
DOI: 10.2478/auom-2023-0039
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A New Filled Function for Global Optimization
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Abstract

The filled function method has recently become very popular in op-
timization theory, as it is an efficient and effective method for finding
the global minimizer of multimodal functions. However, the fact that
the existing filled functions in the literature generally have exponential
or logarithmic terms and/or parameter sensitivity reduces the effective-
ness of this method. In this study, we propose a new non parameter
and without exponential/logarithmic terms filled function, which is nu-
merically stable, and is successfully used to solve global optimization
problems. Furthermore, we have demonstrated how successful this new
filled function method in terms of efficiency with numerical experiments
and comparisons.

1 Introduction

Today’s technology and science age is witnessing that many problems in real-
world can be modeled as optimization problems. Especially, thanks to the
rapidly developing theoretical and algorithmic infrastructure of global opti-
mization, the many problems that require globally optimal solutions in sci-
ence and engineering can be solved ([3], [6], [7], [11] [17]). In recent years,
some effective methods are proposed in global optimization theory. In the
literature, it is known how effective methods such as Newton’s method, conju-
gate gradient method, and the steepest regular method in solving optimization
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problems involving only one local minimum (see for details [4], [5]). However,
these methods do not work for problems with more than one local minimum.
Because in optimization problems involving more than one local minimum,
existing methods can get stuck in any existing local minimum or find a lo-
cal minimum worse than the existing local minimum. In this sense, in solving
global optimization problems involving multiple local minima, two major ques-
tions must be answered;

1) How to escape current local local minimum?
2) Is the current optimum solution global or not?
In order to deal with the fundamental difficulties in these questions, Ge [8]

proposed the filled function method for the first time.
In general, there are mainly two approaches to solve global optimiza-

tion problems; probabilistic and deterministic approaches. The filled function
method, which can be considered an effective deterministic approach in the
literature due to is easy to construct and convergence is faster than other
methods, have some disadvantages and shortcomings. It is generally known
the most of the existing conventional filled function methods have compu-
tational weaknesses because the sensitivity to parameters and the exponen-
tial/logarithmic term. For example, the first filled function defined by Ge in
the equation (2.3) has some disadvantages as it contains parameters that are
very difficult to set for any unconstrained global optimization problem and it
causes overflows in calculations due to the exponential term it contains. In
this sense, there are many valuable studies in the literature in order to improve
the filled function method and make it more efficient.

In this work, our main motivation is to give a new filled function without
parameter, exponential-logarithmic terms, which is numerically stable, and is
successfully used to solve global optimization problems.

2 Preliminaries

An unconstrained global minimization problem can be briefly represented fol-
lowing:

min g (ξ)
s.t. ξ ∈ Rn , (2.1)

where g : Rn → R is a continuously differentiable function. Suppose that g (ξ)
is global convex, that is g (ξ) → +∞, when ‖ξ‖ → +∞. Therefore, there is
a closed and bounded region Ω ⊂ Rn containing all the minimizers of g (x).
Otherwise, unbounded global optimization problem over an unbounded region
would not be solved. Thus, the problem (2.1) can be reduced as
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min g (ξ)
s.t. ξ ∈ Ω

. (2.2)

For the solution of the unconstrained global optimization problem in (2.2), a
method called “ filled function method ” was developed by Ge in 1987 (see for
details [8],[9]). The first filled function to be used in this method was given as
in (2.3);

F (ξ, ξ∗k, λ, µ) =
1

λ+ g (ξ)
exp

(
−‖ξ − ξ

∗
k‖

µ2

)
. (2.3)

However, it is quite difficult to adjust the parameters of this filled function
according to the problem (2.2). In this sense, in order to eliminate this dis-
advantage and to improve this method, researchers have not only defined new
filled functions (see [12], [15], [16]), but also updated and revised the Definition
2.1. In the literature, the most widely used filled function definition is given
by Yang and Shang in [18] as follows:

Definition 2.1. Suppose that ξ∗k is a local minimizer of an objective function
g (ξ). The filled function F : Rn → R is a function (called filled function of
g (ξ) at ξ∗k), if following three conditions hold:

(1) ξ∗k is a strictly local maximizer of F (ξ, ξ∗k),
(2) For any ξ ∈ Ω1, ∇F (ξ, ξ∗k) 6= 0 in the region

Ω1 = {ξ ∈ Ω : g (ξ∗k) ≤ g (ξ) , ξ ∈ Ω− {ξ∗k}} ,

(3) If ξ∗k is not a global minizer and Ω2 = {ξ ∈ Ω : g (ξ) < g (ξ∗k)} 6= ∅, then
there exist a point ξ′k ∈ Ω2 such that ξ′k is a local minimum of F (ξ, ξ∗k).

In order to understand the operating logic of the filled function (method)
finding the global minimizer, the general strategy of the filled function (ff)
method can be briefly summarized with the following.

Filled Function Algorithm;
Step 1 : Find a local minimizer ξ∗k of the objective function g (ξ),
Step 2 : Construct the filled function F (ξ, ξ∗k) that takes its maximum

value at ξ∗k,
Step 3 : Find a local minimizer ξ′k of the filled function ,
Step 4 : If g (ξ′k) ≤ g (ξ∗k), then go to Step 1 and take ξ′k as a initial

minimizer of g (ξ). Otherwise ξ∗k is a global minimum point of g (ξ).

It is clear that in the (ff) algorithm, the (ff) plays a vital role in obtaining
the global minimizer of the objective function. So, it is very important to
define effective and efficient filled functions. For example, the (ff) based on one
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parameter that can be adjusted according to the global optimization problem
is defined in [10] as follows

F (ξ, ξ∗k, λ) = − (g (ξ)− g (ξ∗k)) exp
[
λ ‖ξ − ξ∗k‖

2
]
.

However, the global minimizer of objective function may be lost since the
case of λ being too large lead to overflow in the calculations. To overcome
this shortcoming based on exponential terms, a new (ff) without exponential
terms is given as

F (ξ, ξ∗k, λ) = − 1

In [1− g (ξ)− g (ξ∗k)]
− λ ‖ξ − ξ∗k‖

2

in [14]. But, this filled function is not defined at ξ such that g (ξ) ≤ 1− g (ξ∗k).
This limitation can decrease the efficient of this function.

In light of the aforementioned disadvantages and limitations, our main
motivation in this article is to define a new (ff) to solve an unconstrained
global optimization problem. The numerical comparisons we made on several
test examples in Section 5 reveal that the proposed (ff) is more efficient than
some of the most frequently cited filled functions in the literature.

3 A New Auxiliary Function and Its Properties

To define a new (ff), we first introduce the following univariate function based
on the bezier curve v : R→ R is defined by

v (t) =



1 , t ≤ −2ε

(t+ ε)
2

ε3
(3ε+ 2 (t+ ε)) , −2ε ≤ t < −ε

(t+ ε)
2

ε3
(3ε− 2 (t+ ε)) , −ε ≤ t < 0

1 , t ≥ 0

,

where ε is a positive real constant very close to zero ( v(t, ε) notation will be
used instead of v(t) in the next part of the article to emphasize “ε”).

Now, we define the new filled function S : Ω ⊂ Rn → R with regard to
v (t, ε)

S (ξ, ξ∗1) = c

(
− 2

π
arctan ‖ξ − ξ∗1‖

2
+ 1

)
v (ξ, ε) , ( c is positive constant ),

(3.1)
where the set Ω is the domain of objective function g including all minima,
and ξ∗1 is the existing local minimizer of g (ξ).
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In the next theorems, it will be proved that the function S (ξ, ξ∗1) satisfies
the conditions given in Definition 2.1, and that it is a (ff).

Theorem 3.1. Let ξ∗1 be a local minimizer of the objective function
g : Ω ⊂ Rn → R. Then S (ξ, ξ∗1) has a strictly local maximizer at the ξ∗1 .

