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Spacelike Bertrand curves in Minkowski
3-space revisited

Hatice Altın Erdem and Kazım İlarslan

Abstract

In the geometry of curves in E3, if the principal normal vector field of
a given space curve ϕ with non-zero curvatures is the principal normal
vector field of another space curve ϕ∗, then the curve ϕ is called a
Bertrand curve and ϕ∗ is called Bertrand partner of ϕ. These curves
have been studied in different space over a long period of time and found
wide application in different areas. Therefore, we have a great knowledge
of geometric properties of these curves. In this paper, revested results
for spacelike Bertrand curves with non-null normal vectors will be given
with the previous studies on Bertrand curves in E3

1. Follow this revested
results, the Bertrand curve conditions of a spacelike curve are obtained
in E3

1. In addition, new curve samples that meet the obtained conditions
are constructed and the graphs of these curves are given.

1 Introduction

Moving Frenet frames have significant place in the geometry of curves in E3.
As a result of the connections among the Frenet vectors located at the op-
posite points of the pairs of space curves, we obtain many special classes
of curves. For example, Mannheim curves, Combescure related curves and
Bertrand curves are some curves in this class. Bertrand curves have a long
history. In E3, the problem of whether the principal normal of a certain space
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curve can be the principal normal of distinct space curve, put forward by Saint-
Venant in 1845 [34], led to the emergence of Bertrand curves. This problem
has been solved by Bertrand in 1850 [5]. In this study, it is proved that for a
space curve to be a solution to the above-mentioned problem, there must be
a correlation between its curvatures. This relationship is λκ+µτ = 1, λ ∈ R0

and µ ∈ R, with the curvature function κ and the torsion function τ of the
given curve.

We can consider the studies published on Bertrand curves in three main
groups. The first group includes generalizations of Bertrand curves in Eu-
clidean space. Some of these studies are as follows. In [28], Pears studied
Bertrand curves in En and proved that for n > 3, second or third curva-
ture functions have to zero. Thus Bertrand curves in En are degenerate
curves. Accordingly, Bertrand curves must lie in 3-dimensional subspace of
En. In another study, Lucas and Ortega-Yages studied Bertrand curves on a
3-dimensional sphere S3 in [22], while Izumiya and Takeuchui proved that a
Bertrand curve in E3 is expressed using a spherical curve [17].

In a distinct paper, Matsudo and Yaruzo [24] considered Bertrand curves in
E4. In this paper, they showed that there are no special Bertrand curves (for
curves with all nonzero curvature functions) and they defined a new Bertrand
curve class that entered the literature as (1, 3)-Bertrand curves. For Bertrand
curves in En, the following studies can also be considered [9], [13].

In the second group, we can talk about the studies carried out for the spaces
equipped with Riemannian or pseudo-Riemannian metrics instead of Euclidean
metrics and studies in three or higher dimensional real and Lorentz space forms
[14], [20], [23]. We see that studies for Bertrand curves in Euclidean space (for
dimensions 3, 4 and n) are intensely carried out, especially in E3

1, E4
1 and Enν

[3],[4], [11], [12], [16], [18], [31],[30], [32], [33] and Galilean and pseudo-Galilean
3-space[26], [27].

The studies in the third and last group are the applications of Bertrand
curves to the theory of surfaces [29], [35], [36] and the studies that bring a
new perspective to Bertrand curves. Although there are intensive studies on
Bertrand curves, examples of Bertrand curves are very limited. New Bertrand
curve examples have been added to the literature, especially thanks to the
new perspective brought to Bertrand curves in E3 by Camcı et al [6]. They
also showed that general helix curves (curves with constant curvature ratio)
can also be Bertrand curves.

In this study, we give a new revisited results for a spacelike Bertrand
curves with spacelike or timelike normals in E3

1. Follow this revested results,
the Bertrand curve conditions of a spacelike curve with non-null normals are
obtained in E3

1. In addition, new curve samples that meet the obtained con-
ditions are constructed and the graphs of these curves are given.
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2 Preliminaries

The Minkowski 3- space (or Lorentz-Minkowski 3-space), E3
1, is the standart

real vector space R3 accoutred with the Minkowski scalar product given by

g(
−→
U ,
−→
V ) = −u1v1 + u2v2 + u3v3,

where
−→
U = (u1, u2, u3) and

−→
V = (v1, v2, v3). Since g(., .) is an indefinite

metric, there are three different cases for the causal character of an arbitrary

vector
−→
W ∈ E3

1\{0}. It is a spacelike vector if g(
−→
W,
−→
W ) > 0, it is a timelike

vector if g(
−→
W,
−→
W ) < 0 and it is a null (lightlike) vector if g(

−→
W,
−→
W ) = 0.

