

\$ sciendo Vol. 31(3),2023, 229–244

Parameter estimation for a SEIRS model with COVID-19 data of Türkiye

Arzu UNAL and Elif DEMIRCI

Abstract

In this paper, the unknown parameters of a SEIRS mathematical model for the dynamics of COVID-19 are estimated by the least squares approach using data of Trkiye. In the considered model, the infective group is divided into two classes consisting of diagnosed and undiagnosed individuals. Since the data for undiagnosed infective individuals in the community is unknown, three different scenarios are proposed. The numerical solutions of the model using the estimated parameter values and the actual data are demonstrated with graphs.

1 Introduction

COVID-19 is the disease caused by a new coronavirus called SARS-CoV-2 which is first defined on December 31, 2019, in Wuhan, People's Republic of China ([7]). The World Health Organization (WHO) declared COVID-19 outbreak a pandemic on March 11, 2020.

COVID-19 pandemic has taken its place as an important inflection point in world's history. Besides being a disease that causes fatal health problems, COVID-19 has also caused great damage to the psychology of societies and the economy in the global sense. The results of this destruction appeared independent of the economic and sociocultural differences between countries. Today, it is accepted by many scientists that the control strategies against

Key Words: Parameter estimation, COVID-19, epidemic model.

²⁰¹⁰ Mathematics Subject Classification: 37N25; 65D10.

Received: 25.09.2022

Accepted: 14.02.2023

COVID-19 such as vaccination, use of masks, social distancing and complying with hygiene rules, etc. play the most important role in preventing this epidemic.

Mathematical models are very important tools to explain the dynamics of epidemic diseases ([5], [16], [10]). Recently, many mathematical model studies have been carried out on COVID-19 to predict and explain the mechanism and transmission of the disease ([22], [15], [11], [25], [21], [24], [1]). Some of these studies on COVID-19 have particularly focused on the estimation of the unknown parameters in introduced models. In [17], Mehra et al have considered SIR and SQAIR models for the COVID-19 with the real data of South Korea. They estimated the unknown parameters; transmission rate, recovery rate, and mortality rate in the model. A simple SIR model was considered and parameters were estimated by Bagal et al in India during lockdown periods ([2]). In [3], SIR and SIAS models were studied to forecast the evolution of the COVID-19 with the real data of Brazil by the authors. Bentout et al. consider a SEIR epidemic model for COVID-19 and they predicted the basic reproduction number $R_0 = 4.1$ in [4]. Mekonen, Habtemicheal, and Balcha considered a SEIRD model and estimated the unknown parameters using the combination of least squares and Bayesian estimation in [18]. They showed that the basic reproduction number is dependent also in the contamination of environment, besides the infection and recovery rates.

In a recent study, a novel COVID-19 model was proposed by Demirci ([8]). The basic reproduction number was obtained and local stability analysis of the disease-free equilibrium was given. In this study, the same model given in [8] has been considered without vaccination and some unknown parameters in the model have been estimated by using COVID-19 data of Türkiye, that is reported to World Health Organization by the Ministry of Health of the Republic of Türkiye ([26]). In addition three different data scenarios have been proposed for the undiagnosed infective individuals in the community and results are discussed.

2 The Model

In this study, we consider the model given in [8] that consists of five compartments: $S(t), E(t), I_1(t), I_2(t)$ and R(t). S(t) is composed of the susceptible individuals in the population. The infectious group is divided into three classes that are exposed (E(t)), infective who are diagnosed with COVID-19 $(I_1(t))$ and infective who are not diagnosed (both symptomatic and asymptomatic) $(I_2(t))$. The individuals in the exposed group are infected but due to the incubation period of the virus they are not contagious until the last two days of this period ([5]). The diagnosis rate of these individuals is also quite

