

🗲 sciendo Vol. 31(3),2023, 61-86

Some Fixed Point Results for Sehgal-Proinov Type Contractions in Modular *b*-Metric Spaces

Abdurrahman Büyükkaya and Mahpeyker Öztürk

Abstract

In this paper, inspired by Proinov type contractions, we intend to acquire novel definitions and results that expand Sehgals [3] metric fixed point theory in the sense of modular b-metric space. To demonstrate the theorems, we employ a general form of (α, β) –admissible and multivalued mappings and obtain some general results for single-valued mapping in the context of modular b-metric space.

1 Introduction

In the course of this study, the notations \mathbb{N} , \mathbb{Z}^+ , and \mathbb{R}_+ will symbolize the set of natural numbers, the set of positive integers, and the set of all non-negative real numbers, respectively.

Let Q be a nonvoid set and $\mathcal{F}, S : Q \to Q$ be self-mappings. Thereby, the following ones represent the set of fixed points of $\mathcal F$ and the set of common fixed points of \mathcal{F} and \mathcal{S} , respectively:

- $Fix(\mathcal{F}) = \{ \mathfrak{j} \in \mathbb{Q} : \mathcal{F}\mathfrak{j} = \mathfrak{j} \};$
- $C_{Fix}(\mathcal{F}, \mathcal{S}) = \{ \mathfrak{j} \in \mathcal{Q} : \mathcal{F}\mathfrak{j} = \mathcal{S}\mathfrak{j} = \mathfrak{j} \}.$

Accepted: 07.02.2023

Key Words: Modular metric space, Multi-valued mapping, Proinov-type function, Sehgal type contraction

²⁰¹⁰ Mathematics Subject Classification: Primary 47H09, 47H10; Secondary 54H25. Received: 26.09.2022

Also, let $\mathcal{P}(\Omega)$ be the family of all nonempty subsets of Ω and let $\mathcal{F}, S : \Omega \to \mathcal{P}(\Omega)$ be a multi-valued mapping. So, the following one is the set of fixed points of multi-valued mapping \mathcal{F} and the set of common fixed points of multi-valued mappings of \mathcal{F} and \mathcal{S} , respectively:

- $M_{Fix}(\mathcal{F}) = \{ j \in \mathcal{Q} : j \in \mathcal{F}(j) \};$
- $M_{Fix}^C(\mathcal{F}, \mathcal{S}) = \{ j \in \mathcal{Q} : j \in \mathcal{F}(j) \text{ and } j \in \mathcal{S}(j) \}.$

The Banach fixed point theorem [1] has been one of the remarkable and most productive consequences of metric fixed point theory, which put forward that every mapping \mathcal{F} on a complete metric space (Q, d) satisfying for all $j, \mathfrak{s} \in Q$

$$\mathsf{d}\left(\mathfrak{F}\mathfrak{j},\mathfrak{F}\mathfrak{s}\right) \leq \varsigma \mathsf{d}\left(\mathfrak{j},\mathfrak{s}\right), \quad where \quad \varsigma \in (0,1) \tag{1}$$

owns a unique fixed point, and for every $j_0 \in \Omega$, the sequence $\{\mathcal{F}^n j_0\}$ convergence to this fixed point.

A natural generalization of Banach's fixed point theorem is Bryants fixed point theorem [2], proved by Bryant in 1968, as noted below.

Theorem 1.1. [2] Let $\mathcal{F} : \mathcal{Q} \to \mathcal{Q}$ be a self-mapping on complete metric space $(\mathcal{Q}, \mathsf{d})$. If so, the set $Fix(\mathcal{F})$ owns exactly one element provided that \mathcal{F}^N is a contraction mapping for some $N \in \mathbb{Z}^+$.

One can clearly say that \mathcal{F}^N is continuous. However, the fact that \mathcal{F}^N is continuous does not necessarily mean that \mathcal{F} is continuous. Bryant gave an example illustrating this observation in [2].

In 1969, Sehgal [3] asserted a novel result, an extension of Theorem 1.1, with respect to "the contractive iteration of each point" in the sense of complete metric space, as follows.

Theorem 1.2. [3] $\mathcal{F} : \mathcal{Q} \to \mathcal{Q}$ be a continuous self-mapping on a complete metric space $(\mathcal{Q}, \mathsf{d})$ and $q \in [0, 1)$. If there exists $n = n(\mathfrak{j}) \in \mathbb{Z}^+$ for each $\mathfrak{j} \in \mathcal{Q}$ such that

$$\mathsf{d}\left(\mathfrak{F}^{n(\mathbf{j})}\mathfrak{j},\mathfrak{F}^{n(\mathbf{j})}\mathfrak{s}\right) \leq q\mathsf{d}\left(\mathfrak{j},\mathfrak{s}\right),\tag{2}$$

for all $\mathfrak{s} \in \mathfrak{Q}$, the set $Fix(\mathfrak{F})$ possesses exactly one element.

Moreover, Sehgal [3] came up with an example, which not satisfy the inequality (1), that is, not a contraction, yet it admits (2) and owns a fixed point. Subsequently, Guseman [4] removed the continuity condition on the mapping and resubmitted the results. In 2018, Alqahtani et al. [5] verified the subsequent common fixed point theorem regarding Sehgal's consequences in complete b-metric space (see definition 1.8 for b-metric spaces), as indicated below. **Theorem 1.3.** [5] Let \mathcal{F} , \mathcal{S} be two self-mappings on a complete b-metric space $(\mathcal{Q}, \flat, \hbar)$. For each $j, \mathfrak{s} \in \mathcal{Q}$, if $\chi \in \left(0, \frac{1}{2\hbar - 1}\right)$ consists such that , $n(j), m(\mathfrak{s}) \in \mathbb{Z}^+$ exists such that

$$\mathsf{d}\left(\mathfrak{F}^{n(\mathfrak{j})}\mathfrak{j}, \mathfrak{S}^{m(\mathfrak{s})}\mathfrak{s}\right) \leq \chi\left[\mathsf{d}\left(\mathfrak{j}, \mathfrak{s}\right) + \left|\mathsf{d}\left(\mathfrak{j}, \mathfrak{F}^{n(\mathfrak{j})}\mathfrak{j}\right) - \mathsf{d}\left(\mathfrak{s}, \mathfrak{S}^{m(\mathfrak{s})}\mathfrak{s}\right)\right|\right].$$

Thereby, F and S possess exactly one common fixed point.

Also, for the latest study involving Sehgal's fixed point result, refer to [6]-[11].

Proinov [12] recently constituted a novel and interesting contraction condition in a metric space, as many authors have tried to put forward in metric fixed point theory. Proinov indicated a fixed point theorem, considering proper auxiliary functions, which develops and has various consequences in the substantial literature.

Definition 1.4. [12] Let $\mathcal{F} : \mathcal{Q} \to \mathcal{Q}$ be a mapping defined on a metric space $(\mathcal{Q}, \mathsf{d})$. Presume that $\Sigma, \Omega : (0, \infty) \to \mathbb{R}$ are two functions such that the features

- (\mathbf{p}_1) Σ is a non-decreasing function,
- $(\mathbf{p}_2) \ \Omega(\mathfrak{a}) < \Sigma(\mathfrak{a}) \text{ for all } \mathfrak{a} > 0,$
- $\left(\mathsf{p}_{3} \right) \ \limsup_{\mathfrak{a} \to \mathfrak{a}_{0} +} \Omega \left(\mathfrak{a} \right) < \Sigma \left(\mathfrak{a}_{0} + \right) \text{ for any } \mathfrak{a}_{0} > 0$

are provided. Thereby, for all $j, s \in Q$, if the inequality

$$\Sigma (\mathsf{d} (\mathfrak{Fj}, \mathfrak{Fs})) \leq \Omega (\mathsf{d} (\mathfrak{j}, \mathfrak{s})),$$

is satisfied, the mapping \mathcal{F} is termed a Proinov type contraction.

Theorem 1.5. [12] Presume that $\mathcal{F} : \mathcal{Q} \to \mathcal{Q}$ is a Proinov type contraction defined on a complete metric space $(\mathcal{Q}, \mathsf{d})$. The set $Fix(\mathcal{F})$ includes just one element.

Diverse fixed point consequences appear in the literature, including Proinov type contraction. Some instances of these studies are [13], [14], and [15].

In 2014, Alizadeh et al. [16] gained the construction of cyclic (α, β) –admissible mappings to the literature.

Definition 1.6. [16] Let \mathcal{F} be a self-mapping defined on a nonempty set \mathcal{Q} and $\alpha, \beta: \mathcal{Q} \to \mathbb{R}_+$ be two functions. \mathcal{F} is a cyclic (α, β) –admissible mapping if the given two circumstances

- $(i) \ \alpha \, (\mathfrak{j}) \geq 1 \ \Rightarrow \ \alpha \, (\mathfrak{F} \mathfrak{j}) \geq 1,$
- $(ii) \ \alpha (\mathfrak{j}) \geq 1 \ \Rightarrow \ \alpha (\mathfrak{F} \mathfrak{j}) \geq 1$

are provided for some $j \in Q$.

Subsequently, Latif et al. [17] have generalized Definition 1.6 as indicated below by taking notice of two self-mappings.

Definition 1.7. [17] Presume that Q is a nonvoid set, the self-mappings \mathcal{F} , \mathcal{S} be defined on this set, α and β are two functions from Q to \mathbb{R}_+ . (\mathcal{F} , \mathcal{S}) is a cyclic (α, β) –admissible pair provided that the subsequent two situations are ensured:

- (i) $\alpha(\mathfrak{j}) \ge 1 \Rightarrow \alpha(\mathfrak{F}\mathfrak{j}) \ge 1$,
- (*ii*) α (j) $\geq 1 \Rightarrow \alpha$ (Sj) ≥ 1 ,

for some $\mathfrak{j} \in \mathfrak{Q}$.

Remark 1. If $S = \mathcal{F}$ in the definition afore, Definition 1.6 is achieved.

In addition to introducing new contractions to the fixed point theory, the extension of the concept of a metric was of great interest to the authors, and many studies have been done in this direction. One of these is the naturally-formed *b*-metric function, which appears first in Bakhtin's [18] study and then in Czerwik's [19, 20].

Definition 1.8. [19] Assume that Ω is a nonempty set and $\hbar \geq 1$ is a real-valued constant. For all $j, \mathfrak{s}, \mathfrak{r} \in \Omega$, if the circumstances

- $(\flat_1) \ \flat(\mathfrak{j},\mathfrak{s}) = 0 \Leftrightarrow \mathfrak{j} = \mathfrak{s},$
- $(\flat_2) \ \flat(\mathfrak{j},\mathfrak{s}) = \flat(\mathfrak{s},\mathfrak{j}),$
- $(\flat_3) \ \flat(\mathfrak{j},\mathfrak{s}) \leq \hbar \left[\flat(\mathfrak{j},\mathfrak{r}) + \flat(\mathfrak{r},\mathfrak{s})\right]$

are satisfied, the mapping $b : \Omega \times \Omega \to \mathbb{R}_+$ is termed as *b*-metric. The pair (Ω, b) is entitled *b*-metric space.

If $\hbar = 1$, the *b*-metric is treated as a metric function.

Furthermore, outside of the continuity, nearly all of the topological features of b-metric space are counterparts to the metric ones. The following crucial lemma is fundamental for employing the continuity of b-metric.

Lemma 1.9. [21] Let the triple $(\mathfrak{Q}, \flat, \hbar \geq 1)$ be a *b*-metric space. Presume that the sequences belong to the space $\{j_{\mathfrak{z}}\}, \{\mathfrak{s}_{\mathfrak{z}}\}$ convergence to $\mathfrak{j}, \mathfrak{s} \in \mathfrak{Q}$, respectively. Then

$$\frac{1}{\hbar^2}\flat\left(\mathfrak{j},\mathfrak{s}\right)\leq \liminf_{\mathfrak{z}\to\infty}\flat\left(\mathfrak{j}_{\mathfrak{z}},\mathfrak{s}_{\mathfrak{z}}\right)\leq \limsup_{\mathfrak{z}\to\infty}\flat\left(\mathfrak{j}_{\mathfrak{z}},\mathfrak{s}_{\mathfrak{z}}\right)\leq\hbar^2\flat\left(\mathfrak{j},\mathfrak{s}\right).$$

 $\textit{Especially, if } \mathfrak{j} = \mathfrak{s}, \textit{ then } \lim_{\mathfrak{z} \to \infty} \flat \left(\mathfrak{j}_{\mathfrak{z}}, \mathfrak{s}_{\mathfrak{z}} \right) = 0. \textit{ Also, for } \mathfrak{r} \in \Omega, \textit{ we attain }$

$$\frac{1}{\hbar}\flat\left(\mathfrak{j},\mathfrak{r}\right)\leq\liminf_{\mathfrak{z}\rightarrow\infty}\flat\left(\mathfrak{j}_{\mathfrak{z}},\mathfrak{r}\right)\leq\limsup_{\mathfrak{z}\rightarrow\infty}\flat\left(\mathfrak{j}_{\mathfrak{z}},\mathfrak{r}\right)\leq\hbar\flat\left(\mathfrak{j},\mathfrak{r}\right).$$

The studies [22]-[25] by Chistyakov constitute the basis of the studies on modular metrics, a very recent and intriguing concept.

Primarily, let $\mathcal{M} : (0, \infty) \times \Omega \times \Omega \to [0, \infty]$ be a function provided to be the Ω is a nonempty set. If so, for clarity, we will prefer the notions of $\mathcal{M}_{\kappa}(\mathfrak{j},\mathfrak{s})$ rather than $\mathcal{M}(\kappa,\mathfrak{j},\mathfrak{s})$ for all $\kappa > 0$ and $\mathfrak{j}, \mathfrak{s} \in \Omega$.

Definition 1.10. [23, 24] Presume that Ω is a nonempty set. The mapping $\mathcal{M}: (0,\infty) \times \Omega \times \Omega \to [0,\infty]$ is entitled to modular metric provided that the circumstances are provided for all $j, \mathfrak{s}, \mathfrak{r} \in \Omega$, and $\kappa, \varsigma > 0$

$$(\mathcal{M}_1) \ \mathcal{M}_{\kappa}(\mathfrak{j},\mathfrak{s}) = 0$$
 if and only if $\mathfrak{j} = \mathfrak{s}$,

$$(\mathscr{M}_2) \ \mathscr{M}_{\kappa}(\mathfrak{j},\mathfrak{s}) = \mathscr{M}_{\kappa}(\mathfrak{s},\mathfrak{j}),$$

$$(\mathcal{M}_3) \ \mathcal{M}_{\kappa+\varsigma}(\mathfrak{j},\mathfrak{s}) \leq \mathcal{M}_{\kappa}(\mathfrak{j},\mathfrak{r}) + \mathcal{M}_{\varsigma}(\mathfrak{r},\mathfrak{s}).$$

Thereupon, $(\mathfrak{Q}, \mathscr{M})$ is a modular metric space abbreviated as **mms**.