Additionally, the vector
−→
W = (0, 0, 0) is considered a spacelike vector. A real

number defined as ||
−→
W || =

√
|g(
−→
W,
−→
W )| ≥ 0, determines the norm of the vector

−→
W . If g(

−→
U ,
−→
V ) = 0 , then the vectors

−→
U and

−→
V are said to be orthogonal.

The velocity vector of the curve determines the causal character of a regular
curve. Namely, a random regular curve ϕ(s) in E3

1, can locally be spacelike
if its velocity vector ϕ′(s) is a spacelike vector, can locally be timelike if its
velocity vectorϕ′(s) is a timelike vector and can locally be null(lightlike) if its
velocity vector ϕ′(s) is a null vector [19], [21], [25].

For a null(or lightlike) curve ϕ,if g(ϕ′′(s), ϕ′′(s)) = 1 is satisfy then the
curve is called parameterized by pseudo-arc s. In this instance, the null curve
is called a Cartan null curve. if g(ϕ′(s), ϕ′(s)) = ±1 is provided then the curve
is called a unit speed curve [10], [21], [25].

The set {T,N,B} consist of the tangent vector T , the principal normal
vector N and the binormal vector B along a curve ϕ in E3

1 is called the
moving Frenet frame. With respect to the causal character of the given curve,
the equations expressing the derivatives of Frenet vectors in terms of these
vectors and curvature functions are called Frenet equations. We can give
these equations as:

Case A. If ϕ is a timelike or a spacelike curve with non-null normals,
Frenet equations can be expressed as follows [19], [21]: T ′

N ′

B′

 =

 0 ε2κ 0
−ε1κ 0 ε2τ

0 −ε2τ 0

 T
N
B

 (1)

here κ is curvature and τ is torsion functions of the curve. Accordingly, let us
put,

g(T, T ) = ε1 = ±1, g(N,N) = ε2 = ±1, g(B,B) = ε3 = ±1

and
g(T,N) = g(T,B) = g(N,B) = 0.



Spacelike Bertrand curves in Minkowski 3-space revisited 90

Case B. If ϕ is a Cartan null curve the Frenet equations can be given as
[10], [15]:  T ′

N ′

B′

 =

 0 κ 0
−τ 0 −κ
0 τ 0

 T
N
B

 (2)

where κ = 0, the curve is a straight line and in all other cases κ = 1. Also, let
us put:

g(T, T ) = g(B,B) = g(T,N) = g(N,B) = 0, g(N,N) = g(T,B) = 1.

We will use the definitions and results given below later.

Definition 1. If the principal normal vector field N of a curve makes a con-
stant angle with a fixed direction in E3

1, the curve is called a slant helix [2],
[17].

Lemma 1. Let ϕ be a unit speed spacelike curve with timelike N in E3
1. Then

ϕ is a slant helix if and only if the geodesic curvature of the spherical image
of principal normal indicatrix (n) of ϕ,

σ =
κ2

(τ2 + κ2)
3
2

( τ
κ

)′
,

is constant and τ2 + κ2 6= 0 [2].

Lemma 2. Let ϕ be a unit speed spacelike curve with spacelike N in E3
1. Then

ϕ is a slant helix if and only if geodesic curvatures of the spherical image of
principal normal indicatrix (n) of ϕ,

σ =
κ2

(τ2 − κ2)
3
2

( τ
κ

)′
,

is constant and τ2 − κ2 6= 0 [2].

Definition 2. If the position vector of a curve always lies in its rectifying
plane,then the curve is called a rectifying curve [7], [8].

3 Spacelike Bertrand Curves in Minkowski 3-Space re-
visited

In this part, spacelike Bertrand curves with non-null normals in E3
1 will be

discussed with a new approach. First, let’s start by giving the notion of
Bertrand curve in this space.
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Definition 3. In Minkowski 3-space, if the principal normal vector fields at
the opposite points of a given unit speed curve ϕ with non-zero curvatures and
another space curve ϕ? are linearly dependent, then the curve ϕ is called the
Bertrand curve and the other curve ϕ? is called the Bertrand partner curve of
ϕ .

We assume that ϕ is a spacelike Bertrand curve with the Frenet frame
{T,N,B} and non-zero curvatures κ, τ, and ϕ? is a Bertrand partner curve of
ϕ with the Frenet frame {T ?, N?, B?} and curvatures κ?, τ? in E3

1. According
to the new approach, ϕ? can be given in the form below:

ϕ? (s?) = ϕ? (f (s)) = ϕ (s) + µ1 (s)T (s) + µ2 (s)N (s) + µ3 (s)B (s)

where µ1 (s) , µ2 (s) and µ3 (s) are differentiable function on I. Since ϕ is a
spacelike curve with spacelike N , one of the following situations is possible for
the Bertrand partner curve ϕ? of ϕ:

(1) ϕ? is a timelike curve,

(2) ϕ? is a spacelike curve with spacelike principal normal vector,

(3) ϕ? is a Cartan null curve.