Figure 1: Flow chart for the model (1a)-(1e)

low even though they are tested. Since the disease is not distributed in the country equally, in this paper, the total population N(t) is assumed to denote the number of individuals who have been tested [17]. We also used fixed birth and death rates (*b* and *d*, respectively) in this study. The flowchart of the model is given in Figure 1. The system that represents the considered model is

$$\frac{dS}{dt} = bN - \frac{\beta_1 E + \beta_2 I_2}{N} \xi S - dS + r_{-1}R,$$
(1a)

$$\frac{dE}{dt} = \frac{\beta_1 E + \beta_2 I_2}{N} \xi S - (\gamma_1 + \gamma_2 + d)E, \qquad (1b)$$

$$\frac{dI_1}{dt} = \gamma_1 E + \gamma_3 I_2 - (d + \theta + r_1)I_1,$$
(1c)

$$\frac{dI_2}{dt} = \gamma_2 E - (\gamma_3 + r_1 + d)I_2, \tag{1d}$$

$$\frac{dR}{dt} = r_1 I_1 + r_2 I_2 - (d + r_{-1})R.$$
(1e)

with non-negative initial conditions $S(0) = S_0$, $E(0) = E_0$, $I_1(0) = I_{10}$, $I_2(0) = I_{20}$, $R(0) = R_0$. Here, β_1 and β_2 denote the transmission rates due to the interaction of the class S with the classes E and I_2 , respectively. $\sqrt{\xi}$ represents the rate of protected individuals by social isolation. γ_1 and γ_3 are rates of being diagnosed for individuals who are in the classes E and I_2 , respectively and γ_2 is the rate of being undiagnosed for the class E. r_1, r_2 and r_{-1} are waning immunity rate, recovery rate for I_1 and I_2 , respectively.

3 Data Collection and Method

In this study, parameters of the model are estimated based on COVID-19 data for Türkiye between December 12, 2020 and January 25, 2021. In Türkiye, vaccination against COVID-19 has started on 14 January, 2021 but it took some more time for the vaccination to become massively effective. Therefore, for the considered 45 days of period, parameter estimation is performed using a model without vaccination term. Data of daily COVID-19 cases are collected from the reports of COVID-19 information platform of the Republic of Türkiye, Ministry of Health, given to WHO [26]. The number of active cases at time t which corresponds to the variable $I_1(t)$ is obtained by subtracting the number of deaths and the number of recovered individuals from the daily number of cases announced by the Ministry, starting from the first day of pandemic. Data on COVID-19 prevalence that include the undiagnosed cases are extremely limited in Türkiye. One of the main motivations of this study is to obtain information about the number of undiagnosed cases in public according to CoVID-19 data of Türkiye. There are many studies in the literature on the number of the undiagnosed individuals who are infected with SARS-CoV-2 virus ([14]) and most of them introduce their prediction or hypothesis on this number with the help of statistical methods ([6], [23]). In a recent study, the number of the undiagnosed individuals is given as 5 times of diagnosed cases ([12]). Hamadeh et al used a mathematical modeling approach to estimate the unobserved incidence in Canada and they estimated the proportion of the infected population that remained undiagnosed in Canadian provinces at a certain time interval ([9]). According to this study, the estimated total number of infections ranged from 2 to 6 times the diognosed cases. In [13] Ruiyu et al have shown that the suppression of the infectiousness of the undocumented cases in model simulations reduces the total number of documented cases and the overall spread of SARS-CoV-2.

In this context, we consider three different scenarios to generate I_2 data. Three different intervals [1,3], [4,6], [7,9] are considered and I_2 is generated as the product of the I_1 data and the randomly generated number series from these intervals using uniform distribution. For instance, for the first scenario, at time t_i , I_2 is defined as:

$$I_2(t_i) = rnd[1,3] \times I_1(t_i).$$

For the other scenarios data are obtained similarly. Generated I_2 data for three scenarios are shown in Fig. 2.