Instead of (\mathcal{M}_1) , if we consider the following statement, then \mathcal{M} is a (metric) pseudo-modular on Ω for all $\kappa > 0$

$$(\mathcal{M}_1') \ \mathcal{M}_{\kappa}(\mathfrak{j},\mathfrak{j}) = 0.$$

Moreover, \mathcal{M} defined on Ω has the property of regularity if the new statement, which is a weaker version of (\mathcal{M}_1) , for some $\kappa > 0$,

 $(\mathcal{M}_{1}^{"})$ $\mathfrak{j} = \mathfrak{s}$ if and only if $\mathcal{M}_{\kappa}(\mathfrak{j},\mathfrak{j}) = 0$

is provided. The function \mathcal{M} , owning the following feature if for $\kappa, \varsigma > 0$ and $j, \mathfrak{s}, \mathfrak{r} \in \Omega$, is termed a convex modular on Ω

$$\mathscr{M}_{\kappa+\varsigma}(\mathfrak{j},\mathfrak{s})\leq rac{\kappa}{\kappa+\varsigma}\mathscr{M}_{\kappa}(\mathfrak{j},\mathfrak{r})+rac{\varsigma}{\kappa+\varsigma}\mathscr{M}_{\varsigma}(\mathfrak{r},\mathfrak{s})\,.$$

On the other hand, whenever \mathscr{M} is a metric pseudo-modular on a set \mathfrak{Q} , the function $\kappa \to \mathscr{M}_{\kappa}(\mathfrak{j},\mathfrak{s})$ is non-increasing on $(0,\infty)$ for any $\mathfrak{j},\mathfrak{s} \in \mathfrak{Q}$. For $0 < \varsigma < \kappa$, it is verified that

$$\mathscr{M}_{\kappa}(\mathfrak{j},\mathfrak{s}) \leq \mathscr{M}_{\kappa-\varsigma}(\mathfrak{j},\mathfrak{j}) + \mathscr{M}_{\varsigma}(\mathfrak{j},\mathfrak{s}) = \mathscr{M}_{\varsigma}(\mathfrak{j},\mathfrak{s}).$$

Definition 1.11. [23, 24] Consider \mathcal{M} is a pseudo-modular on \mathcal{Q} and j_0 be a fixed element belonging to \mathcal{Q} . Thereby, the following sets are mentioned as modular spaces (around j_0):

- $\mathcal{Q}_{\mathcal{M}} = \mathcal{Q}_{\mathcal{M}}(\mathfrak{j}_0) = \{\mathfrak{j} \in \mathcal{Q} : \mathcal{M}_{\kappa}(\mathfrak{j},\mathfrak{j}_0) \to 0\}$ as $\kappa \to \infty$, and
- $\mathfrak{Q}^*_{\mathscr{M}} = \mathfrak{Q}^*_{\mathscr{M}}(\mathfrak{j}_0) = \{\mathfrak{j} \in \mathfrak{Q} : \exists \kappa = \kappa(\mathfrak{j}) > 0 \text{ such that } \mathscr{M}_{\kappa}(\mathfrak{j},\mathfrak{j}_0) < \infty \}.$

Note that $\mathcal{Q}_{\mathscr{M}} \subset \mathcal{Q}^*_{\mathscr{M}}$, but it is not in general. Accordingly, from [23, 24], a (nontrivial) metric $\mathsf{d}_{\mathscr{M}}$, which is presented in follows and generated by the modular \mathscr{M} , for any $j, \mathfrak{s} \in \mathcal{Q}_{\mathscr{M}}$

$$\mathsf{d}_{\mathscr{M}}(\mathfrak{j},\mathfrak{s}) = \inf \left\{ \kappa > 0 : \mathscr{M}_{\kappa}(\mathfrak{j},\mathfrak{s}) \leq \kappa \right\}$$

is identified on $\mathfrak{Q}_{\mathscr{M}}$. Furthermore, if we consider a convex modular \mathscr{M} on \mathfrak{Q} , then $\mathfrak{Q}_{\mathscr{M}} = \mathfrak{Q}_{\mathscr{M}}^*$ thereupon, these sets are endowed with the metric

$$\mathsf{d}_{\mathscr{M}}^{*}(\mathfrak{j},\mathfrak{s}) = \inf \left\{ \kappa > 0 : \mathscr{M}_{\kappa}\left(\mathfrak{j},\mathfrak{s}\right) \leq 1 \right\},\$$

with a proverbial as the Luxembourg distance, for any $j, \mathfrak{s} \in Q_{\mathcal{M}}$.

Definition 1.12. [23, 24] Let $\mathfrak{Q}^*_{\mathscr{M}}$ be an \mathfrak{mms} , $\{\mathfrak{j}_{\mathfrak{z}}\}_{\mathfrak{z}\in\mathbb{N}}\in\mathfrak{Q}^*_{\mathscr{M}}$ be a sequence, and \mathfrak{Y} be a subset of $\mathfrak{Q}^*_{\mathscr{M}}$.

- 1. $\{j_{\mathfrak{z}}\}_{\mathfrak{z}\in\mathbb{N}}$ is an \mathscr{M} -convergent sequence to $\mathfrak{j}\in \mathfrak{Q}^*_{\mathscr{M}}$ if and only if for all $\kappa > 0, \ \mathscr{M}_{\kappa}(\mathfrak{j}_{\mathfrak{z}},\mathfrak{j}) \to 0$, as *n* tends to infinity, and the point \mathfrak{j} is named the \mathscr{M} -limit of $\{\mathfrak{j}_{\mathfrak{z}}\}_{\mathfrak{z}\in\mathbb{N}}$.
- 2. If $\lim_{\mathfrak{z},m\to\infty} \mathscr{M}_{\kappa}(\mathfrak{j}_{\mathfrak{z}},\mathfrak{j}_m) = 0$, for all $\kappa > 0$, $\{\mathfrak{j}_{\mathfrak{z}}\}_{\mathfrak{z}\in\mathbb{N}}$ in $\mathfrak{Q}^*_{\mathscr{M}}$ is named as an \mathscr{M} -Cauchy sequence.
- 3. If any \mathcal{M} -Cauchy sequence \mathcal{M} -convergences to the element of $\mathcal{Q}^*_{\mathcal{M}}$, $\mathcal{Q}^*_{\mathcal{M}}$ is termed an \mathcal{M} -complete space.
- The set Y is *M*-closed, provided that the *M*-limit of an *M*-convergent sequence of Y always belongs to Y.
- 5. $\mathcal{F}: \mathcal{Q}^*_{\mathcal{M}} \to \mathcal{Q}^*_{\mathcal{M}}$ is an \mathcal{M} -continuous mapping if $\mathcal{M}_{\kappa}(\mathfrak{j}_{\mathfrak{z}},\mathfrak{j}) \to 0$, provided to $\mathcal{M}_{\kappa}(\mathcal{F}\mathfrak{j}_{\mathfrak{z}},\mathcal{F}\mathfrak{j}) \to 0$ as $k \to \infty$.

6. \mathcal{Y} is an \mathcal{M} -bounded set, provided that

$$\delta_{\mathscr{M}}(\mathfrak{Y}) = \sup \left\{ \mathscr{M}_1(\mathfrak{j},\mathfrak{s}) : \mathfrak{j}, \mathfrak{s} \in \mathfrak{Y} \right\} < \infty.$$

- 7. \mathcal{Y} is an \mathcal{M} -compact set if, for any $\{j_{\mathfrak{z}}\}_{\mathfrak{z}\in\mathbb{N}}$ in \mathcal{Y} , there exists a subsequence $\{j_{\mathfrak{z}_{\mathfrak{z}}}\}$ and a point \mathfrak{j} in \mathcal{Y} such that $\mathcal{M}_1(\mathfrak{j}_{\mathfrak{z}_{\mathfrak{z}}},\mathfrak{j}) \to 0$.
- 8. \mathscr{M} holds the Fatou property \Leftrightarrow for any sequence $\{j_{\mathfrak{z}}\}_{\mathfrak{z}\in\mathbb{N}}$ in $\mathfrak{Q}^*_{\mathscr{M}}$ \mathscr{M} -convergences to \mathscr{M} , then

$$\mathcal{M}_{1}(\mathfrak{j},\mathfrak{s}) \leq \liminf_{\mathfrak{z}\to\infty} \mathcal{M}_{1}(\mathfrak{j}_{\mathfrak{z}},\mathfrak{s})$$

for any $\mathfrak{s} \in \mathfrak{Q}^*_{\mathscr{M}}$.

Definition 1.13. [26] The modular \mathscr{M} fulfills the Δ_2 -condition if the condition

 $\begin{array}{ll} (\mathfrak{D}) & \lim_{\mathfrak{z}\to\infty}\mathscr{M}_{\kappa}\left(\mathfrak{j}_{\mathfrak{z}},\mathfrak{j}\right) = 0 \mbox{ for some } \kappa > 0 \mbox{ implies } \lim_{\mathfrak{z}\to\infty}\mathscr{M}_{\kappa}\left(\mathfrak{j}_{\mathfrak{z}},\mathfrak{j}\right) = 0, \mbox{ for all } \kappa > 0 \end{array}$

is realized.

However, the converse of condition (\mathcal{D}) is not always valid.

Now, we will recall the following sets.

- \$\mathcal{C}\mathcal{B}(\mathcal{Y}) = {\mathcal{X}: \mathcal{X} is nonvoid, \mathcal{M} closed, and \mathcal{M} bounded subset of \mathcal{Y}}.
 \$\mathcal{K}(\mathcal{Y}) = {\mathcal{X}: \mathcal{X} is nonvoid, \mathcal{M} compact subset of \mathcal{Y}}.
- On $\mathscr{CB}(\mathcal{Y})$, the Hausdorff-Pompei modular metric is identified by

$$\mathscr{H}_{\mathscr{M}}(\mathfrak{Z},\mathcal{L}) = \max\left\{\sup_{\mathbf{j}\in\mathfrak{Z}}\mathscr{M}_{1}(\mathbf{j},\mathcal{L}),\sup_{\mathfrak{s}\in\mathcal{L}}\mathscr{M}_{1}(\mathfrak{Z},\mathfrak{s})\right\}$$

for $\mathscr{M}_{1}(\mathfrak{j},\mathcal{L}) = \inf_{\mathfrak{s}\in\mathcal{L}} \mathscr{M}_{1}(\mathfrak{j},\mathfrak{s}).$

The Banach fixed point theorem for multi-valued mappings in the metric space setting by handling the notion of the Hausdorff-Pompei metric was demonstrated by Nadler [27]. Moreover, this concept is also discussed in modular metric spaces. As noted in [26], Abdou and Khamsi characterized the multi-valued Lipschitzian mapping in this space.

Definition 1.14. [26] Let $(\mathfrak{Q}, \mathscr{M})$ be an $\mathfrak{mms}, \mathfrak{F} : \mathfrak{Y} \to \mathscr{CB}(\mathfrak{Y})$ be a mapping, and \mathfrak{Y} be a nonvoid subset of $\mathfrak{Q}_{\mathscr{M}}$. For any $\mathfrak{j}, \mathfrak{s} \in \mathfrak{Y}$ and $\gamma \geq 0$, if the inequality

$$\mathscr{H}_{\mathscr{M}}\left(\mathfrak{F}(\mathfrak{j}),\mathfrak{F}(\mathfrak{s})\right) \leq \gamma \mathscr{M}_{1}\left(\mathfrak{j},\mathfrak{s}\right)$$

is provided, then the mapping \mathcal{F} is entitled to a multi-valued Lipschitzian.

The following lemmas are essential for multi-valued mappings in mms.

Lemma 1.15. [26] Let $(\mathfrak{Q}, \mathscr{M})$ be an mms and \mathfrak{Y} be a nonvoid subset of $\mathfrak{Q}_{\mathscr{M}}$. Assume that $\mathfrak{R}, \mathfrak{S} \in \mathfrak{CB}(\mathfrak{Y})$. For each $\varepsilon > 0$ and $\mathfrak{j} \in \mathfrak{R}$, an element \mathfrak{s} exists in \mathfrak{S} such that

$$\mathcal{M}_1(\mathfrak{j},\mathfrak{s}) \leq \mathcal{H}_{\mathcal{M}}(\mathfrak{R},\mathfrak{S}) + \varepsilon.$$

Furthermore, provided that S is \mathcal{M} -compact and \mathcal{M} fulfills the Fatou property, then for any \mathfrak{j} in $\mathfrak{R}, \mathfrak{s} \in S$ comes into existence such that

$$\mathcal{M}_{1}(\mathfrak{j},\mathfrak{s}) \leq \mathcal{H}_{\mathcal{M}}(\mathfrak{R},\mathfrak{S}).$$

Lemma 1.16. [26] Let $(\mathfrak{Q}, \mathscr{M})$ be an mms and \mathfrak{Y} be a nonvoid subset of $\mathfrak{Q}_{\mathscr{M}}$. Presume that \mathscr{M} admits the condition (\mathfrak{D}) , and $\mathfrak{R}_{\mathfrak{z}}$ is a sequence of sets $\mathscr{CB}(\mathfrak{Y})$ provided that $\lim_{\mathfrak{z}\to\infty} \mathscr{H}_{\mathscr{M}}(\mathfrak{R}_{\mathfrak{z}},\mathfrak{R}_0) = 0$, where $\mathfrak{R}_0 \in \mathscr{CB}(\mathfrak{Y})$. If $\mathfrak{j}_{\mathfrak{z}} \in \mathfrak{R}_{\mathfrak{z}}$ and $\lim_{\mathfrak{z}\to\infty} \mathfrak{j}_{\mathfrak{z}} = \mathfrak{j}_0$, it follows that $\mathfrak{j}_0 \in \mathfrak{R}_0$.

Also, to have more knowledge of \mathfrak{mms} , see [28]-[31].

In 2018, Ege and Alaca [32], contemplating modular metric and b-metric, identified a novel concept named the modular b-metric space, as pointed out below.

Definition 1.17. [32] Let $\zeta : (0, \infty) \times \Omega \times \Omega \to [0, \infty]$ be a mapping, where Ω is a nonvoid set. The function ζ is mentioned as modular *b*-metric, if there exists $\hbar \in \mathbb{R}$ with $\hbar \geq 1$, and also, for all $\kappa, \varsigma > 0$ and $j, \mathfrak{s}, \mathfrak{r} \in \Omega$, the axioms

- $(\zeta_1) \ \zeta_{\kappa} (\mathfrak{j}, \mathfrak{s}) = 0 \Leftrightarrow \mathfrak{j} = \mathfrak{s},$
- $(\zeta_2) \ \zeta_{\kappa} (\mathfrak{j}, \mathfrak{s}) = \zeta_{\kappa} (\mathfrak{s}, \mathfrak{j}),$
- $(\zeta_3) \ \zeta_{\kappa+\varsigma} \left(\mathfrak{j}, \mathfrak{s} \right) \leq \hbar \left[\zeta_{\kappa} \left(\mathfrak{j}, \mathfrak{r} \right) + \zeta_{\varsigma} \left(\mathfrak{r}, \mathfrak{s} \right) \right]$

are satisfied. In addition, the pair (\mathfrak{Q}, ζ) is a modular *b*-metric space, abbreviated as $\mathfrak{m}_{\mathfrak{b}}\mathfrak{ms}$.