Proof. Since g has a minimizer at ξ∗1 , there exists a neighborhoodN (ξ∗1 , ε) with
ε > 0 such that g (ξ) ≥ g (ξ∗1) for each x in the neighborhood N (ξ∗1 , ε). So, for
the same neighborhood N (ξ∗1 , ε), and ξ 6= ξ∗1 , it is obtained that

S (ξ, ξ∗1) = c

(
− 2

π
arctan ‖ξ − ξ∗1‖

2
+ 1

)
≤ S (ξ∗1 , ξ

∗
1) = c.

This means ξ∗1 is strictly local maximizer of S (ξ, ξ∗1).

Theorem 3.2. If g (ξ) − g (ξ∗1) > 0, then ∇S (ξ, ξ∗1) 6= 0. That is, in higher
basins of S (ξ, ξ∗1) have neither a stationary point nor a minimizer.

Proof. Let g (ξ)− g (ξ∗1) > 0 and ξ 6= ξ∗1 . Then it is obtained that

∇S (ξ, ξ∗1) = −4c

π

ξ − ξ∗1
1 + ‖ξ − ξ∗1‖

4 6= 0.

This proves the theorem.

Theorem 3.3. Let S2 = {ξ ∈ Ω ⊂ Rn : g (ξ)− g (ξ∗1) < 0} be not empty set.

Then the function S (ξ, ξ∗1) has a minimizer ξ̃ in the set S2.

Proof. Let |g (ξ)− g (ξ∗1)| = ε < min
i 6=j

∣∣g (ξ∗i )− g
(
ξ∗j
)∣∣, where g (ξ∗i ) , g

(
ξ∗j
)

are local minimizers of g with different values. We know that v (t, ε) has

a minimizer at t = −ε and v (−ε, ε) = 0. Let ξ̃ be any point such that

g
(
ξ̃
)
− g (ξ∗1) = −ε. Then, it is obtained that

∇S
(
ξ̃, ξ∗1

)
=

 -
4c

π

ξ̃-ξ∗1

1+
∥∥∥ξ̃-ξ∗1∥∥∥4

 v
(
g
(
ξ̃
)

-g (ξ∗1)
)

+v′
(
g
(
ξ̃
)

-g (ξ∗1)
)
∇g
(
ξ̃
)

=0.

So, the point ξ̃ is a stationary point of the function S (ξ, ξ∗1). We also have

S
(
ξ̃, ξ∗1

)
= 0. On the other hand, since S (ξ, ξ∗1) ≥ 0 for each ξ ∈ Ω.

This implies that there exist some ε > 0 such that S
(
ξ̃, ξ∗1

)
≤ S (ξ, ξ∗1) for

ξ ∈ N
(
ξ̃, ε
)

, where N
(
ξ̃, ε
)

is an ε− neighborhood of ξ̃.
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4 A New Filled Function Algorithm

With regard to the theorems and explanations in the previous section, a new
filled function algorithm similar to the algorithm in reference [16] to find the
global minimum of the objective function g(ξ) is as follows:

Algorithm

Step 0. – Set k = 1, α = 10−2, β = 10−4, R = 2, the maximum number of
directions N , upper bound M for the parameter α, the directions
di for i = 1, 2, . . . , N and determine boundary of Ω.

Step 1. Find the local minimizer ξ∗k of the objective function g(ξ) starting from
the point ξ0.

Step 2. Construct the function S (ξ, ξ∗1) and set i = 1.

Step 3. Use ξ0 = ξ∗k + αdi as a starting point and find the minimizer of S (ξ, ξ∗1)
and denote it as xs.

Step 4. If ξs ∈ Ω, then go to Step 5; otherwise, go to Step 6.

Step 5. Take ξ0 = ξs and go to Step 1.

Step 6. If i < N , set i = i + 1 (di → di+1) and go to Step 3; otherwise go to
Step 7.

Step 7. If α ≥ M or the gradient of S (ξ, ξ∗1) vanishes outside of the search
domain or |g∗k − g∗k−1| ≤ β, stop the algorithm and take the global
minimizer ξ∗ = ξ∗k; otherwise take α = αR go to Step 2.