Data set for exposed class is generated using the formula:

$$E(t) = I_1(t+6) + I_2(t+6), t = 0, 1, \dots, 44.$$

We note that the incubation period for COVID-19 is assumed to be 7 days. It is known that 80%-90% of those who recover from disease gain immunity for 6 months. Hence, data for the recovered (immune) class, R(t), for the first scenario is constructed using the following formula:

$$R(t) = (1 - \frac{1}{180})(R(t-1) + 0.9V(t)(1 + rnd[1,3])).$$
⁽²⁾

Here, V(t) is the number of daily recovered individuals at time t and, R(t-1) is the number of immune individuals at time t-1 ([26]). We note that, the random effect on the recovery class, rnd[1,3], in Equation 2 is replaced by rnd[4, 6] and rnd[7, 9] for the scenarios 2 and 3, respectively.

As mentioned before, here N is considered as the total test number in Türkiye ([17]) and the value of N is fixed to 28.648.193, the total number of people who have been tested on the last day (45th day) of the data([26]). Generated data sets for the first, second and third scenarios are given in Table 1, 2 and 3, respectively.

In this paper, to estimate the values of unknown parameters, we minimize an objective function which represents the errors in least squares sense, relatively. The objective function S that is minimized is formulated as:

$$S = \sum_{j=1}^{m} \frac{\sum_{i=1}^{n} \|x_j(t_i) - x_{ji}\|^2}{\sum_{i=1}^{n} \|\hat{x}_{ji} - x_{ji}\|^2},$$

where n is the number of actual data (in our problem n=45) and m is the number of independent variables in the model which is 5. Here, $x_1(t_i)$, $x_2(t_i)$, $x_3(t_i)$, $x_4(t_i)$ and $x_5(t_i)$ correspond to values $S(t_i)$, $E(t_i)$, $I_1(t_i)$, $I_2(t_i)$, $R(t_i)$

Figure 2: I_2 data for three scenarios

time	S	E	I_1	I_2	R
0.	26987795	535321	212045	259516	653516
1.	26734236	541408	216531	491221	664797
2.	26947774	572309	217755	235632	674723
3.	26981520	469209	220375	285313	691776
4.	26809806	593179	219931	319016	706261
5.	26713386	589374	216709	410825	717899
6.	26900153	456733	210928	324393	755986
7.	26957083	354561	207366	334042	795141
8.	26893217	311445	206218	366091	871222
9.	26812119	403393	190648	278561	963472
10.	26653183	378900	177543	415636	1022931
11.	26623799	325310	162442	426932	1109710
12.	26730270	245204	146305	310428	1215986
13.	26705262	316965	128081	226480	1271405
14.	26787039	237224	119715	191730	1312485
15.	26537148	336646	112470	290923	1371006
16.	26467369	329597	105207	273693	1472327
17.	26452783	315812	99755	225555	1554288
18.	26484910	277741	95001	150203	1640338
19.	26396475	236860	87121	229844	1697893
20.	26348810	322339	85002	152222	1739820
21.	26168353	354271	84308	252338	1788923
22.	26240576	244663	83890	245707	1833357
23.	26073909	384629	87492	228320	1873843
24.	26196524	271154	92884	184857	1902774
25.	26125339	316074	97821	139039	1969920
26.	26071672	249157	101587	220752	2005025
27.	25921604	345133	102986	251285	2027185
28.	25974412	387375	104440	140223	2041743
29.	25903286	302306	105299	279330	2057972
30.	25981034	333097	105044	166110	2062908
31.	26060839	198308	104669	211405	2072972
32.	25977737	335047	104587	144570	2086252
33.	25946054	256808	104368	240765	2100198
34.	25808870	347497	103404	283971	2104451
35.	25963417	274855	102781	199525	2107615
36.	25960590	236611	100240	232857	2117895
37.	26016456	304575	98033	100275	2128854
38.	25962298	210471	97466	237581	2140377
39.	25894318	347610	97810	158998	2149457
40.	25876270	258238	97833	249664	2166188
41.	25917529	283644	97633	177222	2172165
42.	25885491	341092	97534	139077	2184999
43.	25952988	196595	96811	207764	2194035
44.	25955326	274891	95634	114837	2207505