We will assess all situations severally in the following theorem.

Theorem 1. Let ϕ be a unit speed spacelike curve with spacelike principal nor-
mal with the non-zero curvatures κ, τ in E3

1. Then the curve ϕ is a Bertrand
curve with Bertrand partner curve ϕ∗ if and only if one of the following con-
ditions are met:

(i) there are differentiable functions µ1, µ2 and µ3 such as

µ3τ = µ
′

2 + µ1κ

µ
′

3 = µ2τ
(3)

or there are differentiable functions µ1, µ2, µ3 and h ∈ R providing

µ
′

3 − µ2τ 6= 0

µ
′

2 + µ1κ = µ3τ

1 + µ
′

1 − µ2κ = h
(
µ
′

3 − µ2τ
)

hτ − κ 6= 0
hκ− τ 6= 0
1− h2 > 0

(4)

In this situation, the Bertrand partner curve ϕ? is a timelike curve.
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(ii) there are differentiable functions µ1, µ2 and µ3 providing

µ3τ = µ
′

2 + µ1κ

µ
′

3 − µ2τ = 0
(5)

or there are differentiable functions µ1, µ2, µ3 and h ∈ R providing

µ
′

3 − µ2τ 6= 0

µ
′

2 + µ1κ = µ3τ

1 + µ
′

1 − µ2κ = h
(
µ
′

3 − µ2τ
)

hτ − κ 6= 0
hκ− τ 6= 0
1− h2 < 0

(6)

In this situation, the Bertrand partner curve ϕ? is a spacelike curve with space-
like N .

(iii) there are differentiable functions µ1, µ2, µ3 and real numbers γ, h = ±1
providing

µ
′

3 − µ2τ 6= 0

µ
′

2 + µ1κ = µ3τ

1 + µ
′

1 − µ2κ = h
(
µ
′

3 − µ2τ
)∣∣∣µ′3 − µ2τ

∣∣∣ = γ2 |hκ− τ |
hκ− τ 6= 0
hκ+ τ 6= 0

(7)

In this situation, the Bertrand partner curve ϕ? is a Cartan null curve.

Proof. Let’s admit that ϕ is a spacelike Bertrand curve given by its arc-length
s and non-zero curvatures κ, τ and the curve ϕ? is the Bertrand partner curve
of ϕ given by its arc-length or pseudo arc s?. So, the curve ϕ? can be stated
by

ϕ? (s?) = ϕ? (f (s)) = ϕ (s) + µ1 (s)T (s) + µ2 (s)N (s) + µ3 (s)B (s) (8)

for all s ∈ I where µ1 (s) , µ2 (s) and µ3 (s) are differentiable functions on I.

(i) Let ϕ? be a timelike curve. If the derivative of equation (8) is taken accord-
ing to the parameter s and using the equations (1), we get

f
′
T ? =

(
1 + µ

′

1 − µ2κ
)
T +

(
µ
′

2 + µ1κ− µ3τ
)
N +

(
µ
′

3 − µ2τ
)
B (9)

If the equation (9) is multiplied by N , we find

µ3τ = µ
′

2 + κ (10)
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If we write instead of (10) in (9), we obtain

f
′
T ? =

(
1 + µ

′

1 − µ2κ
)
T +

(
µ
′

3 − µ2τ
)
B (11)

If the equation (11) is multiplied by itself, we get(
f
′
)2

=
(
µ
′

3 − µ2τ
)2
−
(

1 + µ
′

1 − µ2κ
)2

(12)

If we take

δ =
1 + µ

′

1 − µ2κ

f ′
, γ =

µ
′

3 − µ2τ

f ′
(13)

we get from (11)
T ? = δT + γB, (14)

if the derivative of equation (14) is taken according to the parameter s and
using (1), we find

f
′
κ?N = δ

′
T + (δκ− γτ)N + γ

′
B. (15)

If the equation (15) is multiplied by N , we obtain

δ
′

= 0 and γ
′

= 0. (16)

Firstly, we suppose that γ = 0 . Then we have µ
′

3 − µ2τ = 0. Now we
suppose that γ 6= 0 . So,

1 + µ
′

1 − µ2κ = h
(
µ
′

3 − µ2τ
)

(17)

where h = δ/γ. If we put equation (16) in (15), we get

f
′
κ?N = (δκ− γτ)N (18)

If the equation (18) is multiplied with itself, and handling (10) and (11), we
get (

f
′
)2

(κ?)
2

=
(hκ− τ)