Note that we can achieve the concept of \mathfrak{mms} if we accept $\hbar=1$ in the above definition.

Whenever ζ is a modular *b*-metric, the set

$$\mathcal{Q}_{\zeta} = \left\{ \mathfrak{s} \in \mathcal{Q} : \mathfrak{s} \stackrel{\zeta}{\sim} \mathfrak{j} \right\}$$

is entitled as a modular set on Ω such that $\stackrel{\zeta}{\sim}$ is a binary relation described with $\mathbf{j} \sim \mathbf{s} \Leftrightarrow \lim_{\kappa \to \infty} \zeta_{\kappa} (\mathbf{j}, \mathbf{s}) = 0$, for $\mathbf{j}, \mathbf{s} \in \Omega$.

Furthermore, the set

$$\mathcal{Q}_{\zeta}^{*} = \{ \mathfrak{j} \in \mathcal{Q} : \exists \kappa = \kappa \, (\mathfrak{j}) > 0 \text{ such that } \zeta_{\kappa} \, (\mathfrak{j}, \mathfrak{j}_{0}) < \infty \} \ (\mathfrak{j}_{0} \in \mathcal{Q})$$

is a $\mathfrak{m}_{\flat}\mathfrak{m}\mathfrak{s}$ (around \mathfrak{j}_0).

The subsequent examples can be given to comprehend the concept of $\mathfrak{m}_{\flat}\mathfrak{ms}$.

Example 1.18. [32] Let us regard the space

$$\ell_{\mathsf{p}} = \left\{ (\mathfrak{j}_j) \subset \mathbb{R} : \sum_{\mathfrak{z}=1}^{\infty} |\mathfrak{j}_{\mathfrak{z}}|^{\mathsf{p}} < \infty \right\}, \quad 0 < \mathsf{p} < 1.$$

For $\kappa \in (0, \infty)$, if we specify $\zeta_{\kappa}(j, \mathfrak{s}) = \frac{\mathsf{d}(j, \mathfrak{s})}{\kappa}$ that

$$\mathsf{d}\left(\mathfrak{j},\mathfrak{s}\right)=\left(\sum_{\mathfrak{z}=1}^{\infty}\left|\mathfrak{j}_{\mathfrak{z}}-\mathfrak{s}_{\mathfrak{z}}\right|^{\mathsf{p}}\right)^{\frac{1}{\mathsf{p}}},\quad\mathfrak{j}=\mathfrak{j}_{\mathfrak{z}},\,\mathfrak{s}=\mathfrak{s}_{\mathfrak{z}}\in\ell_{\mathsf{p}}$$

then the pair (Ω, ζ) is an $\mathfrak{m}_{\flat}\mathfrak{ms}$.

Example 1.19. [33] Let $(\mathfrak{Q}, \mathscr{M})$ be an \mathfrak{mms} and $\tau \geq 1$ with $\tau \in \mathbb{R}$. Let $\zeta_{\kappa}(\mathfrak{j}, \mathfrak{s}) = (\mathscr{M}_{\kappa}(\mathfrak{j}, \mathfrak{s}))^{\tau}$. Using the convexity of the function $\mathcal{F}(\iota) = \iota^{\tau}$ for $\iota \geq 0$, and Jensen inequality, we get

$$\left(\omega+\upsilon\right)^{\tau} \le 2^{\tau-1} \left(\omega^{\tau}+\upsilon^{\tau}\right)$$

for $\omega, \upsilon \geq 0$. Thus, (Ω, ζ) is an $\mathfrak{m}_{\flat}\mathfrak{m}\mathfrak{s}$ with $\hbar = 2^{\tau-1}$.

Some fundamental topological properties in $\mathfrak{m}_{\mathfrak{b}}\mathfrak{ms}$ can be defined as in \mathfrak{mms} . Also, all of the properties of \mathfrak{mms} are valid in $\mathfrak{m}_{\mathfrak{b}}\mathfrak{ms}$.

2 Some Fixed Point Results for Multi-Valued Mappings

This section proposes a novel idea, extending the (α, β) –admissible mappings. Then, by using this construction, a common fixed point theorem has been verified in the sense of $\mathfrak{m}_{\mathfrak{p}}\mathfrak{ms}$.

Initially, the following notion is essential for the outcomes of this part.

Choudhury et al. [34] have extended the concept of cyclic (α, β) –admissible mapping to a multi-valued version, as noted below.

Definition 2.1. [34] Let Ω be a nonvoid set, $\mathcal{F} : \Omega \to \mathcal{P}(\Omega)$ be a multi-valued mapping, and $\alpha, \beta : \Omega \to [0, \infty)$ be two functions. Then, \mathcal{F} is a multi-valued cyclic (α, β) –admissible mapping if for $j, \mathfrak{s} \in \Omega$,

- (i) $\alpha(j) \ge 1 \implies \beta(u) \ge 1$ for all $u \in \mathfrak{Fj}$,
- (*ii*) $\beta(\mathfrak{s}) \geq 1 \Rightarrow \alpha(v) \geq 1$ for all $v \in \mathfrak{Fs}$.

The following concept can be easily defined.

Definition 2.2. Let $\mathcal{F}, \mathcal{S} : \mathcal{Q} \to \mathcal{P}(\mathcal{Q})$ be multi-valued mappings, where \mathcal{Q} is a nonvoid set, and $\alpha, \beta : \mathcal{Q} \to [0, \infty)$ be two functions. Then, $(\mathcal{F}, \mathcal{S})$ is a multi-valued cyclic (α, β) –admissible pair if for $j, \mathfrak{s} \in \mathcal{Q}$,

- (i) $\alpha(j) \ge 1 \implies \beta(u) \ge 1$ for all $u \in \mathfrak{F}j$,
- (*ii*) $\beta(\mathfrak{s}) \geq 1 \Rightarrow \alpha(v) \geq 1$ for all $v \in S\mathfrak{s}$.

We are ready to present an extension of Definition 2.1 and 2.2.

Definition 2.3. Let $\mathcal{F}, \mathcal{S} : \mathcal{Q} \to \mathcal{P}(\mathcal{Q})$ be multi-valued mappings, where \mathcal{Q} is a nonvoid set, and $\alpha, \beta : \mathcal{Q} \to [0, \infty)$ be two functions. Also, for $\mathfrak{j}, \mathfrak{s} \in \mathcal{Q}$, positive integers $n = n(\mathfrak{j})$ and $m = m(\mathfrak{s})$ exits. We contemplate the following circumstances.

- $(\alpha\beta_1) \ \alpha(\mathfrak{j}) \geq 1$ for some $\mathfrak{j} \in \mathfrak{Q}$ implies $\beta(u) \geq 1$ for all $u \in \mathfrak{F}^{n(\mathfrak{j})}\mathfrak{j}$.
- $(\alpha\beta_2) \ \beta(\mathfrak{j}) \geq 1$ for some $\mathfrak{j} \in \mathfrak{Q}$ implies $\alpha(v) \geq 1$ for all $v \in \mathfrak{F}^{n(\mathfrak{j})}\mathfrak{j}$.
- $(\alpha\beta_3)$ $\beta(\mathfrak{s}) \geq 1$ for some $\mathfrak{s} \in \mathbb{Q}$ implies $\alpha(v) \geq 1$ for all $v \in S^{m(\mathfrak{s})}\mathfrak{s}$.

Taking into account the function $(\alpha\beta_i)$, we assert that

- $i = 1, 2, \mathcal{F}$ is a multi-valued cyclic $(\alpha, \beta) n$ -admissible mapping.
- $i = 1, 3, (\mathcal{F}, \mathcal{S})$ is a multi-valued cyclic $(\alpha, \beta) (n, m)$ –admissible pair.

Remark 2. Let us consider n = n (j) = 1 in the above definition; then we obtain the definition of multi-valued cyclic (α, β) –admissible mapping defined by [34] and, in case of n = m = m (j) = 1, multi-valued cyclic (α, β) –admissible pairs.

Definition 2.4. Let (\mathfrak{Q}, ζ) be an $\mathfrak{m}_{\mathfrak{b}}\mathfrak{m}\mathfrak{s}$ with $\hbar \geq 1$, \mathfrak{Y} be a nonempty bounded subset of \mathfrak{Q}_{ζ} , and $\alpha, \beta : \mathfrak{Q}_{\zeta} \to \mathbb{R}_{+}$ be two functions. Two multi-valued mappings $\mathfrak{F}, \mathfrak{S} : \mathfrak{Y} \to \mathscr{CB}(\mathfrak{Y})$ are called multi-valued Sehgal-Proinov-type $(\alpha, \beta) - (n, m)$ -contraction if there exist $\Sigma, \Omega : (0, \infty) \to \mathbb{R}$ such that for each $\mathfrak{j}, \mathfrak{s} \in \mathfrak{Y}$, there exist $n(\mathfrak{j}), m(\mathfrak{s}) \in \mathbb{Z}^{+}$ such that

$$\alpha(\mathfrak{j}).\beta(\mathfrak{s}) \ge 1 \implies \Sigma\left(\hbar^{3}\mathscr{H}_{\zeta}\left(\mathfrak{F}^{n(\mathfrak{j})}\mathfrak{j},\mathfrak{S}^{m(\mathfrak{s})}\mathfrak{s}\right)\right) \le \Omega\left(\mathfrak{C}\left(\mathfrak{j},\mathfrak{s}\right)\right), \tag{3}$$

where

$$\mathcal{C}(\mathbf{j},\mathfrak{s}) = \max \left\{ \begin{array}{l} \zeta_1(\mathbf{j},\mathfrak{s}), \delta_1(\mathbf{j},\mathcal{F}^{n(\mathbf{j})}\mathbf{j}), \delta_1(\mathfrak{s},\mathcal{S}^{m(\mathfrak{s})}\mathfrak{s}), \\ \\ \frac{\delta_2(\mathbf{j},\mathcal{S}^{m(\mathfrak{s})}\mathfrak{s}) + \delta_2(\mathfrak{s},\mathcal{F}^{n(\mathbf{j})}\mathbf{j})}{2\hbar} \end{array} \right\},$$

for all $\mathscr{H}_{\zeta}\left(\mathfrak{F}^{n(\mathfrak{j})}\mathfrak{j}, \mathfrak{S}^{m(\mathfrak{s})}\mathfrak{s}\right) > 0.$

Theorem 2.5. Let (\mathfrak{Q}, ζ) be a ζ -complete $\mathfrak{m}_{\mathfrak{h}}\mathfrak{ms}$ with $\hbar \geq 1$ and ζ be a convex regular modular which fulfills the Fatou property and Δ_2 -condition. Let \mathfrak{Y} be a nonempty ζ -complete subset of \mathfrak{Q}_{ζ} , and $\mathfrak{F}, \mathfrak{S} : \mathfrak{Y} \to \mathscr{K}(\mathfrak{Y})$ be multi-valued Sehgal-Proinov-type $(\alpha, \beta) - (n, m)$ -contraction mappings. If the circumstances

- (i) there exist $j_0 \in \mathcal{Y}$ such that $\alpha(j_0) \ge 1$,
- (ii) $(\mathfrak{F}, \mathfrak{S})$ is a multi-valued cyclic $(\alpha, \beta) (n, m)$ admissible pair,
- (iii_a) \mathcal{F} or \mathcal{S} is ζ -continuous, or
- (iii_b) if $\{j_{\mathfrak{z}}\}_{\mathfrak{z}\in\mathbb{N}}$ is a sequence in \mathfrak{Y} such that $j_{\mathfrak{z}} \to \mathfrak{j}$ and $\alpha(j_{2\mathfrak{z}}) \ge 1$, $\beta(j_{2\mathfrak{z}-1}) \ge 1$ for all $\mathfrak{z}\in\mathbb{N}$, then $\alpha(\mathfrak{j}) \ge 1$ and $\beta(\mathfrak{j}) \ge 1$,
- (iv) Σ is non-decreasing and $\Omega(\mathfrak{a}) < \Sigma(\mathfrak{a})$ for all $\mathfrak{a} > 0$,
- (v) $\limsup_{a \to a_0+} \Omega(a) < \Sigma(a_0+)$ for any $a_0 > 0$

are provided, \mathfrak{F} and \mathfrak{S} own exactly one common fixed point x^* in $\mathfrak{Y} \subseteq \mathfrak{Q}_{\zeta}$, where $\zeta_1(\mathfrak{j}_0,\mathfrak{j}_1) < \infty$ for some $\mathfrak{j}_0,\mathfrak{j}_1 \in \mathfrak{Q}_{\zeta}$. Additionally, if $\alpha(\mathfrak{j}) \beta(\mathfrak{s}) \geq 1$ for all $\mathfrak{j}, \mathfrak{s} \in M_{Fix}^C(\mathfrak{F}^{n(\mathfrak{j}^*)}, \mathfrak{S}^{m(\mathfrak{j}^*)})$, then the set $M_{Fix}^C(\mathfrak{F}^{n(\mathfrak{j}^*)}, \mathfrak{S}^{m(\mathfrak{j}^*)})$ has a exactly one element. Moreover, if $\alpha(\mathfrak{F}\mathfrak{j}^*) \beta(\mathfrak{j}^*) \geq 1$ and $\alpha(\mathfrak{j}^*) \beta(\mathfrak{S}\mathfrak{j}^*) \geq 1$, then $M_{Fix}^C(\mathfrak{F}, \mathfrak{S}) = {\mathfrak{j}^*}.$

Proof. Let $j_0 \in \mathcal{Y}$ be a point mentioned in condition (i) such that $\alpha(j_0) \geq 1$. From the fact that $(\mathcal{F}, \mathcal{S})$ is a multi-valued cyclic $(\alpha, \beta) - (n, m)$ –admissible pair and by choosing $j_1 \in \mathcal{F}^{n(j_0)}j_0$, we get

$$\alpha(\mathbf{j}_0) \ge 1 \Rightarrow \beta\left(\mathcal{F}^{n(\mathbf{j}_0)}\mathbf{j}_0\right) = \beta(\mathbf{j}_1) \ge 1,$$

and so, there exists $j_2 \in S^{m(j_1)}j_1$ such that

$$\beta(\mathfrak{j}_1) \ge 1 \Rightarrow \alpha\left(\mathfrak{S}^{m(\mathfrak{j}_1)}\mathfrak{j}_1\right) = \alpha(\mathfrak{j}_2) \ge 1.$$