Table 1: Actual Data for Scenario 1

time	S	Ε	I1	I2	R
0.	24914697	1124155	212045	911183	1486113
1.	24552713	1169777	216531	1112021	1597151
2.	24432800	1150427	217755	1132899	1714312
3.	24572932	957577	220375	1009289	1888020
4.	24264193	1013234	219931	1085842	2064993
5.	24093967	1040671	216709	1079573	2217273
6.	24258941	888597	210928	913227	2376500
7.	24160139	840796	207366	962411	2477481
8.	24209408	691710	206218	944209	2596648
9.	24186303	706456	190648	766929	2797857
10.	23964427	687049	177543	835691	2983483
11.	23905098	519424	162442	878229	3183000
12.	23736413	644950	146305	742292	3378233
13.	23663055	594183	128081	712715	3550159
14.	23819956	481341	119715	571995	3655186
15.	23700424	511581	112470	593986	3729732
16.	23625689	527085	105207	581842	3808370
17.	23695316	533450	99755	419669	3900003
18.	23483533	532942	95001	549949	3986768
19.	23498470	492377	87121	507062	4063163
20.	23524732	513131	85002	396339	4128989
21.	23404160	574170	84308	427273	4158282
22.	23271751	659928	83890	443195	4189429
23.	23241505	653942	87492	445958	4219296
24.	23222001	649559	92884	440058	4243691
25.	23326455	570305	97821	394556	4259056
26.	23205520	657403	101587	411544	4272139
27.	23070435	693197	102986	471184	4310391
28.	22936307	716008	104440	555488	4335950
29.	22964840	674036	105299	548643	4355375
30.	22960966	660393	105044	544515	4377275
31.	23007506	672617	104669	465636	4397765
32.	22954357	603814	104587	552816	4432619
33.	22864715	625834	104368	588829	4464447
34.	22897080	546545	103404	612604	4488560
35.	22809276	651106	102781	571255	4513775
36.	22767600	676294	100240	560153	4543906
37.	22802254	612211	98033	574584	4561111
38.	22832111	637735	97466	506348	4574533
39.	22801009	645686	97810	528024	4575664
40.	23033153	490895	97833	448712	4577600
41.	22929096	483506	97633	553473	4584485
42.	22916196	460281	97534	578760	4595422
43.	22938193	491185	96811	515400	4606604
44.	22949552	449992	95634	542101	4610914

 Table 2: Actual Data for Scenario 2

time	S	Е	I1	I2	R
0.	23514353	1710895	212045	1655727	1555173
1.	23017394	1892669	216531	1869918	1651681
2.	23419599	1674028	217755	1526761	1810050
3.	23087247	1618647	220375	1812789	1909135
4.	23060865	1513732	219931	1792206	2061459
5.	23052098	1620098	216709	1542886	2216402
6.	23146334	1438120	210928	1499967	2352844
7.	23163813	1131703	207366	1685303	2460008
8.	23301074	1127689	206218	1467810	2545402
9.	23342807	904081	190648	1427999	2782658
10.	23225717	1003540	177543	1336189	2905204
11.	22986775	903001	162442	1457656	3138319
12.	23034146	842692	146305	1291815	3333235
13.	23281844	724631	128081	1003622	3510015
14.	23178408	811670	119715	1007974	3530426
15.	23301368	823226	112470	791611	3619518
16.	23168466	735663	105207	898333	3740524
17.	23106428	808154	99755	803246	3830610
18.	23082165	789371	95001	747691	3933965
19.	22973934	949997	87121	637510	3999631
20.	22804371	980284	85002	726668	4051868
21.	22840799	908913	84308	738918	4075255
22.	22761283	1039385	83890	651773	4111862
23.	22746191	952225	87492	720662	4141623
24.	22793587	909263	92884	696487	4155972
25.	22546757	964317	97821	852176	4187122
26.	22549857	910891	101587	878697	4207161
27.	22601097	905479	102986	805927	4232704
28.	22435407	934051	104440	934945	4239350
29.	22558472	870275	105299	846926	4267221
30.	22461631	986870	105044	804219	4290429
31.	22431554	923410	104669	859648	4328912
32.	22569471	813480	104587	806304	4354351
33.	22398204	958968	104368	801111	4385542
34.	22380757	930915	103404	830647	4402470
35.	22413241	946506	102781	767494	4418171
36.	22269419	963683	100240	886630	4428221
37.	22455435	824815	98033	825377	4444533
38.	22506052	878246	97466	716014	4450415
39.	22412909	809267	97810	861158	4467049
40.	22356071	874823	97833	833082	4486384
41.	22348810	870091	97633	848873	4482786
42.	22303533	881644	97534	866149	4499333
43.	22477626	839729	96811	728004	4506023
44.	22495419	750146	95634	782612	4524382