2

1− h2
, (19)

where hκ− τ 6= 0 and 1− h2 > 0. If we write instead

λ =
δκ− γτ
f ′κ?

we have
N? = λN. (20)
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If the derivative of equation (20) is taken according to the parameter s and
using equation (1), we get

f ′τ?B? = −λκT + λ
′
N − λτB − f ′κ?T ? (21)

where λ
′

= 0. If we reconsider the equation (21) by using (9), we obtain

f ′τ?B? = P (s)T +Q (s)B (22)

where

P (s) =
(hκ− τ)

(
µ
′

3 − µ2τ
)

(hτ − κ)

(f ′)
2
κ? (1− h2)

Q (s) =
(hκ− τ)

(
µ
′

3 − µ2τ
)

(hτ − κ)h

(f ′)
2
κ? (1− h2)

Consequently, we get hτ−κ 6= 0. Conversely, let ϕ be a spacelike curve given by
its arc-length s with non-zero curvatures κ, τ . Firstly assume that ϕ satisfies
the equations (3) for differentiable functions µ1, µ2 and µ3. So, a curve ϕ? can
be stated as

ϕ? (s?) = ϕ? (f (s)) = ϕ (s) + µ1 (s)T (s) + µ2 (s)N (s) + µ3 (s)B (s) . (23)

If the derivative of equation (23) is taken according to the parameter s, we
arrive

dϕ?

ds
=
(

1 + µ
′

1 − µ2κ
)
T. (24)

By using (21), we obtain

f
′

=

∥∥∥∥dϕ?ds
∥∥∥∥ = m1

(
1 + µ

′

1 − µ2κ
)
> 0

where m1 = sgn
(

1 + µ
′

1 − µ2κ
)

. Then we obtain

T ? = m1T

N? = m1m2N

B? = m1m2m3B

and

κ? =
m2κ

f ′

τ? =
m3τ

f ′
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where m2,m3 = ±1. Therefore the curve ϕ is a Bertrand curve and the curve
ϕ? is a timelike Bertrand partner curve of the curve ϕ.

Now, assume that ϕ satisfies the equation (4) for differentiable functions
µ1, µ2, µ3 and h ∈ R. Then, a curve ϕ? given by

ϕ? (s?) = ϕ? (f (s)) = ϕ (s) + µ1 (s)T (s) + µ2 (s)N (s) + µ3 (s)B (s) (25)

if the derivative of equation (25) is taken according to the parameter s, we
have

dϕ?

ds
=
(

1 + µ
′

1 − µ2κ
)
T +

(
µ
′

3 − µ2τ
)
B. (26)

Thus, the following equation is obtained

f
′

=

∥∥∥∥dϕ?ds
∥∥∥∥ = n1

(
µ
′

3 − µ2τ
)√

1− h2 (27)

where n1 = sgn
(
µ
′

3 − µ2τ
)

. Rewriting (26) , we get

T ? =
n1√

1− h2
(hT +B) , g (T ?, T ?) = −1. (28)

If the derivative of equation (28) is taken according to the parameter s, we get

dT ?

ds?
=
n1 (hκ− τ)

f ′
√

1− h2
N (29)

so we obtain

κ? =

∥∥∥∥dT ?ds?

∥∥∥∥ =
n2 (hκ− τ)

f ′
√

1− h2
(30)

where n2 = sgn (hκ− τ). Thus, we obtain N? as

N? = n1n2N, g (N?, N?) = 1. (31)

If the derivative of equation (31) is taken according to the parameter s and
considering the equations (28), (29) we obtain

dN?

ds?
− κ?T ? =

n1n2 (hτ − κ)

f ′ (1− h2)
(T + hB) (32)

which bring about that

τ? =
n3 (hτ − κ)

f ′
√

1− h2
(33)
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where n3 = sgn (hτ − κ). Finally, we define B? as

B? =
n1n2n3√

1− h2
(T + hB)

g (B?, B?) = 1.

Then ϕ? is a timelike curve and Bertrand partner curve of ϕ. Thus ϕ is a
Bertrand curve.

(ii) Let ϕ? be a spacelike curve with spacelike principal normal. In this case,
the proof of the theorem can be done in the same way as the proof the case
when ϕ? is timelike.