Thereby, we gain that $\alpha(\mathfrak{j}_0)\beta(\mathfrak{j}_1) \geq 1$ such that

$$\zeta_1(\mathfrak{j}_1,\mathfrak{j}_2) \leq \mathscr{H}_{\zeta}\left(\mathfrak{F}^{n(\mathfrak{j}_0)}\mathfrak{j}_0,\mathfrak{S}^{m(\mathfrak{j}_1)}\mathfrak{j}_1\right) \leq \hbar^3\mathscr{H}_{\zeta}\left(\mathfrak{F}^{n(\mathfrak{j}_0)}\mathfrak{j}_0,\mathfrak{S}^{m(\mathfrak{j}_1)}\mathfrak{j}_1\right),$$

and in this way, by using the assumption of (iv) and the inequality (3), we attain

$$\begin{split} \Sigma\left(\zeta_{1}\left(\mathfrak{j}_{1},\mathfrak{j}_{2}\right)\right) &\leq \Sigma\left(\hbar^{3}\mathscr{H}_{\zeta}\left(\mathfrak{F}^{n\left(\mathfrak{j}_{0}\right)}\mathfrak{j}_{0},\mathfrak{S}^{m\left(\mathfrak{j}_{1}\right)}\mathfrak{j}_{1}\right)\right) &\leq \Omega\left(\mathfrak{C}\left(\mathfrak{j}_{0},\mathfrak{j}_{1}\right)\right) \\ &< \Sigma\left(\mathfrak{C}\left(\mathfrak{j}_{0},\mathfrak{j}_{1}\right)\right). \end{split}$$

On the other hand, we have the point $j_3 \in \mathcal{F}^{n(j_2)} j_2$ such that

$$\alpha(\mathfrak{j}_2) \geq 1 \Rightarrow \beta\left(\mathfrak{F}^{n(\mathfrak{j}_2)}\mathfrak{j}_2\right) = \beta(\mathfrak{j}_3) \geq 1,$$

that is, we acquire $\alpha(\mathfrak{j}_2)\beta(\mathfrak{j}_1) \geq 1$ which implies

$$\begin{split} \Sigma\left(\zeta_{1}\left(\mathbf{j}_{3},\mathbf{j}_{2}\right)\right) &\leq \Sigma\left(\hbar^{3}\mathscr{H}_{\zeta}\left(\mathscr{F}^{n\left(\mathbf{j}_{2}\right)}\mathbf{j}_{2},\mathscr{S}^{m\left(\mathbf{j}_{1}\right)}\mathbf{j}_{1}\right)\right) \leq \Omega\left(\mathscr{C}\left(\mathbf{j}_{2},\mathbf{j}_{1}\right)\right) \\ &\leq \Sigma\left(\mathscr{C}\left(\mathbf{j}_{2},\mathbf{j}_{1}\right)\right). \end{split}$$

Likewise, it follows that $\alpha(j_2)\beta(j_3) \geq 1$ and

$$\begin{split} \Sigma\left(\zeta_{1}\left(\mathfrak{j}_{3},\mathfrak{j}_{4}\right)\right) &\leq \Sigma\left(\hbar^{3}\mathscr{H}_{\zeta}\left(\mathscr{F}^{n\left(\mathfrak{j}_{2}\right)}\mathfrak{j}_{2}, \mathscr{S}^{m\left(\mathfrak{j}_{3}\right)}\mathfrak{j}_{3}\right)\right) \leq \Omega\left(\mathfrak{C}\left(\mathfrak{j}_{2},\mathfrak{j}_{3}\right)\right) \\ &\leq \Sigma\left(\mathfrak{C}\left(\mathfrak{j}_{2},\mathfrak{j}_{3}\right)\right). \end{split}$$

Consequently, repeating this procedure, we set up a sequence $\left\{j_{\mathfrak{z}}\right\}_{\mathfrak{z}\in\mathbb{N}}$ with the initial point j_0 such that

$$\mathfrak{j}_{2\mathfrak{z}+1} \in \mathfrak{F}^{n(\mathfrak{j}_{2\mathfrak{z}})}\mathfrak{j}_{2\mathfrak{z}} \text{ and } \mathfrak{j}_{2\mathfrak{z}+2} \in \mathfrak{S}^{m(\mathfrak{j}_{2\mathfrak{z}+1})}\mathfrak{j}_{2\mathfrak{z}+1},$$

or, if we use the notation $n_{\mathfrak{z}} = n(\mathfrak{j}_{2\mathfrak{z}})$ and $m_{\mathfrak{z}} = m(\mathfrak{j}_{2\mathfrak{z}+1})$, we can again write

$$\mathfrak{j}_{2\mathfrak{z}+1} \in \mathfrak{F}^{n_{\mathfrak{z}}}\mathfrak{j}_{2\mathfrak{z}}$$
 and $\mathfrak{j}_{2\mathfrak{z}+2} \in \mathfrak{S}^{m_{\mathfrak{z}}}\mathfrak{j}_{2\mathfrak{z}+1}$.

If we presume $j_{\mathfrak{z}_0} = j_{\mathfrak{z}_0+1}$, for some $\mathfrak{z}_0 \in \mathbb{N}$, then $j_{\mathfrak{z}_0} \in M_{Fix}^C(\mathcal{F}, \mathbb{S})$. Hence, we consider $j_{\mathfrak{z}} \neq j_{\mathfrak{z}+1}$ for each $\mathfrak{z} \in \mathbb{N}$. Moreover, we procure that $\alpha(\mathfrak{j}_{2\mathfrak{z}}) \geq 1$ and $\beta(\mathfrak{j}_{2\mathfrak{z}+1}) \geq 1$ for all $\mathfrak{z} \in \mathbb{N}$. Thereupon, we achieve $\alpha(\mathfrak{j}_{2\mathfrak{z}})\beta(\mathfrak{j}_{2\mathfrak{z}+1}) \geq 1$ and, by using the (3), we write

$$\Sigma\left(\zeta_{1}\left(\mathfrak{j}_{2\mathfrak{z}+1},\mathfrak{j}_{2\mathfrak{z}+2}\right)\right) \leq \Sigma\left(\hbar^{3}\mathscr{H}_{\zeta}\left(\mathfrak{F}^{n_{\mathfrak{z}}}\mathfrak{j}_{2\mathfrak{z}},\mathfrak{S}^{m_{\mathfrak{z}}}\mathfrak{j}_{2\mathfrak{z}+1}\right)\right) \leq \Omega\left(\mathfrak{C}\left(\mathfrak{j}_{2\mathfrak{z}},\mathfrak{j}_{2\mathfrak{z}+1}\right)\right), \quad (4)$$

where

$$\mathcal{C}\left(\mathbf{j}_{2\mathfrak{z}},\mathbf{j}_{2\mathfrak{z}+1}\right) = \max \left\{ \begin{array}{c} \zeta_{1}\left(\mathbf{j}_{2\mathfrak{z}},\mathbf{j}_{2\mathfrak{z}+1}\right), \delta_{1}\left(\mathbf{j}_{2\mathfrak{z}},\mathcal{F}^{n_{\mathfrak{z}}}\mathbf{j}_{2\mathfrak{z}}\right), \delta_{1}\left(\mathbf{j}_{2\mathfrak{z}+1},\mathcal{S}^{m_{\mathfrak{z}}}\mathbf{j}_{2\mathfrak{z}+1}\right), \\ \\ \frac{\delta_{2}\left(\mathbf{j}_{2\mathfrak{z}},\mathcal{S}^{m_{\mathfrak{z}}}\mathbf{j}_{2\mathfrak{z}+1}\right) + \delta_{2}\left(\mathbf{j}_{2\mathfrak{z}+1},\mathcal{F}^{n_{\mathfrak{z}}}\mathbf{j}_{2\mathfrak{z}}\right)}{2\hbar} \end{array} \right\},$$

and also,

•
$$\delta_1(j_{2\mathfrak{z}}, \mathcal{F}^{n_\mathfrak{z}}j_{2\mathfrak{z}}) = \inf_{\substack{\mathfrak{j}_{2\mathfrak{z}+1} \in \mathcal{F}^{n_\mathfrak{z}}j_{2\mathfrak{z}}}} \{\zeta_1(j_{2\mathfrak{z}}, j_{2\mathfrak{z}+1})\} \le \zeta_1(j_{2\mathfrak{z}}, j_{2\mathfrak{z}+1}),$$

• $\delta_1(j_{2\mathfrak{z}+1}, \mathcal{S}^{m_\mathfrak{z}}j_{2\mathfrak{z}+1}) = \inf_{\substack{\mathfrak{j}_{2\mathfrak{z}+2} \in \mathcal{S}^{m_\mathfrak{z}}j_{2\mathfrak{z}+1}}} \{\zeta_1(j_{2\mathfrak{z}+1}, j_{2\mathfrak{z}+2})\} \le \zeta_1(j_{2\mathfrak{z}+1}, j_{2\mathfrak{z}+2}),$

• $\delta_2(\mathbf{j}_{2\mathbf{\mathfrak{z}}}, \mathbb{S}^{m_{\mathfrak{z}}}\mathbf{j}_{2\mathbf{\mathfrak{z}}+1}) = \inf_{\mathbf{j}_{2\mathbf{\mathfrak{z}}+2} \in \mathbb{S}^{m_{\mathfrak{z}}}\mathbf{j}_{2\mathbf{\mathfrak{z}}+1}} \{\zeta_2(\mathbf{j}_{2\mathbf{\mathfrak{z}}}, \mathbf{j}_{2\mathbf{\mathfrak{z}}+2})\} \le \zeta_2(\mathbf{j}_{2\mathbf{\mathfrak{z}}}, \mathbf{j}_{2\mathbf{\mathfrak{z}}+2}),$

•
$$\delta_2(\mathbf{j}_{2\mathfrak{z}+1}, \mathcal{F}^{n_\mathfrak{z}}\mathbf{j}_{2\mathfrak{z}}) = \inf_{\mathbf{j}_{2\mathfrak{z}+1} \in \mathcal{F}^{n_\mathfrak{z}}\mathbf{j}_{2\mathfrak{z}}} \{\zeta_2(\mathbf{j}_{2\mathfrak{z}+1}, \mathbf{j}_{2\mathfrak{z}+1})\} = 0$$

Accordingly, we gain

$$\mathcal{C}\left(\mathbf{j}_{2\mathfrak{z}},\mathbf{j}_{2\mathfrak{z}+1}\right) = \max\left\{\zeta_{1}\left(\mathbf{j}_{2\mathfrak{z}},\mathbf{j}_{2\mathfrak{z}+1}\right),\zeta_{1}\left(\mathbf{j}_{2\mathfrak{z}+1},\mathbf{j}_{2\mathfrak{z}+2}\right),\frac{\zeta_{2}\left(\mathbf{j}_{2\mathfrak{z}},\mathbf{j}_{2\mathfrak{z}+2}\right)}{2\hbar}\right\}.$$

We substitute $\zeta_1(\mathfrak{j}_{\mathfrak{z}},\mathfrak{j}_{\mathfrak{z}+1})$ with $\vartheta_{\mathfrak{z}}$. Then, we get

$$\begin{split} \mathcal{C}\left(\mathbf{j}_{2\mathfrak{z}},\mathbf{j}_{2\mathfrak{z}+1}\right) &= \max\left\{\vartheta_{2\mathfrak{z}},\vartheta_{2\mathfrak{z}+1},\frac{\zeta_{2}\left(\mathbf{j}_{2\mathfrak{z}},\mathbf{j}_{2\mathfrak{z}+2}\right)}{2\hbar}\right\}\\ &\leq \max\left\{\vartheta_{2\mathfrak{z}},\vartheta_{2\mathfrak{z}+1},\frac{\vartheta_{2\mathfrak{z}}+\vartheta_{2\mathfrak{z}+1}}{2}\right\}\\ &= \max\left\{\vartheta_{2\mathfrak{z}},\vartheta_{2\mathfrak{z}+1}\right\}. \end{split}$$

Let us presume that $\max \{\vartheta_{2\mathfrak{z}}, \vartheta_{2\mathfrak{z}+1}\} = \vartheta_{2\mathfrak{z}+1}$. Thus, by hypothesis (iv), taking into account (4), we attain

$$\Sigma\left(\vartheta_{2\mathfrak{z}+1}\right) \leq \Sigma\left(\hbar^{3}\mathscr{H}_{\zeta}\left(\mathfrak{j}_{2\mathfrak{z}+1},\mathfrak{j}_{2\mathfrak{z}+2}\right)\right) \leq \Omega\left(\vartheta_{2\mathfrak{z}+1}\right) < \Sigma\left(\vartheta_{2\mathfrak{z}+1}\right).$$

However, a contradiction arises as Σ is a non-decreasing map. Then, $\max \{ \vartheta_{2\mathfrak{z}}, \vartheta_{2\mathfrak{z}+1} \} = \vartheta_{2\mathfrak{z}}$ and in this case, we achieve

$$\Sigma\left(\vartheta_{2\mathfrak{z}+1}\right) \leq \Sigma\left(\hbar^{3}\mathscr{H}_{\zeta}\left(\mathfrak{j}_{2\mathfrak{z}+1},\mathfrak{j}_{2\mathfrak{z}+2}\right)\right) \leq \Omega\left(\vartheta_{2\mathfrak{z}}\right) < \Sigma\left(\vartheta_{2\mathfrak{z}}\right).$$

$$\tag{5}$$

Eventually, we conclude that $\vartheta_{2\mathfrak{z}+1} < \vartheta_{2\mathfrak{z}}$. By a similar step, one can deduce that $\vartheta_{2\mathfrak{z}} < \vartheta_{2\mathfrak{z}-1}$. Thereupon, it is ensured that the sequence $\{\vartheta_{\mathfrak{z}}\} = \{\zeta_1(\mathfrak{j}_{\mathfrak{z}},\mathfrak{j}_{\mathfrak{z}+1})\}$ is positively decreasing. Thus, the equality $\lim_{\mathfrak{z}\to\infty}\vartheta_{\mathfrak{z}} = h+$ is provided for $h \geq 0$. Now, we aim to achieve that h = 0. Opposite this one, we presume h > 0. Then, by (5), we get

$$\Sigma(h+) = \lim_{\mathfrak{z}\to\infty} \Sigma(\vartheta_{2\mathfrak{z}+1}) \le \limsup_{\mathfrak{z}\to\infty} \Omega(\vartheta_{2\mathfrak{z}}) \le \limsup_{u\to h+} \Omega(u)$$

such that this contradicts to supposition (v). So, we gain

$$\lim_{\mathfrak{z}\to\infty}\zeta_1\left(\mathfrak{j}_{\mathfrak{z}},\mathfrak{j}_{\mathfrak{z}+1}\right)=0.$$
(6)