Table 3: Actual Data for Scenario 3

which are predicted by the model at time t_i , respectively. Similarly, x_{1i} , x_{2i} , x_{3i} , x_{4i} and x_{5i} correspond to actual data S_i , E_i , I_{1i} , I_{2i} , R_i at time t_i , respectively. Finally, \hat{x}_{ji} , $j = 1, \ldots, m$, $i = 1, \ldots, n$ are the mean values of the actual data in each compartment.

4 Model Parameter Estimation

Some parameters in the system (1a)-(1e) are collected from literature. The birth and death rates were considered as the functions of the total population N between the years 2006 and 2019 in [8]. Since we work in relatively short time interval (45 days), these rates are assumed to be constants in this paper. Thus, the birth and death rates are fixed to b = 0.000041, d = 0.0000157, respectively. In this study, the recovery rate for diagnosed infected individuals r_1 and the recovery rate for undiagnosed infected individuals r_2 are assumed to be $r_1 = r_2 = 1/7$. Indeed, a recent work on the incubation period of COVID-19 reported that the mean incubation period of COVID-19 is 6.57 days ([27]). According to COVID-19 data of Türkiye, COVID-19 related death rate is $\theta = 0.489011 \times 10^3$ ([26]).

For three different scenarios, estimated parameters are shown in Table 4. Also, the numerical solutions for S, E, I_1, I_2 of system (1a)-(1e) with the bestfit parameters are plotted with the actual data in Figures 3-Fig.5 for each scenario. Estimated curve and observed data for R is plotted separately in Fig. 6. We note that, the unknown parameters of the system (1a)-(1e) are estimated using the software Mathematica.

	Scenario 1	Scenario 2	Scenario 3
β_1	0.139302	0.061828	0.034483
β_2	0.828683	0.481024	0.0001
ξ	0.160594	0.25191	0.99
γ_1	0.060718	0.0254791	0.004332
γ_2	0.176248	0.134119	0.04908
γ_3	0.011203	0.0001	0.0001
r_{-1}	0.003392	0.00598	0.018366

Table 4: Estimated parameter values for Eqn. (1a)-(1e)

Due to the definition of the number of undiagnosed individuals, I_2 , an increasing arises apparently in the total number of infected (diagnosed and undiagnosed) individuals in the transition from Scenario 1 to Scenario 3. While in the first day of the observation I_2 is obtained as 259516 for Scenario 1, it

Figure 3: Numerical results of the fitted and observed values for Scenario 1. Red points are observed data and blue curves are the estimated curves of solution to the Model (1a)-(1e).

is obtained as 1655727 that is nearly 8 times of I_1 for Scenario 3 (See Fig. 2). On the other hand, when the estimated ξ parameter values are compared from Scenario 1 through Scenario 3, there is an evident increase (See Table 4). Recall that, $\sqrt{\xi}$, $0 < \xi < 1$ represents the rate of protected individuals by social isolation in our model. Moreover, when social isolation decreases ξ tends to 1. Indeed, these results are compatible with each other because, when people continue their social lives with less protection, the number of infected individuals in the society increases.