(iii) Let ϕ? be a Cartan null curve. Then, if the derivative of equation (8) is
taken according to the parameter s and using the (2), we get

f
′
T ? =

(
1 + µ

′

1 − µ2κ
)
T +

(
µ
′

2 + µ1κ− µ3τ
)
N +

(
µ
′

3 − µ2τ
)
B. (34)

If the equation (34) is multiplied by N , we have

µ3τ = µ
′

2 + µ1κ (35)

By using (35) in (34), we find

f
′
T ? =

(
1 + µ

′

1 − µ2κ
)
T +

(
µ
′

3 − µ2τ
)
B. (36)

If the equation (36) is multiplied with itself, we get(
1 + µ

′

1 − µ2κ
)2

=
(
µ
′

3 − µ2τ
)2

(37)

and
1 + µ

′

1 − µ2κ = h
(
µ
′

3 − µ2τ
)

where h = ±1. If we take

δ =
µ
′

3 − µ2τ

f ′
, (38)

and writing (38) in (36), we get

T ? = δ (hT +B) . (39)

If the derivative of equation (39) is taken according to the parameter s and
using (2), we obtain

f
′
N? = δ

′
(hT +B) + δ (hκ− τ)N. (40)
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From (40), we get

δ
′

= 0 and hκ− τ 6= 0. (41)

Substituting (41) in (40), we get

f
′
N? = δ (hκ− τ)N (42)

If the equation (42) is multiplied with itself, using (36) and (37), we have∣∣∣µ′3 − µ2τ
∣∣∣ = δ2 |hκ− τ | . (43)

Also, since N? = ±N, we have

−τ?T ? −B? = ± (−κT − τB)

and
2τ? = κ2 − τ2

which implies that hκ− τ 6= 0.
Conversely, let ϕ be a spacelike curve parametrized by arc-length s with

non-zero curvatures κ and τ . Assume that ϕ provides the conditions of (7)
for differentiable functions µ1, µ2, µ3 and real number h = ±1. Now, we can
describe a curve ϕ? as

ϕ? (s?) = ϕ? (f (s)) = ϕ (s) + µ1 (s)T (s) + µ2 (s)N (s) + µ3 (s)B (s) . (44)

If the derivative of equation (44) is taken according to the parameter s, we
find

dϕ?

ds
=
(
µ
′

3 − µ2τ
)

(hT +B) (45)

and
d2ϕ∗

ds2
=
(
µ
′

3 − µ2τ
)′

(hT +B) +
(
µ
′

3 − µ2τ
)

(hκ− τ)N

which leads to that

f
′

=
√
m2

(
µ
′
3 − µ2τ

)√
m3 (hκ− τ) (46)

where m2 = sgn
(
µ
′

3 − µ2τ
)

and m3 = sgn (hκ− τ). Rewriting (45) , we get

T ? = m4δ (hT +B) , g (T ?, T ?) = 0. (47)

where m4 = sgn (δ). if the derivative of equation (47) is taken according to
the parameter s, we get

dT ?

ds?
=
m4δ (hκ− τ)

f ′
N = m3m4N , κ? = 1 (48)
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Thus, we obtain N? as

N? = m3m4N, g (N?, N?) = 1 (49)

So we obtain

B? =
m4

−2δ
(−hT +B)

g (B?, B?) = 0

g (T ?, B?) = 1.

Lastly, we get

τ? = g

(
dN?

ds?
, B?

)
=
m3 (hκ+ τ)

−2f ′δ
6= 0

Then ϕ? is a Cartan null curve and a Bertrand partner curve of ϕ. Thus ϕ is
a Bertrand curve.

Theorem 2. Let ϕ be a unit speed spacelike curve with timelike principal
normal vector and the non-zero curvatures κ, τ in E3

1. Then the curve ϕ is
a Bertrand curve with Bertrand partner curve ϕ∗ if and only if one of the
following condition holds: there exist differentiable functions µ1, µ2 and µ3

providing
µ1κ = µ

′

2 + µ3τ

µ
′

3 + µ2τ = 0
(50)

or there are differentiable functions µ1, µ2, µ3 and real number h providing

µ
′

3 + µ2τ 6= 0

µ1κ = µ
′

2 + µ3τ

1 + µ
′

1 − µ2κ = h
(
µ
′

3 + µ2τ
)

hτ − κ 6= 0
hκ− τ 6= 0

h 6= 0

(51)

In this situation, the Bertrand partner curve ϕ? is a spacelike curve with time-
like N?.

Proof. We omit the proof since it is similar to the proof of theorem 1.

Corollary 1. Let ϕ : I ⊂ R→ E3
1 be a Bertrand curve with the Frenet frame

{T,N,B} and the curve ϕ∗ be a Bertrand partner curve of ϕ with the Frenet
frame {T ∗, N∗, B∗}. If ϕ is a slant helix, then ϕ∗ is a slant helix if and only
if

µ
′

3(s)− µ2(s)τ(s) = constant ,

where, µ3(s) = g(ϕ∗, B) and µ2(s) = g(ϕ∗, N).
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4 Examples

In this section, examples for Bertrand curves and Bertrand partner curves
are constructed according to the new approach described above. Spacelike
rectifying curve examples are taken from [1].