Now, we need to demonstrate that $\{j_{\mathfrak{z}}\}_{\mathfrak{z}\in\mathbb{N}}$ is a ζ -Cauchy sequence. It is sufficient to indicate $\{j_{2\mathfrak{z}}\}$ is a ζ -Cauchy sequence. Unlike our assertion,

considering $\{j_{2\mathfrak{z}}\}$ is not a ζ -Cauchy sequence, then for $\varepsilon > 0$, we constitute two subsequences $\{j_{2\mathfrak{b}_q}\}$ and $\{j_{2\mathfrak{z}_q}\}$ of positive integers fulfilling $\mathfrak{z}_q > \mathfrak{b}_q > q$ such that \mathfrak{z}_q is the smallest index for which

$$\zeta_1\left(\mathfrak{j}_{2\mathfrak{b}_q},\mathfrak{j}_{2\mathfrak{z}_q}\right) \ge \varepsilon \quad \text{and} \quad \zeta_1\left(\mathfrak{j}_{2\mathfrak{b}_q},\mathfrak{j}_{2\mathfrak{z}_q-2}\right) < \varepsilon. \tag{7}$$

As $(\mathcal{F}, \mathcal{S})$ is a multi-valued cyclic $(\alpha, \beta) - (n, m)$ –admissible pair and $\hbar \geq 1$, then, $\alpha (\mathfrak{j}_{2\mathfrak{b}_q}) \beta (\mathfrak{j}_{2\mathfrak{d}_q+1}) \geq 1$ which implies that

$$\Sigma\left(\hbar^{3}\zeta_{1}\left(\mathbf{j}_{2\mathfrak{b}_{q}+1},\mathbf{j}_{2\mathfrak{z}_{q}+2}\right)\right) \leq \Sigma\left(\hbar^{3}\mathscr{H}_{\zeta}\left(\mathscr{F}^{n\left(\mathbf{j}_{2\mathfrak{b}_{q}}\right)}\mathbf{j}_{2\mathfrak{b}_{q}}, \mathscr{S}^{m\left(\mathbf{j}_{2\mathfrak{z}_{q}+1}\right)}\mathbf{j}_{2\mathfrak{z}_{q}+1}\right)\right)$$

$$\leq \Omega\left(\mathscr{C}\left(\mathbf{j}_{2\mathfrak{b}_{q}},\mathbf{j}_{2\mathfrak{z}_{q}+1}\right)\right),$$
(8)

where

$$\mathcal{C}(j_{2\mathfrak{b}_{q}}, j_{2\mathfrak{z}_{q}+1})$$

$$= \max \left\{ \begin{array}{l} \zeta_{1}(j_{2\mathfrak{b}_{q}}, j_{2\mathfrak{z}_{q}+1}), \delta_{1}(j_{2\mathfrak{b}_{q}}, \mathcal{F}^{n(j_{2\mathfrak{b}_{q}})}j_{2\mathfrak{b}_{q}}), \delta_{1}(j_{2\mathfrak{z}_{q}+1}, \mathcal{S}^{m(j_{2\mathfrak{z}_{q}+1})}j_{2\mathfrak{z}_{q}+1}), \\ \\ \frac{\delta_{2}(j_{2\mathfrak{b}_{q}}, \mathcal{S}^{m(j_{2\mathfrak{z}_{q}+1})}j_{2\mathfrak{z}_{q}+1}) + \delta_{2}(j_{2\mathfrak{z}_{q}+1}, \mathcal{F}^{n(j_{2\mathfrak{b}_{q}})}j_{2\mathfrak{b}_{q}})}{2\hbar} \\ \\ = \max \left\{ \begin{array}{l} \zeta_{1}(j_{2\mathfrak{b}_{q}}, j_{2\mathfrak{z}_{q}+1}), \zeta_{1}(j_{2\mathfrak{b}_{q}}, j_{2\mathfrak{b}_{q}+1}), \zeta_{1}(j_{2\mathfrak{z}_{q}+1}, j_{2\mathfrak{z}_{q}+2}), \\ \\ \frac{\zeta_{2}(j_{2\mathfrak{b}_{q}}, j_{2\mathfrak{z}_{q}+2}) + \zeta_{2}(j_{2\mathfrak{z}_{q}+1}, j_{2\mathfrak{b}_{q}+1})}{2\hbar} \end{array} \right\}.$$

$$(9)$$

Considering (6),(7) and the modular inequality, we have

$$\begin{split} \varepsilon &\leq \zeta_1 \left(\mathbf{j}_{2\mathfrak{b}_q}, \mathbf{j}_{2\mathfrak{z}_q} \right) \leq \hbar \zeta_{\frac{1}{2}} \left(\mathbf{j}_{2\mathfrak{b}_q}, \mathbf{j}_{2\mathfrak{b}_q+1} \right) + \hbar^2 \zeta_{\frac{1}{4}} \left(\mathbf{j}_{2\mathfrak{b}_q+1}, \mathbf{j}_{2\mathfrak{z}_q+2} \right) \\ &+ \hbar^3 \zeta_{\frac{1}{8}} \left(\mathbf{j}_{2\mathfrak{z}_q+2}, \mathbf{j}_{2\mathfrak{z}_q+1} \right) + \hbar^3 \zeta_{\frac{1}{8}} \left(\mathbf{j}_{2\mathfrak{z}_q+1}, \mathbf{j}_{2\mathfrak{z}_q} \right) \end{split}$$

such that

$$\limsup_{q \to \infty} \zeta_{\frac{1}{4}} \left(\mathfrak{j}_{2\mathfrak{b}_q+1}, \mathfrak{j}_{2\mathfrak{z}_q+2} \right) \ge \frac{\varepsilon}{\hbar^2}.$$
(10)

Also likewise, we get

$$\begin{aligned} \zeta_{1}\left(\mathbf{j}_{2\mathfrak{b}_{q}},\mathbf{j}_{2\mathfrak{z}_{q}+1}\right) &\leq \hbar\zeta_{\frac{1}{2}}\left(\mathbf{j}_{2\mathfrak{b}_{q}},\mathbf{j}_{2\mathfrak{z}_{q}-2}\right) + \hbar^{2}\zeta_{\frac{1}{4}}\left(\mathbf{j}_{2\mathfrak{z}_{q}-2},\mathbf{j}_{2\mathfrak{z}_{q}-1}\right) \\ &+ \hbar^{3}\zeta_{\frac{1}{8}}\left(\mathbf{j}_{2\mathfrak{z}_{q}-1},\mathbf{j}_{2\mathfrak{z}_{q}}\right) + \hbar^{3}\zeta_{\frac{1}{8}}\left(\mathbf{j}_{2\mathfrak{z}_{q}},\mathbf{j}_{2\mathfrak{z}_{q}+1}\right) \end{aligned}$$

and by (6), we obtain

$$\limsup_{q \to \infty} \zeta_1 \left(\mathbf{j}_{2\mathfrak{b}_q}, \mathbf{j}_{2\mathfrak{z}_q+1} \right) \le \hbar \varepsilon.$$
(11)

Moreover, note that

$$\begin{split} \zeta_{2}\left(\mathbf{j}_{2\mathfrak{b}_{q}},\mathbf{j}_{2\mathfrak{z}_{q}+2}\right) &\leq \hbar\zeta_{1}\left(\mathbf{j}_{2\mathfrak{b}_{q}},\mathbf{j}_{2\mathfrak{z}_{q}+1}\right) + \hbar\zeta_{1}\left(\mathbf{j}_{2\mathfrak{z}_{q}+1},\mathbf{j}_{2\mathfrak{z}_{q}+2}\right),\\ \zeta_{2}\left(\mathbf{j}_{2\mathfrak{z}_{q}+1},\mathbf{j}_{2\mathfrak{b}_{q}+1}\right) &\leq \hbar\zeta_{1}\left(\mathbf{j}_{2\mathfrak{z}_{q}+1},\mathbf{j}_{2\mathfrak{b}_{q}}\right) + \hbar\zeta_{1}\left(\mathbf{j}_{2\mathfrak{b}_{q}},\mathbf{j}_{2\mathfrak{b}_{q}+1}\right), \end{split}$$

and by using (6) and (11), we can easily achieve

$$\limsup_{q \to \infty} \zeta_2 \left(\mathfrak{j}_{2\mathfrak{b}_q}, \mathfrak{j}_{2\mathfrak{z}_q+2} \right) = \limsup_{q \to \infty} \zeta_2 \left(\mathfrak{j}_{2\mathfrak{z}_q+1}, \mathfrak{j}_{2\mathfrak{b}_q+1} \right) \le \hbar^2 \varepsilon.$$
(12)

Taking into (11) and (12) account, the expression (9) turns into

$$\limsup_{q \to \infty} \mathcal{C}\left(\mathfrak{j}_{2\mathfrak{b}_q}, \mathfrak{j}_{2\mathfrak{z}_q+1}\right) \le \max\left\{\hbar\varepsilon, 0, 0, \frac{\hbar^2\varepsilon + \hbar^2\varepsilon}{2\hbar}\right\} = \hbar\varepsilon.$$
(13)

Thereupon, by using (10) and (13), taking the limit superior in the inequality (8), we get

$$\begin{split} \Sigma\left(\hbar\varepsilon\right) &\leq \limsup_{q \to \infty} \Sigma\left(\hbar^{3}\zeta_{1}\left(\mathbf{j}_{2\mathfrak{b}_{q}+1}, \mathbf{j}_{2\mathfrak{z}_{q}+2}\right)\right) \leq \limsup_{q \to \infty} \Omega\left(\mathbb{C}\left(\mathbf{j}_{2\mathfrak{b}_{q}}, \mathbf{j}_{2\mathfrak{z}_{q}+1}\right)\right) \\ &\leq \Sigma\left(\limsup_{q \to \infty} \mathbb{C}\left(\mathbf{j}_{2\mathfrak{b}_{q}}, \mathbf{j}_{2\mathfrak{z}_{q}+1}\right)\right) \\ &\leq \Sigma\left(\hbar\varepsilon\right). \end{split}$$

Nevertheless, it is a contradiction. Thereby, we say $\{j_{2\mathfrak{z}}\}$ is a ζ -Cauchy sequence, also $\{j_{\mathfrak{z}}\}$ is a ζ -Cauchy sequence on ζ -complete $\mathfrak{m}_{\mathfrak{b}}\mathfrak{ms}$. Then, a point $\mathfrak{j}^* \in \mathcal{Y}$ exits such that

$$\lim_{\mathfrak{z}\to\infty}\zeta_1\left(\mathfrak{j}_{\mathfrak{z}},\mathfrak{j}^*\right)=0.$$
(14)

Let $\mathcal{F}^{n(j^*)}\mathbf{j}_{2\mathfrak{z}}$ be a sequence in $\mathscr{CB}(\mathfrak{Y})$. Owing to the fact that the mapping S is ζ -continuous, we have $\mathcal{F}^{n(j^*)}\mathbf{j}_{2\mathfrak{z}} \to \mathcal{F}^{n(j^*)}\mathbf{j}^*$, and so $\lim_{\mathfrak{z}\to\infty} \mathscr{H}_{\zeta}\left(\mathcal{F}^{n(j^*)}\mathbf{j}_{2\mathfrak{z}}, \mathcal{F}^{n(j^*)}\mathbf{j}^*\right) = 0$, where $\mathcal{F}^{n(j^*)}\mathbf{j}^* \in \mathscr{CB}(\mathfrak{Y})$. If $\mathbf{j}_{2\mathfrak{z}+1} \in \mathcal{F}^{n(j^*)}\mathbf{j}_{2\mathfrak{z}}$ and $\lim_{\mathfrak{z}\to\infty} \mathbf{j}_{2\mathfrak{z}+1} = \mathbf{j}^*$, then, considering Lemma 1.16, we conclude that $\mathbf{j}^* \in \mathcal{F}^{n(j^*)}\mathbf{j}^*$, that is, \mathbf{j}^* is a fixed point of $\mathcal{F}^{n(j^*)}$. Similarly, one can achieve that $\mathbf{j}^* \in \mathcal{S}^{m(j^*)}\mathbf{j}^*$.

On the other hand, if we assume the condition (iii_b) is satisfied, then we have $\beta(j^*) \geq 1$, and so, it follows that $\alpha(j_{2j})\beta(j^*) \geq 1$. Moreover, to show the existence of a fixed point, we presume that $j^* \notin M_{Fix}(\mathbb{S}^{m(j^*)})$. Because $\mathscr{K}(\mathfrak{Y})$ is compact, there exists a $j^* \in \mathscr{K}(\mathfrak{Y}) \subseteq \mathfrak{Q}_{\zeta}$ such that $j_j \to j^*$. Then,

from the Fatou property, we get

$$\begin{split} \delta_1\left(\mathbf{j}^*, \mathbb{S}^{m(\mathbf{j}^*)}\mathbf{j}^*\right) &\leq \liminf_{\mathfrak{z}\to\infty} \zeta_1\left(\mathbf{j}_{2\mathfrak{z}+1}, \mathbb{S}^{m(\mathbf{j}^*)}\mathbf{j}^*\right) = \liminf_{\mathfrak{z}\to\infty} \zeta_1\left(\mathfrak{F}^{n_\mathfrak{z}}\mathbf{j}_{2\mathfrak{z}}, \mathbb{S}^{m(\mathbf{j}^*)}\mathbf{j}^*\right) \\ &\leq \hbar^3 \mathscr{H}_{\zeta}\left(\mathfrak{F}^{n_\mathfrak{z}}\mathbf{j}_{2\mathfrak{z}}, \mathbb{S}^{m(\mathbf{j}^*)}\mathbf{j}^*\right), \end{split}$$

and because Σ is a non-decreasing map, we have

$$\Sigma\left(\delta_{1}\left(\mathbf{j}^{*}, \mathcal{S}^{m(\mathbf{j}^{*})}\mathbf{j}^{*}\right)\right) \leq \Sigma\left(\hbar^{3}\mathscr{H}_{\zeta}\left(\mathscr{F}^{n_{\mathfrak{z}}}\mathbf{j}_{2\mathfrak{z}}, \mathcal{S}^{m(\mathbf{j}^{*})}\mathbf{j}^{*}\right)\right) \leq \Omega\left(\mathscr{C}\left(\mathbf{j}_{2\mathfrak{z}}, \mathbf{j}^{*}\right)\right), \quad (15)$$