In this study, the coefficients of determination, \mathscr{R}^2 values are calculated for each scenario. The \mathscr{R}^2 value provides a measure for the goodness of the model to predict the data ([19]) and formulated as;

$$\mathscr{R}^2 = 1 - \frac{SS_{Res}}{SS_{Tot}},$$

where SS_{Res} is the residual sum of squares and SS_{Tot} is the total sum of squares. \mathscr{R}^2 values that are separately computed for each component of the Model (1a)-(1e) and their mean values are given in Table 5. The best mean \mathscr{R}^2 value 0.72 corresponds to Scenario 2 according to Table 5. $\mathscr{R}^2 = 0.72$ means that the model explains 72% of the data in Scenario 2. The mean \mathscr{R}^2

Figure 4: Numerical results of the fitted and observed values for Scenario 2. Red points are observed data and blue curves are the estimated curves of solution to the Model (1a)-(1e)

values in Table 5 show that the data of Scenario 2 is more accurate for the model (1a)-(1e) than the others. We note that if $\Re^2 > 0.7$ then this value is generally considered as a strong effect size ([20]).

5 Conclusion

In this study we have considered a compartment model for COVID-19 with real data of Türkiye. Unknown parameters of the model have been estimated for three different scenarios. In our model infectious class has been divided into two sub-classes as diagnosed and undiagnosed. Data for diagnosed cases have been taken from real data of Türkiye as the total active cases. In this point the question "How many undiagnosed individuals are present in the public?" arises. Many scientists agree that during respiratory viral outbreaks and pandemics, identified cases often represent only a small subset of what is really going on in a community ([12], [14]). The answer to this question changes clearly according to the socio-cultural, demographic and economic situations of the regions. In this context we generated three different data sets as Scenario 1, 2 and 3. Data fitting results for data of Türkiye showed that the best scenario is Scenario 2. According to this result, we conclude

Figure 5: Numerical results of the fitted and observed values for Scenario 3. Red points are observed data and blue curves are the estimated curves of solution to the Model (1a)-(1e)

Figure 6: The estimated curve of Recovered class of Eqn. (1b)-(1e) for three scenarios. Red points are real data and blue curves are estimated curves for populations of the Model (1b)-(1e)

that the undiagnosed case number is 4 to 6 times of the number of diagnosed cases which is compatible with a recent study [12]. In addition, both data and parameter results of Scenario 3 show that it is the worst scenario for Türkiye in terms of the huge number of infectious individuals. $\xi = 0.99$ is almost 1 in this scenario which means that there is almost no social isolation in the public.

	\mathscr{R}^2_{Scen1}	\mathscr{R}^2_{Scen2}	\mathscr{R}^2_{Scen3}
S	0.81	0.96	0.78
E	0.19	0.48	0.51
I_1	0.75	0.72	0.78
I_2	0.32	0.5	0.27
R	0.82	0.94	0.77
$\operatorname{mean} \mathscr{R}^2$	0.58	0.72	0.62

Table 5: \mathscr{R}^2 values of the numerical solutions corresponding to the estimated parameter values of the Model (1a)-(1e) for three scenario.

This result can be considered as another evidence for the importance of the regulations such as social distancing and wearing masks to avoid the damage of COVID-19 to the public health.

Acknowledgement Authors would like to thank to Prof. Dr. Alpay AZAP for his valuable contribution and comments. This research is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) within the scope of the 1001-Scientific and Technological Research Project (120F307).