Example 1. Let ϕ : I ⊂ R → E3
1 be a spacelike Bertrand curve with the

curvatures κ(s), τ(s). In this case, the conditions of theorem 1. are satisfied.
By taking µ2 = µ0 ∈ R. So, we get,

µ1κ = µ3τ

1 + µ
′

1 − µ0κ = h
(
µ
′

3 − µ0τ
)

which implies that

µ3(s) =
κ
(
s− µ0

∫
(κ− hτ) ds

)
hκ− τ

µ1(s) =
τ
(
s− µ0

∫
(κ− hτ) ds

)
hκ− τ

.

Thus we get the Bertrand partner curve ϕ? as follows

ϕ?(s) = ϕ(s)+
τ
(
s− µ0

∫
(κ− hτ) ds

)
hκ− τ

T (s)+µ0N(s)+
κ
(
s− µ0

∫
(κ− hτ) ds

)
hκ− τ

B(s).

Here the Bertrand partner curve ϕ? is spacelike, timelike or null, respectively
if h2 > 1, h2 < 1 or h2 = 1.

Example 2. Let us assess a spacelike curve in E3
1 with the equation

ϕ (s) =
1√
6

(
sinh
√

3s, cosh
√

3s, 3s
)

with the curvatures κ =
√
3√
2

and τ = − 3√
2

and the Frenet frame as

T (s) =
1√
2

(
cosh

√
3s, sinh

√
3s,
√

3
)
,

N(s) =
(

sinh
√

3s, cosh
√

3s, 0
)
,

B(s) =
1√
2

(√
3 cosh

√
3s,
√

3 sinh
√

3s, 1
)
.
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(i) If we take µ1 = −1, µ2 =
√

6, µ3 = 1√
3

and h = −2
3
√
3

in (i) of theorem 1,

then we get the curve ϕ? as follows;

ϕ? (s) =
1√

23
√

6

(
7 sinh

√
3s, 7 cosh

√
3s, 3s− 2

)
.

After careful and exhausting calculations, we acquire

T ?(s) =

(
7√
46

cosh
√

3s,
7√
46

sinh
√

3s,

√
3√
46

)
,

N?(s) =
(

sinh
√

3s, cosh
√

3s, 0
)
,

B?(s) =

( √
3√
46

cosh
√

3s,
−
√

3√
46

sinh
√

3s,
7√
46

)
and κ? = 7

√
3, τ? = − 3√

46
. It can be easily checked that the curve ϕ? is a

timelike Bertrand partner curve of the curve ϕ.

(ii) If we take µ1 =
√

3, µ2 =
√
2

3
√
3
, µ3 = −1 and h = 2√

3
in (ii) of the theorem

1, then we get the curve ϕ? as follows;

ϕ? (s) =

(
5√
6

sinh
√

3s,
5√
6

cosh
√

3s,
3(3s+ 2

√
3)√

6

)
.

After careful calculations, we get

T ?(s) =

(
5√
2

cosh
√

3s,
5√
2

sinh
√

3s,
3
√

3√
2

)
,

N?(s) =
(

sinh
√

3s, cosh
√

3s, 0
)
,

B?(s) =

(
−3
√

3√
2

cosh
√

3s,
3
√

3√
2

sinh
√

3s,
5√
2

)

and κ? = 5
√
3√
2

, τ? = − 9√
2
. Easily checked that the curve ϕ? is a spacelike

Bertrand partner curve of the curve ϕ.
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(iii) If we take µ1(s) =
(

3√
2
− 3

3+
√
3

)
s, µ2 = 1, µ3(s) =

(
− 3√

2
+ 3

3+
√
3

)
s and

h = 1 in theorem 1, then we get the curve ϕ? as follows;

ϕ? (s) =

(
1

3
sinh
√

3s,
1

3
cosh

√
3s,

√
3

3
s

)
.

After careful calculations, we acquire

T ?(s) =

(√
3

3
cosh

√
3s,

√
3

3
sinh
√

3s,

√
3

3

)
,

N?(s) =
(

sinh
√

3s, cosh
√

3s, 0
)
,

B?(s) =

(
−
√

3

2
cosh

√
3s,
−
√

3

2
sinh
√

3s,

√
3

2

)
and κ? = 1 , τ? = − 3

2 . Easily checked that the curve ϕ? is a Cartan null
Bertrand partner curve of the curve ϕ.

-5

0

5

-5
0

5

-5

0

5

Figure 1: The red graphic is ϕ, the blue graphic is the timelike Bertand partner
curve, the green graphic is the spacelike Bertand partner curve and the black
graphic is the null Bertand partner curve in Example 2.