5 Numerical Experiments

In this section, our new proposed filled method has implemented on following
16 bencmark test problems , which are the most widely used in the literature.
Afterward, we have compared the proposed (ff) with filled functions in [1], [2],
[13], [19]. The proposed method is run 10 times independently on a computer
with an Intel(R) Core(TM) i7 (2.81 GHz) in Matlab R2015a. Table 1 shows the
performance results of our proposed (ff) algorithm on the below test functions.
For comparison, some (ff) algorithms according to these test functions and
the numerical results of our proposed algorithm are given in Table 2-3. The
abbreviations in these tables are explained below;



A New Filled Function for Global Optimization 213

No : the problem number,
n : the dimension of the test problems,

iterm : the iteration number,
fbest : the best function value in 10 runs,
fmean : the mean of the best function value,

feval :
the total number of the function and gradient evaluations
of g (ξ) and S (ξ, ξ∗1) ,

sr : the successful rate in 10 runs.
− : the data is unavailable for that algorithm,

The proposed algorithm is tested on following benchmark problems;

Problem 1 (Two-dimeonal function)

min g (a, b) = [1− 2b+ c sin (4πb)− a]
2

+ [b− 0.5 sin (2πb)]
2
,

s.t. a, b ∈ [0, 10] .

where c = 0.2, 0.5 and 0.05. The global minimmum value is g (a, b) = 0 for all
c.

Problem 2 (Three-hump back camel function)

min g (a, b) = 2a2 − 1.05a4 + 1
6a

6 − ab+ b2,
s.t. a, b ∈ [−3, 3] .

The global minimizer is (a, b) = (0, 0)
T

and g (a, b) = 0.

Problem 3 (Six-hump back camel function)

min g (a, b) = 4a2 − 2.1a4 + 1
3a

6 − ab− 4b2 + 4b4,
s.t. a, b ∈ [−3, 3] .

The global minimizer is (a, b) = (−0.0898,−0.7127)
T

or (a, b) = (0.0898, 0.7127)
T

and g (a, b) = −1.0316.

Problem 4 (Treccani function)

min g (a, b) = a4 + 4a3 + 4a2 + b2,
s.t. a, b ∈ [−3, 3] .
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The global minimizers are (a, b) = (0, 0)
T

and (a, b) = (−2, 0)
T

and g (a, b) =
0.

Problem 5 (Goldstein and Price function)

min g (a, b) = 1 + (a+ b+ 1)
2 (

19− 14a+ 3a2 − 14b+ 6ab+ 3b2
)

×
[
30 + (2a− 3b)

2 (
18− 32a+ 12a2 − 48b− 36ab+ 27b2

)]
,

s.t. a, b ∈ [−3, 3] .

The global minimizer is (a, b) = (0,−1)
T

and g (a, b) = 3.

Problem 6 (Beale function)

min g (a, b) = (1.5− a+ ab)
2

+
(
2.25− a+ ab2

)2
+
(
2.625− a+ ab3

)2
s.t. a, b ∈ [−4.5, 4.5] .

The global minimizer is (a, b) = (3, 0.5)
T

and g (a, b) = 0.

Problem 7 (Bohachevsky-1 function)

min g (a, b) = a2 + 2b2 − 0.3 cos (3πa)− 0.4 cos (4πb) + 0.7,
s.t. a, b ∈ [−100, 100] .

The global minimizer is x∗ = (0, 0)
T

and g (x∗) = 0.

Problem 8 (Bohachevsky-2 function)

min g (a, b) = a2 + 2b2 − 0.3 cos (3πa) cos (4πb) + 0.3,
s.t. a, b ∈ [−100, 100] .

The global minimizer is (a, b) = (0, 0)
T

and g (a, b) = 0.

Problem 9 (Bohachevsky-3 function)

min g (a, b) = a2 + 2b2 − 0.3 cos (3πa+ 4πb) + 0.3,
s.t. a, b ∈ [−100, 100] .

The global minimizer is (a, b) = (0, 0)
T

and g (a, b) = 0.

Problem 10 (Booth function)

min g (a, b) = (a+ 2b− 7)
2

+ (2a+ b− 5)
2
,

s.t. a, b ∈ [−10, 10] .
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The global minimizer is (a, b) = (1, 3)
T

and g (a, b) = 0.