The authors declare that they access and use the data reported to WHO by the Ministry of Health of Türkiye that can be found in the link below, that belongs to WHO, due to open access policy (CC BY-NC-SA 3.0 IGO) for noncommercial use: Microsoft Power BI

https://app.powerbi.com/view?r=eyJrIjoiYWRiZWVkNWUtNmM0Ni00MDA wLTljYWMtN2EwNTM3YjQzYmRmIiwidCl6ImY2MTBjMGl3LWJkMjQtNG IzOS04MTBiLTNkYzI4MGFmYjU5MClsImMiOjh9

References

- D. Adak, A. Majumder, N. Bairagi, Mathematical perspective of Covid-19 pandemic: Disease extinction criteria in deterministic and stochastic models, Chaos Solitons Fractals, vol. 142, article 110381, 2021.
- [2] D. K. Bagal, A. Rath, A. Barua, D. Patnaik, Estimating the parameters of susceptible-infected-recovered model of COVID-19 cases in India during lockdown periods, Chaos, Solitons & Fractals, vol. 140, article 110154, 2020.
- S. B. Bastos, D. O. Cajueiro, Modeling and forecasting the COVID-19 pandemic in Brazil, 2020, https://arxiv.org/abs/2003.14288.

- [4] S. Bentout, A. Chekroun, T. Kuniya, Parameter estimation and prediction for corona virus disease outbreak 2019 (COVID-19) in Algeria, AIMS Public Health. 2020;7:306318.
- [5] F. Brauer, C. Castillo-Chavez and Z. Feng, *Mathematical Models in Epidemiology*, 1st ed., Springer-Verlag New York, (2019).
- [6] C. C. Chow, J. C. Chang, R. C. Gerkin, S. Vattikuti, Global prediction of unreported SARS-CoV2 infection from observed COVID-19 cases, medRxiv [Preprint]. 2020 May 5:2020.04.29.20083485. doi: 10.1101/2020.04.29.20083485. PMID: 32510525; PMCID: PMC7239078.
- [7] Coronavirus disease 2019 (COVID-19). Available online at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on July 15, 2022).
- [8] E. Demirci, A Novel Mathematical Model of the Dynamics of COVID-19, Gazi University Journal of Science, doi:10.35378/gujs.1096827
- [9] A. Hamadeh, Z. Feng, J. Niergarth, W. W. Wong, Estimation of COVID-19 Period Prevalence and the Undiagnosed Population in Canadian Provinces: Model-Based Analysis, JMIR Public Health Surveill 2021;7(9):e26409, doi: 10.2196/26409
- [10] A. Huppert, G. Katriel, Mathematical modelling and prediction in infectious disease epidemiology, Clin Microbiol Infect, 19 (11) (2013), pp. 999-1005
- [11] B. Ivorra, M. R. Ferrandez, M. Vela-Perez, A. M. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China, Communications in Nonlinear Science and Numerical Simulation, 88: 105303, 2020.
- [12] H. Kalish, C. Klumpp-Thomas, S. Hunsberger, S., et al., Undiagnosed SARS-CoV-2 seropositivity during the first 6 months of the COVID-19 pandemic in the United States, Sci Transl Med, 13 (2021), p. eabh3826. doi:10.1126/scitranslmed.abh3826
- [13] R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, J. Shaman, Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2), Science, vol. 368, no. 6490, pp. 489-493, Mar. 2020.