Example 3. Let us consider a spacelike general helix in E3
1 with the equation

ϕ (s) =

(
− s

5

40
,− s

5

40
+ s,

s3

6

)
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with the curvatures κ(s) = s and τ(s) = −s and the Frenet vectors as

T (s) =

(
−s

4

8
,−s

4

8
+ 1,

s2

2

)
,

N(s) =

(
−s

2

2
,−s

2

2
, 1

)
,

B(s) =

(
−s

4

8
− 1,−s

4

8
,
s2

2

)
.

(i) If we take µ1(s) = s2

2 −
2s
3 , µ2 = 1, µ3(s) = − s

2

2 + 2s
3 and h = 1

2 in (i) of
theorem 1, then we get the curve ϕ? as follows;

ϕ? (s) =

(
− s

5

40
− 2s

3
,− s

5

40
+
s

3
,
s3

6
+ 1

)
.

After correct calculations, we obtain

T ?(s) =

(
−
√

3s4

8
− 2
√

3

3
,−
√

3s4

8
+

√
3

3
,

√
3s2

8

)
,

N?(s) =

(
−s

2

2
,−s

2

2
, 1

)
,

B?(s) =

(
−
√

3s4

8
−
√

3

3
,−
√

3s4

8
+

2
√

3

3
,

√
3s2

2

)
and κ?(s) = 3s, τ?(s) = −3s. Easily checked that the curve ϕ? is a timelike
Bertrand partner curve of the curve ϕ.

(ii) If we take µ1(s) = s2

2 + 2s, µ2 = 1, µ3(s) = − s
2

2 − 2s and h = − 3
2 in (ii)

of theorem 1, then we get the curve ϕ? as follows;

ϕ? (s) =

(
− s

5

40
+ 2s,− s

5

40
+ 3s,

s3

6
+ 1

)
.

After correct calculations, we find

T ?(s) =

(
− s4

8
√

5
+

2√
5
,− s4

8
√

5
+

3√
5
,
s2

2
√

5

)
,

N?(s) =

(
−s

2

2
,−s

2

2
, 1

)
,
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B?(s) =

(
− s4

8
√

5
− 3√

5
,− s4

8
√

5
− 2√

5
,
s2

2
√

5

)
and κ?(s) = s

5 , τ?(s) = − s√
5
Easily checked that the curve ϕ? is a spacelike

Bertrand partner curve of the curve ϕ.

(iii) If we take µ1(s) = − s6

12 + s5

15 +s2−s , µ2(s) = − s
4

2 + s3

3 , µ3(s) = s6

12−
s5

15 +s2

, γ = 1 and h = 1 in (iii) of theorem 1, then we get the curve ϕ?as follows;

ϕ? (s) =

(
− s

6

12
− s2,− s

6

12
+ s2,

s4

2

)
With correct calculations, we have,

T ?(s) =

(
−s

4

4
− 1,−s

4

4
+ 1, s2

)
,

N?(s) =

(
−s

2

2
,−s

2

2
, 1

)
,

B?(s) =

(
1

2
,

1

2
, 0

)
and κ? = 1 , τ? = 0. Easily checked that the curve ϕ? is a Cartan null
Bertrand partner curve of the curve ϕ.

-5

0

5

-505

-5

0

5

Figure 2: The red graphic is ϕ, the blue graphic is the timelike Bertand partner
curve, the green graphic is the spacelike Bertand partner curve and the black
graphic is the null Bertand partner curve in Example 3.
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Example 4. Let us consider a spacelike general helix in E3
1 with the equation

ϕ (s) =

(
1

12

(
16s+ 5s2 − 10 ln s

)
,

√
5

6

(
4s+ s2 − 2 ln s

)
,

√
5

12

(
s2 + 2 ln s

))

with the curvatures κ(s) =
√
5

3s and τ(s) = 2
3s and the Frenet frame, with

timelike principal normal vector as

T (s) =

(
5s2+8s−5

6s ,
√
5(s2+2s−1)

3s ,
√
5(s2+1)
6s

)
N(s) =

(
−
√
5(s2+1)
2s ,− s

2+1
s , 1−s

2

2s

)
B(s) =

(√
5(1−s2+2s)

3s , 2−2s
2+5s

3s ,− 1+s2

3s

)
If we take µ1(s) = 14

3
√
5

ln s − 2s, µ2 = 1, µ3(s) = 7
3 ln s −

√
5s and h = 1√

5
in

theorem 2, then we get the curve ϕ? as follows;

ϕ? (s) =

(
− (6

√
5+(56+6

√
5)s2−5s3

12s + (−25+84
√
5) ln s

30 , −6−2(3+7
√
5)s2+

√
5s3

6s + (−21+
√
5) ln s

3 ,
6−6s2+

√
5s3

12s +
√
5 ln s
6

)

