ∈ CD(Q1, Q2)

Q(φ)× (− ~H)×Q(φ)

= (Q1 cosφ+Q2 sinφ)× (−Q1 ×Q2)× (Q1 cosφ+Q2 sinφ)

= −Q2 ×Q1 − cosφ sinφ+Q1 × (Q2 ×Q2)×Q1 cosφ sinφ

= −Q2 ×Q1 = −~R.

Therefore, while the unit dual quaternion Q makes the screw motions mapping
the dual vectors ~H to ~R, it makes the screw motions mapping the dual vectors
− ~H to −~R.

Theorem 14. The dual circles CD(Q1, Q2) and CD(Q3, Q4) represent the

screw motions GD( ~H, ~R) and GD(− ~H, ~R), respectively, are dual orthonormal
with each other.

Proof. Consider that while the dual circle CD(Q1, Q2) represents the screw

motions GD( ~H, ~R), the dual circle CD(Q3, Q4) represent also the screw motions
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CD(Q3, Q4). Let ~S3 and ~S4 be the axes of the screw motions GD(− ~H, ~R) for
the dual quaternions Q3 and Q4. Hence, using the equation (7) we get

~S3 =
− ~H∧~R
‖ − ~H∧~R‖

,

where ‖ − ~H∧~R‖ = ‖ ~H∧~R‖. In this case, we obtain

~S3 = −
~H∧~R
‖ ~H∧~R‖

= − ~S1.

We know that the dual angle between the dual vectors ~H and ~R is Ψ =
ψ + εψ∗. Therefore, the dual angle between the dual vectors − ~H and ~R is
Ψ′ = (π − ψ) − εψ∗. Moreover, we can write for the unit dual quaternion

Q3 = cos Ψ′

2 + ~S3 sin Ψ′

2 where Ψ′ = (π − ψ)− εψ∗.
Similar to this, the dual axis ~S4 can be written

~S4 =
− ~H + ~R

‖ − ~H + ~R‖

where ‖ − ~H + ~R‖ = 2 sin Ψ
2 . In addition to that, using the equation (8) we

have
~S4 = ~S1 ∧ ~S2

and for the unit dual quaternion Q4 we get

Q4 = ~S4.

Therefore, the dual circles CD( ~S1, ~S2) and CD( ~S3, ~S4) ⊂ SD2 are dual orthogo-
nal to each other. Now, we assume that Q ∈ CD(Q1, Q2) and P ∈ CD(Q3, Q4)
are arbitrary unit dual quaternions. In that case, we can write the unit dual
quaternion Q ∈ CD(Q1, Q2) is

Q = Q1 cosφ+Q2 sinφ

= (cos
Ψ

2
+ ~S1 sin

Ψ

2
) cosφ+ ~S2 sinφ

and

Q = cos
Ψ

2
cosφ+ ~S1 sin

Ψ

2
cosφ+ ~S2 sinφ.

Similarly, the unit dual quaternion P ∈ CD(Q3, Q4) can be written as

P = Q3 cosφ+Q4 sinφ

= (cos
Ψ′

2
+ ~S3 sin

Ψ

2
) cosφ+ ~S4 sinφ
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where Ψ′ = (π − ψ)− εψ∗, cos Ψ′

2 = sin Ψ
2 and sin Ψ′

2 = cos Ψ
2 and

P = sin
Ψ

2
cosφ− ~S1 cos

Ψ

2
cosφ+ ~S1 ∧ ~S2 sinφ.

Now, we can obtain the dual orthogonality of the unit dual quaternions Q and
P . Therefore, we have

Sc(Q× P ) = sin
Ψ

2
cosφ cos

Ψ

2
cosφ

+

〈
~S1 sin

Ψ

2
cosφ+ ~S2 sinφ,− ~S1 cos

Ψ

2
cosφ+ ~S1 ∧ ~S2 sinφ

〉
= 0.

Consequently, the unit dual quaternions Q ∈ CD(Q1, Q2) and P ∈ CD(Q3, Q4)
are dual orthogonal. Therefore, the dual circles CD(Q1, Q2) ⊂ SD3 and CD(Q3,
Q4) ⊂ SD3 are dual orthonormal to each other.

Result:The unit dual quaternions Q1, Q2, Q3, Q4 ∈ HD also represent
a right handed dual orthonormal basis of HD while the dual unit vectors
~S1, ~S2, ~S4 represent a right handed dual orthonormal basis of the dual space
V ecHD ∼= D−Module.

References

[1] W. R. Hamilton, Elements of quaternions, I, II and III, Chelsea, New
York, 1899.
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[21] A. Dağdeviren, S. Yüce, Dual quaternions and dual quaternionic curves,
Filomat, 33 (2019), 1037-1046.
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