where

$$\mathcal{C}(\mathbf{j}_{2\mathbf{3}},\mathbf{j}^{*}) = \max \left\{ \begin{array}{l} \zeta_{1}\left(\mathbf{j}_{2\mathbf{3}},\mathbf{j}^{*}\right), \delta_{1}\left(\mathbf{j}_{2\mathbf{3}},\mathcal{F}^{n_{\mathbf{3}}}\mathbf{j}_{2\mathbf{3}}\right), \delta_{1}\left(\mathbf{j}_{2\mathbf{3}q+1},\mathcal{S}^{m(j^{*})}\mathbf{j}^{*}\right), \\ \\ \frac{\delta_{2}\left(\mathbf{j}_{2\mathbf{3}},\mathcal{S}^{m(j^{*})}\mathbf{j}^{*}\right) + \delta_{2}\left(\mathbf{j}^{*},\mathcal{F}^{n_{\mathbf{3}}}\mathbf{j}_{2\mathbf{3}}\right)}{2\hbar} \\ \\ = \max \left\{ \begin{array}{l} \zeta_{1}\left(\mathbf{j}_{2\mathbf{3}},\mathbf{j}^{*}\right), \delta_{1}\left(\mathbf{j}_{2\mathbf{3}},\mathbf{j}_{2\mathbf{3}+1}\right), \delta_{1}\left(\mathbf{j}_{2\mathbf{3}q+1},\mathcal{S}^{m(j^{*})}\mathbf{j}^{*}\right), \\ \\ \frac{\delta_{2}\left(\mathbf{j}_{2\mathbf{3}},\mathcal{S}^{m(j^{*})}\mathbf{j}^{*}\right) + \delta_{2}\left(\mathbf{j}^{*},\mathbf{j}_{2\mathbf{3}+1}\right)}{2\hbar} \\ \end{array} \right\}.$$

$$(16)$$

Now, taking the limit in (15) and (16) and employing (14) and (iv), we obtain

$$\Sigma\left(\delta_1\left(\mathbf{j}^*, \mathcal{S}^{m(\mathbf{j}^*)}\mathbf{j}^*\right)\right) \leq \Omega\left(\delta_1\left(\mathbf{j}^*, \mathcal{S}^{m(\mathbf{j}^*)}\mathbf{j}^*\right)\right) < \Sigma\left(\delta_1\left(\mathbf{j}^*, \mathcal{S}^{m(\mathbf{j}^*)}\mathbf{j}^*\right)\right),$$

which causes a contradiction. Thereby, we achieve $j^* \in S^{m(j^*)}j^*$, that is, $j^* \in M_{Fix}(S^{m(j^*)})$. In a similar way, one can show $j^* \in M_{Fix}(\mathcal{F}^{n(j^*)})$. For the uniqueness of the fixed point, we presume that there exists $z^* \in M_{Fix}^C(\mathcal{F}^{n(z^*)}, S^{m(z^*)})$ such that $j^* \neq z^*$. From the hypothesis, we gain $\alpha(j^*) \beta(z^*) \geq 1$. Thereupon, we acquire

$$\Sigma\left(\zeta_{1}\left(\mathbf{j}^{*}, z^{*}\right)\right) \leq \Sigma\left(\hbar^{3}\mathscr{H}_{\zeta}\left(\mathfrak{F}^{n\left(\mathbf{j}^{*}\right)}\mathbf{j}^{*}, \mathfrak{S}^{m\left(z^{*}\right)}z^{*}\right)\right) \leq \Omega\left(\mathfrak{C}\left(\mathbf{j}^{*}, z^{*}\right)\right),$$

where

$$\begin{split} \mathcal{C}(\mathbf{j}^{*}, z^{*}) &= \max \left\{ \begin{array}{l} \zeta_{1}\left(\mathbf{j}^{*}, z^{*}\right), \delta_{1}\left(\mathbf{j}^{*}, \mathcal{F}^{n(\mathbf{j}^{*})}\mathbf{j}^{*}\right), \delta_{1}\left(z^{*}, \mathcal{S}^{m(z^{*})}z^{*}\right), \\ \frac{\delta_{2}\left(\mathbf{j}^{*}, \mathcal{S}^{m(z^{*})}z^{*}\right) + \delta_{2}\left(z^{*}, \mathcal{F}^{n(\mathbf{j}^{*})}\mathbf{j}^{*}\right)}{2\hbar} \\ &\leq \max \left\{ \begin{array}{l} \zeta_{1}\left(\mathbf{j}^{*}, z^{*}\right), \delta_{1}\left(\mathbf{j}^{*}, \mathbf{j}^{*}\right), \delta_{1}\left(z^{*}, z^{*}\right), \\ \frac{\delta_{2}\left(\mathbf{j}^{*}, z^{*}\right) + \delta_{2}\left(z^{*}, \mathbf{j}^{*}\right)}{2\hbar} \end{array} \right\} = \zeta_{1}\left(\mathbf{j}^{*}, z^{*}\right). \end{split}$$

Using (iv), we conclude

$$\Sigma(\zeta_1(j^*, z^*)) \le \Omega(\zeta_1(j^*, z^*)) < \Sigma(\zeta_1(j^*, z^*)),$$

which means $j^* = z^*$. Lastly, we demonstrate that $j^* \in Sj^*$ and $j^* \in Tj^*$. Conversely, we presume that $j^* \notin Sj^*$. Hence, considering the uniqueness of the set $M_{Fix}^C(\mathcal{F}^{n(j^*)}, \mathcal{S}^{m(j^*)})$ and $\alpha(\mathcal{F}j^*) \beta(j^*) \geq 1$, we have

$$\delta_{1}\left(\mathfrak{F}\mathfrak{j}^{*},\mathfrak{j}^{*}\right) \leq \hbar^{3}\mathscr{H}_{\mathscr{M}}\left(S\left(\mathfrak{F}^{n(\mathfrak{j}^{*})}\mathfrak{j}^{*}\right),\mathfrak{S}^{m(\mathfrak{j}^{*})}\mathfrak{j}^{*}\right) \leq \hbar^{3}\mathscr{H}_{\mathscr{M}}\left(\mathfrak{F}^{n(\mathfrak{j}^{*})}\left(\mathfrak{F}\mathfrak{j}^{*}\right),\mathfrak{S}^{m(\mathfrak{j}^{*})}\mathfrak{j}^{*}\right),$$

for $j^* \in \mathcal{F}^{n(j^*)}j^*$ and $j^* \in \mathcal{S}^{m(j^*)}j^*$. Thus, from the properties of the functions Σ and (3), it follows that

$$\Sigma\left(\delta_{1}\left(\mathcal{F}j^{*},j^{*}\right)\right) \leq \Sigma\left(\hbar^{3}\mathscr{H}_{\mathscr{M}}\left(\mathcal{F}^{n\left(j^{*}\right)}\left(\mathcal{F}j^{*}\right),\mathcal{S}^{m\left(j^{*}\right)}j^{*}\right)\right) \leq \Omega\left(\mathcal{C}\left(\mathcal{F}j^{*},j^{*}\right)\right), \quad (17)$$

where

$$\begin{split} \mathcal{C}\left(\mathcal{F}\mathbf{j}^{*},\mathbf{j}^{*}\right) &= \max \left\{ \begin{array}{l} \delta_{1}\left(\mathcal{F}\mathbf{j}^{*},\mathbf{j}^{*}\right), \delta_{1}\left(\mathcal{F}\mathbf{j}^{*},\mathcal{F}^{n\left(\mathbf{j}^{*}\right)}\left(\mathcal{F}\mathbf{j}^{*}\right)\right), \delta_{1}\left(\mathbf{j}^{*},\mathcal{S}^{m\left(\mathbf{j}^{*}\right)}\mathbf{j}^{*}\right), \\ \\ \frac{\delta_{2}\left(\mathcal{F}\mathbf{j}^{*},\mathcal{S}^{m\left(\mathbf{j}^{*}\right)}\mathbf{j}^{*}\right) + \delta_{2}\left(\mathbf{j}^{*},\mathcal{F}^{n\left(\mathbf{j}^{*}\right)}\left(\mathcal{F}\mathbf{j}^{*}\right)\right)}{2\hbar} \\ \\ &\leq \max\left\{\delta_{1}\left(\mathcal{F}\mathbf{j}^{*},\mathbf{j}^{*}\right), \frac{\delta_{2}\left(\mathcal{F}\mathbf{j}^{*},\mathbf{j}^{*}\right)}{s}\right\} = \delta_{1}\left(\mathcal{F}\mathbf{j}^{*},\mathbf{j}^{*}\right). \end{split}$$

Therefore, by using assumption (iv), the inequality (17) turns into

$$\Sigma\left(\delta_{1}\left(\mathcal{F}j^{*},j^{*}\right)\right) \leq \Omega\left(\delta_{1}\left(\mathcal{F}j^{*},j^{*}\right)\right) < \Sigma\left(\delta_{1}\left(\mathcal{F}j^{*},j^{*}\right)\right),$$

which is a contradiction. Then, we achieve $j^* \in Sj^*$. Likewise, if we presume that $\alpha(j^*) \beta(Sj^*) \ge 1$, then $j^* \in Sj^*$. We get $M_{Fix}^C(\mathcal{F}, \mathcal{S}) = \{j^*\}$. So, the proof is accomplished.

We have the next outcomes by applying \mathcal{F} equals to S and $m(\mathfrak{s}) = n(\mathfrak{s})$ in the above.

Definition 2.6. Let (\mathfrak{Q}, ζ) be a $\mathfrak{m}_{\mathfrak{b}}\mathfrak{m}\mathfrak{s}$ with $\hbar \geq 1$, \mathfrak{Y} be a nonempty bounded subset of \mathfrak{Q}_{ζ} , and $\alpha, \beta : \mathfrak{Q}_{\zeta} \to \mathbb{R}_{+}$ be two functions. A multi-valued mapping $\mathcal{F} : \mathfrak{Y} \to \mathscr{CB}(\mathfrak{Y})$ is called multi-valued Sehgal-Proinov-type $(\alpha, \beta) - n$ -contraction if $\Sigma, \Omega : (0, \infty) \to \mathbb{R}$ exist such that for each $\mathfrak{j}, \mathfrak{s} \in \mathfrak{Y}$, there exists $n(\mathfrak{j}) \in \mathbb{Z}^{+}$ such that

$$\alpha(\mathbf{j}).\beta(\mathbf{s}) \ge 1 \implies \Sigma\left(\hbar^{3}\mathscr{H}_{\zeta}\left(\mathcal{F}^{n(\mathbf{j})}\mathbf{j},\mathcal{F}^{n(\mathbf{s})}\mathbf{s}\right)\right) \le \Omega\left(\mathcal{C}\left(\mathbf{j},\mathbf{s}\right)\right), \quad (18)$$

where

$$\mathcal{C}(\mathbf{j},\mathfrak{s}) = \max \left\{ \begin{array}{l} \zeta_1(\mathbf{j},\mathfrak{s}), \delta_1\left(\mathbf{j},\mathcal{F}^{n(\mathbf{j})}\mathbf{j}\right), \delta_1\left(\mathfrak{s},\mathcal{F}^{n(\mathfrak{s})}\mathfrak{s}\right), \\ \\ \frac{\delta_2(\mathbf{j},\mathcal{F}^{n(\mathbf{j})}\mathfrak{s}) + \delta_2(\mathfrak{s},\mathcal{F}^{n(\mathbf{j})}\mathbf{j})}{2\hbar} \end{array} \right\},$$

for all $\mathscr{H}_{\zeta}\left(\mathbb{S}^{n(\mathfrak{j})}\mathfrak{j},\mathbb{S}^{m(\mathfrak{s})}\mathfrak{s}\right)>0.$

Corollary 2.7. Let (\mathfrak{Q}, ζ) be a ζ -complete $\mathfrak{m}_{\mathfrak{b}}\mathfrak{m}\mathfrak{s}$ with $\hbar \geq 1$. Assume that ζ is a convex regular modular with the Fatou property and Δ_2 -condition. Let \mathfrak{Y} be a nonempty ζ -complete subset of \mathfrak{Q}_{ζ} , and $\mathfrak{F} : \mathfrak{Y} \to \mathscr{K}(\mathfrak{Y})$ be a multi-valued Sehgal-Proinov-type $(\alpha, \beta) - n$ -contraction mapping. If the conditions

- (i) there exist $j_0 \in \mathcal{Y}$ such that $\alpha(j_0) \ge 1$,
- (ii) \mathfrak{F} is a multi-valued cyclic $(\alpha, \beta) n$ -admissible mapping,
- (*iii*_a) \mathcal{F} is ζ -continuous, or
- (*iii*_b) if $\{j_{\mathfrak{z}}\}_{\mathfrak{z}\in\mathbb{N}}$ is a sequence in \mathfrak{Y} such that $j_{\mathfrak{z}} \to \mathfrak{j}$ and $\beta(j_{\mathfrak{z}}) \ge 1$ for all $\mathfrak{z}\in\mathbb{N}$, then $\beta(\mathfrak{j}) \ge 1$,
- (iv) Σ is non-decreasing and $\Omega(\mathfrak{a}) < \Sigma(\mathfrak{a})$ for all $\mathfrak{a} > 0$,
- $(v) \ \limsup_{\mathfrak{a} \to \mathfrak{a}_0 +} \Omega\left(\mathfrak{a}\right) < \Sigma\left(\mathfrak{a}_0 +\right) \text{ for any } \mathfrak{a}_0 > 0$

are provided, \mathfrak{F} owns exactly one fixed point x^* in $\mathfrak{Y} \subseteq \Omega_{\zeta}$, where $\zeta_1(\mathfrak{j}_0,\mathfrak{j}_1) < \infty$ for some $\mathfrak{j}_0, \mathfrak{j}_1 \in \Omega_{\zeta}$. Additionally, if $\alpha(\mathfrak{j}) \beta(\mathfrak{s}) \geq 1$ for all $\mathfrak{j}, \mathfrak{s} \in M_{Fix}(\mathfrak{F}^{n(\mathfrak{j}^*)})$, then the set $M_{Fix}(\mathfrak{F}^{n(\mathfrak{j}^*)})$ has exactly one element. Moreover, if $\alpha(\mathfrak{F}\mathfrak{j}^*) \beta(\mathfrak{j}^*) \geq 1$ 1 or $\alpha(\mathfrak{j}^*) \beta(\mathfrak{F}\mathfrak{j}^*) \geq 1$, then $M_{Fix}(\mathfrak{F}, \mathfrak{S}) = {\mathfrak{j}^*}.$

3 Some Fixed Point Results for Single-Valued Mappings

This section indicates some concepts that generalize conclusions commonly used in metric fixed point theory for single-valued mappings. Next, we set up a new common fixed point theorem by employing the newly defined construction in the setting of $\mathfrak{m}_{\mathfrak{b}}\mathfrak{ms}$. Also, this theorem can be considered a consequence of Theorem 2.5.

Primarily, we acquaint a novel extension of the notation of (α, β) –admissible, as noted below.

Definition 3.1. Let \mathcal{F}, \mathcal{S} be two self-mappings on a nonempty set \mathcal{Q} , and $\alpha, \beta : \mathcal{Q} \to [0, \infty)$ be two functions. Also, for $\mathbf{j}, \mathbf{s} \in \mathcal{Q}$, positive integers n = n (\mathbf{j}) and m = m (\mathbf{s}) exist. We contemplate the following circumstances.