Problem 11 (Brain function)

min g (a, b) =
(
b− 1.275a2/π2 + 5a/π − 6

)2
+ 10 (1− 0.125/π) cos (a) + 10,

s.t. a, b ∈ [−5, 15] .

The global minimizer is (a, b) = (−π, 12.275)
T

and g (a, b) = −3.3979.

Problem 12 (Matyas function)

min g (a, b) = 0.26
(
a2 + b2

)
− 0.48ab,

s.t. a, b ∈ [−10, 10] .

The global minimizer is (a, b) = (0, 0)
T

and g (a, b) = 0.

Problem 13 (Ackley function)

min g (x) = −20 exp

(
−0.2

√
1
d

d∑
i=1

x2i

)
− exp

(
1
d

d∑
i=1

cos (2πxi)

)
+ 20 + e,

s.t. xi ∈ [−15, 15] .

The global minimizer is x∗ = (0, 0)
T

and g (x∗) = 0 for the dimensions d.

One can see from Table 1 that our proposed method can easily find global
optimal solutions for above problems. In addition, it can be seen that 13 of
the 16 success rate values in the last column of Table 1 are 100%, 2 of them are
90% and 1 of them is 30%. Obviously, the success rate for the 1st test problem
(c = 0.05) can be considered low. However, the method we propose to find the
global optimal solutions of this problem does not use more iterations and the
total number of function evaluations is quite low compared to other methods.
Moreover, even for the 50-dimensional function 13, the success rate is quite
high at 90%. These indicates that the effectiveness and stable of proposed
method.

The comparisons of proposed algorithm about the method in [13] and [19]
are summarized in Table 2. It should be noted here that the filled functions
in [13] and [19] are functions that are frequently cited filled functions in the
literature. As can be seen in Table 2, the most striking capability of our
proposed algorithm that makes it superior to the algorithms frequently cited
in the literature is that our method finds the global optimum solution for all
test problems with very small iterations compared to other methods. From
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Table2, comparing “feval”and “iterm”, it is clear that our proposed algorithm
performs better than the filled function algorithm in [13] and [19].

Comparisons of our proposed algorithm with the filled function methods
given in [1] and [2] at 2021, which are two of the most recently determined
methods in the literature, are summarized in Table 3. The proposed filled
method uses fewer function evaluations than the algorithm in [2], except for
only 1 out of 9 test functions. Although Ahmed’s [2] algorithm, with only
2 wins out of 9 test functions, looks slightly better in terms of number of
iterations than our new filled function algorithm, it suffers a major defeat in
terms of function evaluation. From the above comparisons, it is clear that the
proposed filled method is more efficient than the algorithms in [1] and [2].

Table 3 : Numerical Comparison

Our filled function
The algorithm

in [1]
The algorithm

in [2]
No
1 (c = 0.5)
1 (c = 0.2)
1 (c = 0.05)
2
3
4
5
6
7
8
9
10
11
12
13 (d = 2)
13 (d = 50)

iterm feval
1.5 34
1.4 35

1.3333 35
1.4 25

1.3333 30
1 23

1.5 46
1.4 48
1.6 42
1.6 42
1.6 36
1 23
1 28
1 27

1.6 38
2.3333 306

iterm feval
2 380
2 581
2 588
2 282
2 263
2 186
2 323
− −
− −
− −
− −
− −
2 209
− −
− −
− −

iterm feval
1.4 203.4
2.3 278.5
2.9 319.7
2 264.7

1.2 220.9
1 195.4
1 277.6
− −
− −
− −
− −
− −
1 379.6
− −
− −
− −

6 Conclusions

The fact that the existing filled functions have some drawbacks such as con-
taining more than one parameter and the exponential or logarithmic term, the
sensitivity to parameters, ill-conditioning and so on. All of these limitations
are undesirable in numerical calculations. In this paper, we present a new
(ff), which could tackle the mentioned shortcomings. Also, a new algorithm
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are given with regard to the proposed (ff). Moreover, in the numerical ex-
periments made in the third part and in the comparison tables made with
other methods (see Table 2, Table 3), we show that our proposed method is
effective, its performance is quite satisfactory, and numerically stable.
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