With correct calculations, we acquire

T ?(s) =

(
− (3

√
5−5s)(−5+s(−28+5s))

6
√
30s2

√
5+ 9−6

√
5s

s2

,

√
5
6 (−3+

√
5s)(−1−7s+s2)

3s2
√

5+ 9−6
√

5s

s2

,

√
5
6 (−3+

√
5s)(1+s2)

6s2
√

5+ 9−6
√

5s

s2

)
N?(s) =

(
−
√
5(s2+1)
2s ,− s

2+1
s , 1−s

2

2s

)
B?(s) =

(
(−3
√
5+5s)(−59+s(−28+59s))

18
√
46s2

√
5+ 9−6

√
5s

s2

,
(−3
√
5+5s)(−59+s(−35+59s))

9
√
46s2

√
5+ 9−6

√
5s

s2

,
59(−3+

√
5s)(1+s2)

18
√
46s2

√
5+ 9−6

√
5s

s2

)

and κ?(s) = 5
√
5

18(3
√
5−5s)

, τ?(s) =
5
√

23
3

6(3
√
5−5s)

. Easily checked that the curve

ϕ? is a spacelike Bertrand partner curve with timelike principal normal vector
of the curve ϕ.
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Figure 3: The red graphic is ϕ, the blue graphic is the spacelike Bertand
partner curve with timelike principal normal vector in Example 4.

Example 5. Let us consider a spacelike rectifying slant helix in E3
1 with the

equation

ϕ (s) =
(
− sinh(1)

√
1 + s2, cosh(1)

√
1 + s2 cos[sech(1) arctan(s)] , cosh(1)

√
1 + s2 sin[sech(1) arctan(s)]

)
with the curvatures κ(s) = tanh(1)

(1+s2)
3
2

and τ(s) = s tanh(1)

(1+s2)
3
2

and the Frenet frame,

with timelike principal normal vector as

T (s) =

(
− sinh(1)s

1+s2 , 1√
1+s2

(cosh(1)s cos[sech(1) arctan(s)]− sin[sech(1) arctan(s)]) ,
1√

1+s2
(cos[sech(1) arctan(s)] + cosh(1)s sin[sech(1) arctan(s)])

)
N(s) = (cosh(1),− sinh(1) cos[sech(1) arctan(s)],− sinh(1) sin[sech(1) arctan(s)])

B(s) =

(
− sinh(1)√

1+s2
, 1√

1+s2
(cosh(1) cos[sech(1) arctan(s)] + s sin[sech(1) arctan(s)]) ,

1√
1+s2

(s cos[sech(1) arctan(s)] + cosh(1) sin[sech(1) arctan(s)])

)

If we take µ1(s) = s tanh(1)√
1+s2

− s2

s−1 , µ2 = 1, µ3(s) = tanh(1)√
1+s2

− s
s−1 and h = 1 in

of theorem 2, then we get the curve ϕ? as follows;

ϕ? (s) =

(
sech(1) + sinh(1)

√
1+s2

−1+s ,− cosh(1)
√
1+s2 cos[sech(1) arctan(s)]

−1+s ,

− cosh(1)
√
1+s2 sin[sech(1) arctan(s)]

−1+s

)
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After correct calculations, we acquire

T ?(s) = 1√
2
√
1+s2

 − sinh(1) (1 + s) ,
cosh(1) (1 + s) cos[sech(1) arctan(s)] + (−1 + s) sin[sech(1) arctan(s)],
(−1 + s) cos[sech(1) arctan(s)] + cosh(1) (1 + s) sin[sech(1) arctan(s)]

 ,

N?(s) = (− cosh(1), sinh(1) cos[sech(1) arctan(s)], sinh(1) sin[sech(1) arctan(s)]) ,

B?(s) = 1√
2
√
1+s2

 − sinh(1) (−1 + s) ,
cosh(1) (−1 + s) cos[sech(1) arctan(s)]− (1 + s) sin[sech(1) arctan(s)],
(1 + s) cos[sech(1) arctan(s)] + cosh(1) (−1 + s) sin[sech(1) arctan(s)]


and κ?(s) = tanh(1)(−1+s)3

2(1+s2)
3
2

, τ?(s) = tanh(1)(−1+s)2(1+s)
2(1+s2)

3
2

. Easily seen that the

curve ϕ? is a spacelike Bertrand partner curve with timelike principal normal
vector of the curve ϕ.
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Figure 4: The red graphic is ϕ, the black graphic is the spacelike Bertand
partner curve with timelike principal normal vector in Example 5.
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Kazım İlarslan,
Department of Mathematics,
Kırıkkale University,
Kırıkkale-Turkey
Email: kilarslan@kku.edu.tr



Spacelike Bertrand curves in Minkowski 3-space revisited 110