- $(\alpha\beta_1) \ \alpha(\mathfrak{j}) \geq 1$ for some $\mathfrak{j} \in \mathfrak{Q}$ implies $\beta(\mathfrak{F}^{n(\mathfrak{j})}\mathfrak{j}) \geq 1$.
- $(\alpha\beta_2) \ \beta(\mathfrak{j}) \geq 1$ for some $\mathfrak{j} \in \mathfrak{Q}$ implies $\alpha(\mathfrak{F}^{n(\mathfrak{j})}\mathfrak{j}) \geq 1$.
- $(\alpha\beta_3) \ \beta(\mathfrak{j}) \geq 1$ for some $\mathfrak{j} \in \mathfrak{Q}$ implies $\alpha(\mathfrak{S}^{m(\mathfrak{j})}\mathfrak{j}) \geq 1$.

Considering the function $(\alpha\beta_i)$, we assert that

- i = 1, 2, S is a cyclic $(\alpha, \beta) n$ -admissible mapping.
- $i = 1, 3, (\mathcal{F}, \mathcal{S})$ is a cyclic $(\alpha, \beta) (n, m)$ –admissible pair.

Remark 3. Taking into account n = n (j) = 1 and n = m = m (j) = 1 in the above definitions, then we obtain the definitions of cyclic (α, β) –admissible and cyclic (α, β) –admissible pairs defined by Alizadeh et al. [16] and Latif et al. [17], respectively.

Definition 3.2. Let Ω_{ζ}^* be an $\mathfrak{m}_{\flat}\mathfrak{m}\mathfrak{s}$ with $\hbar \geq 1$, $\mathcal{F}, \mathcal{S} : \Omega_{\zeta}^* \to \Omega_{\zeta}^*$ be two self-mappings and $\alpha, \beta : \Omega_{\zeta}^* \to \mathbb{R}_+$ be two functions. The pair $(\mathcal{F}, \mathcal{S})$ is called Sehgal-Proinov-type $(\alpha, \beta) - (n, m)$ -contraction if there exist $\Sigma, \Omega : (0, \infty) \to \mathbb{R}$ such that for each $\mathfrak{j}, \mathfrak{s} \in \Omega_{\zeta}^*$, there exist $n(\mathfrak{j}), m(\mathfrak{s}) \in \mathbb{Z}^+$ such that

$$\alpha(\mathfrak{j}).\beta(\mathfrak{s}) \ge 1 \implies \Sigma\left(\hbar^{3}\zeta_{\kappa}\left(\mathfrak{F}^{n(\mathfrak{j})}\mathfrak{j},\mathfrak{S}^{m(\mathfrak{s})}\mathfrak{s}\right)\right) \le \Omega\left(\mathfrak{C}^{*}\left(\mathfrak{j},\mathfrak{s}\right)\right), \qquad (19)$$

where

$$\mathcal{C}^{*}\left(\mathbf{j},\mathfrak{s}\right) = \max \left\{ \begin{array}{c} \zeta_{\kappa}\left(\mathbf{j},\mathfrak{s}\right), \zeta_{\kappa}\left(\mathbf{j},\mathcal{F}^{n\left(\mathbf{j}\right)}\mathbf{j}\right), \zeta_{\kappa}\left(\mathfrak{s},\mathcal{S}^{m\left(\mathfrak{s}\right)}\mathfrak{s}\right), \\ \frac{\zeta_{2\kappa}\left(\mathbf{j},\mathcal{S}^{m\left(\mathfrak{s}\right)}\mathfrak{s}\right) + \zeta_{2\kappa}\left(\mathfrak{s},\mathcal{F}^{n\left(\mathbf{j}\right)}\mathbf{j}\right)}{2\hbar} \end{array} \right\}$$

for all $\zeta_{\kappa} \left(\mathcal{F}^{n(j)} \mathfrak{j}, \mathbb{S}^{m(\mathfrak{s})} \mathfrak{s} \right) > 0$ and all $\kappa > 0$.

Theorem 3.3. Let \mathfrak{Q}^*_{ζ} be a ζ -complete $\mathfrak{m}_{\mathfrak{b}}\mathfrak{ms}$ and the pair $(\mathfrak{F}, \mathfrak{S})$ be a Sehgal-Proinov-type $(\alpha, \beta) - (n, m)$ -contraction. Presume the statements

- (i) $(\mathfrak{F}, \mathfrak{S})$ is a cyclic $(\alpha, \beta) (n, m)$ admissible pair,
- (ii) there exist $j_0 \in \Omega^*_{\mathcal{L}}$ such that $\alpha(j_0) \ge 1$,
- (iii_a) \mathcal{F} or \mathcal{S} is ζ -continuous, or
- (iii_b) if $\{j_{\mathfrak{z}}\}_{\mathfrak{z}\in\mathbb{N}}$ is a sequence in \mathfrak{Q}_{ζ}^* such that $j_{\mathfrak{z}} \to \mathfrak{j}$ and $\alpha(\mathfrak{z}_{\mathfrak{z}}) \ge 1$, $\beta(\mathfrak{z}_{\mathfrak{z}-1}) \ge 1$, for all $\mathfrak{z}\in\mathbb{N}$, then $\alpha(\mathfrak{z}) \ge 1$ and $\beta(\mathfrak{z}) \ge 1$,
- (iv) Σ is non-decreasing and $\Omega(\mathfrak{a}) < \Sigma(\mathfrak{a})$ for all $\mathfrak{a} > 0$,

(v) $\limsup_{a \to a_0+} \Omega(a) < \Sigma(a_0+)$ for any $a_0 > 0$

are provided and there exists $j_0, j_1 \in \mathbb{Q}^*_{\zeta}$ such that $\zeta_{\kappa}(j_0, j_1) < \infty$ for all $\kappa > 0$. If $\alpha(j) \beta(\mathfrak{s}) \geq 1$ for all $x, y \in C_{Fix}(\mathfrak{F}^{n(j^*)}, \mathfrak{S}^{m(j^*)})$, then the set $C_{Fix}(\mathfrak{F}^{n(j^*)}, \mathfrak{S}^{m(j^*)})$ has exactly one element, which means that \mathfrak{F} and \mathfrak{S} own a unique common fixed point.

Proof. Let $j_0 \in Q_{\zeta}^*$ be an arbitrary point and, beginning from j_0 , we set up a sequence $\{j_3\}_{3 \in \mathbb{N}}$ by

$$\mathbf{j}_1 = \mathcal{F}^{n(\mathbf{j}_0)} \mathbf{j}_0, \mathbf{j}_2 = \mathcal{S}^{m(\mathbf{j}_1)} \mathbf{j}_1, \dots, \mathbf{j}_{2\mathbf{z}+1} = \mathcal{F}^{n(\mathbf{j}_{2\mathbf{z}})} \mathbf{j}_{2\mathbf{z}}, \mathbf{j}_{2\mathbf{z}+2} = \mathcal{S}^{m(\mathbf{j}_{2\mathbf{z}+1})} \mathbf{j}_{2\mathbf{z}+1}, \dots$$

or if we denote $n_{\mathfrak{z}} = n(\mathfrak{j}_{2\mathfrak{z}})$ and $m_{\mathfrak{z}} = m(\mathfrak{j}_{2\mathfrak{z}+1})$, then we can write

$$\mathfrak{j}_{2\mathfrak{z}+1} = \mathfrak{F}^{n_\mathfrak{z}}\mathfrak{j}_{2\mathfrak{z}}$$
 and $\mathfrak{j}_{2\mathfrak{z}+2} = \mathfrak{S}^{m_\mathfrak{z}}\mathfrak{j}_{2\mathfrak{z}+1}$

Also, because $(\mathcal{F}, \mathcal{S})$ is a cyclic $(\alpha, \beta) - (n, m)$ –admissible pair and α $(\mathfrak{j}_0) \ge 1$, we have

$$\beta\left(\mathbb{S}^{n(\mathbf{j}_0)}\mathbf{j}_0\right) = \beta\left(\mathbf{j}_1\right) \ge 1$$

which means that

$$\alpha\left(\mathbb{S}^{m(\mathfrak{j}_1)}\mathfrak{j}_1\right) = \alpha\left(\mathfrak{j}_2\right) \ge 1.$$

Thereupon, by pursuing this procedure, we achieve $\alpha(j_{2\mathfrak{z}}) \geq 1$ and $\beta(j_{2\mathfrak{z}+1}) \geq 1$, which entails $\alpha(j_{2\mathfrak{z}}) \beta(j_{2\mathfrak{z}+1}) \geq 1$, for all $\mathfrak{z} \in \mathbb{N}$. Thus, from (19), we get

$$\Sigma\left(\hbar^{3}\zeta_{\kappa}\left(\mathfrak{F}^{n_{\mathfrak{z}}}\mathfrak{j}_{2\mathfrak{z}},\mathfrak{S}^{m_{\mathfrak{z}}}\mathfrak{j}_{2\mathfrak{z}+1}\right)\right)\leq\Omega\left(\mathfrak{C}^{*}\left(\mathfrak{j}_{2\mathfrak{z}},\mathfrak{j}_{2\mathfrak{z}+1}\right)\right),$$

where

$$\begin{split} & \mathcal{C}^{*}\left(\mathbf{j}_{2\mathfrak{z}},\mathbf{j}_{2\mathfrak{z}+1}\right) \\ & = \max\left\{ \begin{array}{c} \zeta_{\kappa}\left(\mathbf{j}_{2\mathfrak{z}},\mathbf{j}_{2\mathfrak{z}+1}\right),\zeta_{\kappa}\left(\mathbf{j}_{2\mathfrak{z}},\mathcal{F}^{n_{\mathfrak{z}}}\mathbf{j}_{2\mathfrak{z}}\right),\zeta_{\kappa}\left(\mathbf{j}_{2\mathfrak{z}+1},\mathcal{S}^{m_{\mathfrak{z}}}\mathbf{j}_{2\mathfrak{z}+1}\right),\\ \\ \frac{\zeta_{2\kappa}\left(\mathbf{j}_{2\mathfrak{z}},\mathcal{S}^{m_{\mathfrak{z}}}\mathbf{j}_{2\mathfrak{z}+1}\right)+\zeta_{2\kappa}\left(\mathbf{j}_{2\mathfrak{z}+1},\mathcal{F}^{n_{\mathfrak{z}}}\mathbf{j}_{2\mathfrak{z}}\right)}{2\hbar} \\ \\ & \leq \max\left\{ \begin{array}{c} \zeta_{\kappa}\left(\mathbf{j}_{2\mathfrak{z}},\mathbf{j}_{2\mathfrak{z}+1}\right),\zeta_{\kappa}\left(\mathbf{j}_{2\mathfrak{z}+1},\mathbf{j}_{2\mathfrak{z}+2}\right),\\ \\ \frac{\zeta_{\kappa}\left(\mathbf{j}_{2\mathfrak{z}},\mathbf{j}_{2\mathfrak{z}+1}\right)+\zeta_{\kappa}\left(\mathbf{j}_{2\mathfrak{z}+1},\mathbf{j}_{2\mathfrak{z}+2}\right)}{2} \end{array} \right\}. \end{split}$$

At this stage, if we proceed in the manner of the proof of Theorem 2.5, $\{j_{\mathfrak{z}}\}_{\mathfrak{z}\in\mathbb{N}}$ is yielded as a ζ -Cauchy sequence on a ζ -complete $\mathfrak{m}_{\mathfrak{b}}\mathfrak{m}\mathfrak{s}$, which expresses that a point $\mathfrak{j}^* \in \mathfrak{Q}^*_{\zeta}$ exists such that

$$\lim_{\mathfrak{z}\to\infty}\zeta_1\left(\mathfrak{j}_{\mathfrak{z}},\mathfrak{j}^*\right)=0,\tag{20}$$

for all $\kappa > 0$.

We will explain that $\{j^*\} = C_{Fix}(\mathcal{F}, \mathcal{S})$. For this, from (iii_a) , if \mathcal{F} is ζ -continuous, then it is straightforward to realize that $j^* \in C_{Fix}(\mathcal{F}, \mathcal{S})$. Therefore, assumption (iii_b) is fulfilled. Hence, we get $\alpha(j_{2\mathfrak{z}})\beta(j^*) \geq 1$ for all $\mathfrak{z} \in \mathbb{N}$. We presume that $j^* \neq \mathcal{S}^{m(j^*)}j^*$. Then, from (19), we have

$$\Sigma\left(\zeta_{\kappa}\left(\mathfrak{j}_{2\mathfrak{z}+1},\mathfrak{S}^{m(\mathfrak{j}^{*})}\mathfrak{j}^{*}\right)\right) \leq \Sigma\left(\hbar^{3}\zeta_{\kappa}\left(\mathfrak{F}^{n_{\mathfrak{z}}}\mathfrak{j}_{2\mathfrak{z}},\mathfrak{S}^{m(\mathfrak{j}^{*})}\mathfrak{j}^{*}\right)\right) \leq \Omega\left(\mathfrak{C}^{*}\left(\mathfrak{j}_{2\mathfrak{z}},\mathfrak{j}^{*}\right)\right),$$
(21)

where

$$\mathcal{C}^{*}(\mathbf{j}_{2\mathfrak{z}},\mathbf{j}^{*}) = \max \left\{ \begin{array}{l} \zeta_{\kappa}(\mathbf{j}_{2\mathfrak{z}},\mathbf{j}^{*}), \zeta_{\kappa}(\mathbf{j}_{2\mathfrak{z}},\mathcal{F}^{n_{\mathfrak{z}}}\mathbf{j}_{2\mathfrak{z}}), \zeta_{\kappa}(\mathbf{j}_{2\mathfrak{z}_{q}+1},\mathcal{S}^{m(\mathbf{j}^{*})}\mathbf{j}^{*}), \\ \frac{\zeta_{2\kappa}(\mathbf{j}_{2\mathfrak{z}},\mathcal{S}^{m(\mathbf{j}^{*})}\mathbf{j}^{*}) + \zeta_{2\kappa}(\mathbf{j}^{*},\mathcal{F}^{n_{\mathfrak{z}}}\mathbf{j}_{2\mathfrak{z}})}{2\hbar} \\ \\ = \max \left\{ \begin{array}{l} \zeta_{\kappa}(\mathbf{j}_{2\mathfrak{z}},\mathbf{j}^{*}), \zeta_{\kappa}(\mathbf{j}_{2\mathfrak{z}},\mathbf{j},\mathbf{j}_{2\mathfrak{z}+1}), \zeta_{\kappa}(\mathbf{j}_{2\mathfrak{z}_{q}+1},\mathcal{S}^{m(\mathbf{j}^{*})}\mathbf{j}^{*}), \\ \frac{\zeta_{2\kappa}(\mathbf{j}_{2\mathfrak{z}},\mathcal{S}^{m(\mathbf{j}^{*})}\mathbf{j}^{*}) + \zeta_{2\kappa}(\mathbf{j}^{*},\mathbf{j}_{2\mathfrak{z}+1})}{2\hbar} \\ \end{array} \right\}.$$

$$(22)$$

Thereby, letting $k \to \infty$ in (21) and (22) and using (20) and (iv), we gain

$$\Sigma\left(\zeta_{\kappa}\left(\mathbf{j}^{*}, \mathcal{S}^{m(\mathbf{j}^{*})}\mathbf{j}^{*}\right)\right) \leq \Omega\left(\zeta_{\kappa}\left(\mathbf{j}^{*}, \mathcal{S}^{m(\mathbf{j}^{*})}\mathbf{j}^{*}\right)\right) < \Sigma\left(\zeta_{\kappa}\left(\mathbf{j}^{*}, \mathcal{S}^{m(\mathbf{j}^{*})}\mathbf{j}^{*}\right)\right),$$

such that a contradiction arises. So, we achieve $\mathbf{j}^* = \mathcal{S}^{m(\mathbf{j}^*)}\mathbf{j}^*$. Likewise, we conclude that $\mathbf{j}^* = \mathcal{F}^{n(\mathbf{j}^*)}\mathbf{j}^*$. Thus, $\mathbf{j}^* \in C_{Fix}\left(\mathcal{F}^{n(\mathbf{j}^*)}, \mathcal{S}^{m(\mathbf{j}^*)}\right)$. Now, we prove $\{\mathbf{j}^*\} = C_{Fix}\left(\mathcal{F}^{n(\mathbf{j}^*)}, \mathcal{S}^{m(\mathbf{j}^*)}\right)$. On the contrary, a point z^* exits differ from \mathbf{j}^* such that

$$z^* = \mathcal{F}^{n(z^*)} z^*$$
 and $z^* = \mathcal{S}^{m(z^*)} z^*$.