- [14] Z. Liu, P. Magal, O. Seydi, G. Webb, Understanding unreported cases in the COVID-19 epidemic outbreak in Wuhan, China, and the importance of major public health interventions, Biology, vol. 9, no. 3, p. 50, 2020.
- [15] L. Masandawa, S. S. Mirau, I. S. Mbalawata, Mathematical modeling of COVID-19 transmission dynamics between healthcare workers and community, Results Phys. 2021 Oct;29:104731. doi: 10.1016/j.rinp.2021.104731. Epub 2021 Sep 6. PMID: 34513578; PMCID: PMC8420379.
- [16] M. Martcheva, An Introduction to Mathematical Epidemiology, Texts in Applied Mathematics, vol. 61, Springer, New York, 2010.
- [17] A. H. A. Mehra, M. Shafieirad, Z. Abbasi, I. Zamani, Parameter Estimation and Prediction of COVID-19 Epidemic Turning Point and Ending Time of a Case Study on SIR/SQAIR Epidemic Models, Computational and Mathematical Methods in Medicine, Volume 2020, Article ID 1465923, 13 pages
- [18] K. G. Mekonen, T. G. Habtemicheal, S. F. Balcha, Modeling the effect of contaminated objects for the transmission dynamics of COVID-19 pandemic with self-protection behavior changes, Results Appl Math 9: 100134, 2021, https://doi.org/10.1016/j.rinam.2020.100134
- [19] D. Mooney, R. Swift, A Course in Mathematical Modeling, The Mathematical Association of America, 1999.
- [20] D. S. Moore, W. I. Notz, M.A. Flinger, The basic practice of statistics (6th ed.), New York, NY: W. H. Freeman and Company, (2013), Page (138).
- [21] R. Nistal, M. De la Sen, J. Gabirond, S. Alonso-Quesada, A. J. Garrido, I. Garrido, A Study on COVID-19 Incidence in Europe through Two SEIR Epidemic Models Which Consider Mixed Contagions from Asymptomatic and Symptomatic Individuals, Applied Sciences, 11: 6266, 10.3390/app11146266, (2021).
- [22] A. Olivares, E. Staffetti, Uncertainty quantification of a mathematical model of COVID-19 transmission dynamics with mass vaccination strategy, Chaos Solitons Fractals 2021;110895.
- [23] T. A. Perkins, S.M. Cavany, S. M. Moore, R. J. Oidtman, A. Lerch, M. Poterek, *Estimating unobserved SARS-CoV-2 infections in the United States. Proc Natl Acad Sci U S A*, 2020, Sep 8;117(36):22597-22602. doi: 10.1073/pnas.2005476117

- [24] P. O. Neto, D. M. Kennedy, J. C. Reis, Y. Wang, A. C. B. Brizzi, G. J. Zambrano, J. M. de Souza, W. Pedroso, R. C. de Mello Pedreiro, B. de Matos Brizzi, E. O. Abinader, R. A. Zngaro, *Mathematical* model of COVID-19 intervention scenarios for So Paulo-Brazil, Nat Commun. 2021 Jan 18;12(1):418. doi: 10.1038/s41467-020-20687-y. PMID: 33462211; PMCID: PMC7814036.
- [25] P. Riyapan, S. E. Shuaib, A. Intarasit, Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand, Computational and Mathematical Methods in Medicine, 2021. https://doi.org/10.1155/2021/6664483
- [26] WHO Detailed Surveillance Data Dashboard. Available online at: https://app.powerbi.com/view?r=eyJrIjoiYWRiZWVkNWUtNmM0Ni00 MDAwLTljYWMtN2EwNTM3YjQzYmRmIiwidCl6ImY2MTBjMGI3LW JkMjQtN-GIzOS04MTBiLTNkYzI4MGFmYjU5MCIsImMiOjh9 (accessed on February 14,2023).
- [27] Y. Wu, L. Kang, Z. Guo, J. Liu, M. Liu, W. Liang, Incubation Period of COVID-19 Caused by Unique SARS-CoV-2 Strains: A Systematic Review and Meta-analysis, JAMA Netw Open. 2022; 5(8) :e2228008. doi:10.1001/jamanetworkopen.2022.28008

Arzu UNAL, Department of Mathematics, Ankara University, 06100 Tandogan, Ankara, Türkiye. Email: aogun@science.ankara.edu.tr Elif DEMIRCI-Corresponding Author

Department of Mathematics, Ankara University, 06100 Tandogan, Ankara, Türkiye. Email: edemirci@ankara.edu.tr