Also, from the assumption, we have $\alpha(j^*) \beta(z^*) \ge 1$. Thereupon, by (19)

$$\begin{split} \Sigma\left(\zeta_{\kappa}\left(\mathbf{j}^{*},z^{*}\right)\right) &\leq \Sigma\left(\hbar^{3}\zeta_{\kappa}\left(\mathcal{F}^{n\left(\mathbf{j}^{*}\right)}\mathbf{j}^{*},\mathcal{S}^{m\left(z^{*}\right)}z^{*}\right)\right) \leq \Omega\left(\mathcal{C}^{*}\left(\mathbf{j}^{*},z^{*}\right)\right) \\ &< \Sigma\left(\max\left\{\begin{array}{c} \zeta_{\kappa}\left(\mathbf{j}^{*},z^{*}\right),\zeta_{\kappa}\left(\mathbf{j}^{*},\mathcal{F}^{n\left(\mathbf{j}^{*}\right)}\mathbf{j}^{*}\right),\zeta_{\kappa}\left(z^{*},\mathcal{S}^{m\left(z^{*}\right)}z^{*}\right),\\ \frac{\zeta_{2\kappa}\left(\mathbf{j}^{*},\mathcal{S}^{m\left(z^{*}\right)}z^{*}\right)+\zeta_{2\kappa}\left(z^{*},\mathcal{F}^{n\left(\mathbf{j}^{*}\right)}\mathbf{j}^{*}\right)}{2\hbar} \end{array}\right\}\right) \\ &\leq \Sigma\left(\max\left\{\zeta_{\kappa}\left(\mathbf{j}^{*},z^{*}\right),\frac{\zeta_{\kappa}\left(\mathbf{j}^{*},z^{*}\right)}{2}\right\}\right)=\Sigma\left(\zeta_{\kappa}\left(\mathbf{j}^{*},z^{*}\right)\right) \end{split}$$

is obtained. This implies that $\{j^*\} = C_{Fix} \left(\mathcal{F}^{n(j^*)}, \mathcal{S}^{m(j^*)} \right)$. On the other hand, $\mathcal{F}j^* = \mathcal{F} \left(\mathcal{F}^{n(j^*)}j^* \right) = \mathcal{F}^{n(j^*)}(Sj^*)$ and from the uniqueness of $\{j^*\}$, we reason

out $j^* = \mathcal{F}j^*$. Similarly, we get $j^* = \mathcal{S}j^*$. In conclusion, $\{j^*\} = C_{Fix}(\mathcal{F}, \mathcal{S})$, that is, \mathcal{F} and \mathcal{S} own a unique common fixed point.

We possess the subsequent consequence, which is gained instantly from Theorem 3.3, on the condition that $\mathcal{F} = S$ and $m(\mathfrak{s}) = n(\mathfrak{s})$.

Definition 3.4. Let Ω_{ζ}^{*} be an $\mathfrak{m}_{\flat}\mathfrak{m}\mathfrak{s}$ with $\hbar \geq 1$, $\mathcal{F}: \Omega_{\zeta}^{*} \to \Omega_{\zeta}^{*}$ be a selfmapping and $\alpha, \beta: \Omega_{\zeta}^{*} \to \mathbb{R}_{+}$ be two functions. The mapping \mathcal{F} is called a Sehgal-Proinov-type $(\alpha, \beta) - n$ -contraction if the functions $\Sigma, \Omega: (0, \infty) \to \mathbb{R}$ exist such that for each $\mathfrak{j}, \mathfrak{s} \in \Omega_{\zeta}^{*}, n(\mathfrak{j}) \in \mathbb{Z}^{+}$ exists such that

$$\alpha(\mathfrak{j})\,\beta(\mathfrak{s}) \geq 1 \,\Rightarrow\, \Sigma\left(\hbar^{3}\zeta_{\kappa}\left(\mathfrak{F}^{n(\mathfrak{j})}\mathfrak{j},\mathfrak{F}^{n(\mathfrak{s})}\mathfrak{s}\right)\right) \leq \Omega\left(\mathfrak{C}^{*}\left(\mathfrak{j},\mathfrak{s}\right)\right),\tag{23}$$

where

$$\mathbb{C}^{*}\left(\mathbf{j},\mathfrak{s}\right) = \max\left\{ \begin{array}{l} \zeta_{\kappa}\left(\mathbf{j},\mathfrak{s}\right),\zeta_{\kappa}\left(\mathbf{j},\mathcal{F}^{n(\mathbf{j})}\mathbf{j}\right),\zeta_{\kappa}\left(\mathfrak{s},\mathcal{F}^{m(\mathfrak{s})}\mathfrak{s}\right),\\ \frac{\zeta_{2\kappa}\left(\mathbf{j},\mathcal{F}^{m(\mathfrak{s})}\mathfrak{s}\right)+\zeta_{2\kappa}\left(\mathfrak{s},\mathcal{F}^{n(\mathbf{j})}\mathbf{j}\right)}{2\hbar} \end{array}\right\}$$

for all $\zeta_{\kappa} \left(\mathcal{F}^{n(j)} \mathfrak{j}, \mathcal{F}^{m(\mathfrak{s})} \mathfrak{s} \right) > 0$ and all $\kappa > 0$.

Corollary 3.5. Let \mathfrak{Q}^*_{ζ} be a ζ -complete $\mathfrak{m}_{\mathfrak{b}}\mathfrak{m}\mathfrak{s}$ with a constant $\hbar \geq 1$ and \mathfrak{F} be Sehgal-Proinov-type $(\alpha, \beta) - n$ -contraction mapping. Presume that the statements

- (i) \mathcal{F} is a cyclic $(\alpha, \beta) n$ -admissible mapping,
- (ii) there exist $j_0 \in \Omega^*_{\mathcal{L}}$ such that $\alpha(j_0) \ge 1$,
- (*iii*_a) \mathcal{F} is ζ -continuous, or
- (iii_b) if $\{j_{\mathfrak{z}}\}_{\mathfrak{z}\in\mathbb{N}}$ is a sequence in \mathfrak{Q}_{ζ}^* such that $j_{\mathfrak{z}} \to \mathfrak{j}$ and $\beta(\mathfrak{j}_{\mathfrak{z}}) \geq 1$ for all $\mathfrak{z}\in\mathbb{N}$, then $\beta(\mathfrak{j}) \geq 1$,
- (iv) Σ is non-decreasing and $\Omega(\mathfrak{a}) < \Sigma(\mathfrak{a})$ for all $\mathfrak{a} > 0$,
- (v) $\limsup_{a \to a_0+} \Omega(a) < \Sigma(a_0+)$ for any $a_0 > 0$

are provided and there exist $j_0, j_1 \in \Omega^*_{\zeta}$ such that $\zeta_{\kappa}(j_0, j_1) < \infty$ for all $\kappa > 0$. If $\alpha(j) \beta(\mathfrak{s}) \geq 1$ for all $x, y \in Fix(\mathfrak{F}^{n(j^*)})$, then the set $Fix(\mathfrak{F}^{n(j^*)})$ has exactly one element, which means that \mathfrak{F} owns a unique fixed point.

4 Conclusions

In consequence, appraising Proinov's outcomes [12], we have extended the result of Sehgal [3], which comprises a more general form of the Ciric contractive condition [35] for multi-valued mappings in the context of $\mathfrak{m}_{\flat}\mathfrak{m}\mathfrak{s}$. The main theorem has been verified for single-valued mappings. Corresponding outcomes are acquired in the context of modular metric spaces when $n(\mathfrak{j}) = 1$ and $\hbar = 1$ are applied.

References

- S. Banach, Sur les operations dans les emsembles abstraits et leurs applications aux equations integrales, Fund. Math., 1, (1922), 133181.
- [2] V. W. Bryant, A remark on a fixed point theorem for iterated mappings, The American Mathematical Monthly, 75, (1968), 399400.
- [3] V. M. Sehgal, A fixed point theorem for mappings with a contractive iterate, Proc. Amer. Math. Soc., 23, (1969), 631634.
- [4] L. F. Guseman, Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc., 26, (1970), 615618.
- [5] B. Alqahtani, A. Fulga, E. Karapınar, Sehgal type contractions on bmetric space, Symmetry, 10(11), (2018), 560.
- [6] A. Oztürk, A fixed point theorem for mappings with an F-contractive iterate, Adv. Theory Nonlinear Anal. Appl., 3(4), (2019), 231236.
- [7] A. P. Farajzadeh, M. Delfani, Y. H. Wang, Existence and uniqueness of fixed points of generalized F-contraction mappings, Journal of Mathematics, 2021, (2021), 19, ID:6687238.
- [8] B. Alqahtani, A. Fulga, E. Karapınar, P. S. Kumari, Schgal type contractions on dislocated spaces, Mathematics, 7(2), (2019), 153.
- [9] D. Zheng, G. Ye, D. Liu, Sehgal-Guseman type fixed point theorem in b-rectangular metric spaces, Mathematics, 9, (2021), 3149.
- [10] N. A. Secelean, D. Wardowski, M. Zhou, The Schgals fixed point result in the framework of ρ -Space, Mathematics, 10, (2022), 459.

- [11] J. Zhou, W. Yuan, Sehgal-Guseman-type fixed point theorem on b-metric spaces, Int. J. Math. Anal., 16(2), (2022), 7380.
- [12] P. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 22, (2020), 21.
- [13] E. Karapınar, J. Martinez-Moreno, N. Shahzad, A. F. Roldan Lopez de Hierro, Extended Proinov X-contractions in metric spaces and fuzzy metric spaces satisfying the property NC by avoiding the monotone condition, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 116(4), (2022), 128.
- [14] E. Karapınar, M. De La Sen, A. Fulga, A note on the Gornicki-Proinov type contraction, J. Funct. Spaces, 2021, (2021), DOI: org/10.1155/2021/6686644.
- [15] A. F. Roldan Lopez de Hierro, A. Fulga, E. Karapınar, N. Shahzad, Proinov type fixed point results in non-Archimedean fuzzy metric spaces. Mathematics, 9(14), (2021), 1594.
- [16] S. Alizadeh, F. Moradlou, P. Salimi, Some fixed point results for $(\alpha, \beta) (\psi, \varphi) contractive mappings$, Filomat, 28, (2014), 635647.
- [17] A. Latif, A. H. Ansari, Fixed points and functional equation problems via cyclic admissible generalized contractive type mappings, J. Nonlinear Sci. Appl., 9, (2016), 11291142.
- [18] I. A. Bakhtin, The contraction mapping principle in quasi metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30, (1989), 2637.
- [19] S. Czerwik, Contraction mappings in b-metric spaces, Acta. Math. Inform. Univ. Ostrav., 1(1), (1993), 511.
- [20] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ.Modena, 46, (1998), 263276.
- [21] A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64(4), (2014), 941960.
- [22] V. V. Chistyakov, Modular metric spaces generated by F-modulars, Folia Math., 15, (2008), 324.

- [23] V. V. Chistyakov, Modular metric spaces, I: Basic concepts, Nonlinear Anal., 72, (2010), 114.
- [24] V. V. Chistyakov, Modular metric spaces, II: Application to superposition operators, Nonlinear Anal., 72, (2010), 1530.
- [25] V. V. Chistyakov, Fixed points of modular contractive maps, Dokl. Math., 86, (2012), 515518.
- [26] A. A. N. Abdou, M. A. Khamsi, Fixed points of multi-valued contraction mappings in modular metric spaces, Fixed Point Theory Appl., 2014, (2014), 249.
- [27] S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30, (1969), 475488.
- [28] A. Padcharoen, P. Kumam, G. Gopal, P. Chaipunya, Fixed points and periodic point results for α-type F-contractions in modular metric spaces, Fixed Point Theory Appl., 2016, (2016), 39.
- [29] C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed point theorems for contraction mappings in modular metric spaces, Fixed Point Theory Appl., 93, (2011), 19.
- [30] U. Aksoy, E. Karapınar, I. M. Erhan, V. Rakocevic, Meir-Keeler Type Contractions on Modular Metric Spaces, Filomat, 32(10), (2018), 36973707.
- [31] M. Jleli, E. Karapınar, B. Samet, A best proximity point result in modular spaces with the Fatou property, Abstr. Appl. Anal., 2013, (2013), DOI: org/10.1155/2013/329451.
- [32] M. E. Ege, C. Alaca, Some results for modular b-metric spaces and an application to system of linear equations, Azerbaijan J. Math., 8(1), (2018), 314.
- [33] V. Parvaneh, N. Hussain, M. Khorshidi, N. Mlaiki, H. Aydi, Fixed point results for generalized F-contractions in modular b-metric spaces with applications, Mathematics, 7(10), (2019), 116.
- [34] B. S. Choudhury, N. Metiya, S. Kundu, D. Khatua, Fixed points of multivalued mappings in metric spaces, Surv. Math. Appl., 14 (2019), 116.

[35] L. Ciric, On contraction type mappings, Math. Balcanica, 1, (1971), 5257

Abdurrahman BÜYÜKKAYA, Department of Mathematics, Karadeniz Technical University, 61080, Trabzon, TURKEY. Email: abdurrahman.giresun@hotmail.com

Mahpeyker ÖZTÜRK, Department of Mathematics, Sakarya University, 54187, Sakarya, TURKEY. Email: mahpeykero@sakarya.edu.tr