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On Cauchy Products of q−Central Delannoy
Numbers

Serpil Halıcı

Abstract

In this study, we have examined q− central Delannoy numbers and
their Cauchy products. We have given some related equalities using the
properties of recurrence relations. Moreover, using quantum integers, we
have obtained the fundamental identities provided by Cauchy products
of central Delannoy numbers.

1 Introduction

Recurrence relations are used both for calculating and representing complex
sequences. In particular, these relations are often used to obtain new integer
sequences. One of these types of sequences is the Delannoy sequence. Delannoy
numbers are defined by the following relation

dn1,n2
= dn1−1,n2

+ dn1,n2−1 + dn1−1,n2−1, (1)

with d0,0 = 1. When n1 or n2 is negative number dn1,n2 = 0 is accepted. The
numbers dn1,n2

are typically also derived from recursive relation (1) or with
generating functions. Moreover, these numbers are counted directly as follows
[3].

dn1,n2
= D(n1, n2) =

n1∑
k=0

2k
(
n2
k

)(
n1
k

)
. (2)
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To put it briefly, Delannoy numbers denoted by dn1,n2 are integers that give
the number of lattice paths that can be drawn using only steps (1, 0), (0, 1)
and (1, 1) from point (0, 0) to point (n1, n2). From the equation (2), dn1,n2

=
dn2,n1

. The generating function belonging to these numbers is given with the
help of the following equation.

G(x, y) =
1

1− x− y − xy
=

∑
n1,n2≥0

dn1,n2x
n1yn2 , (3)

where x, y, and xy represent the steps (1, 0), (0, 1), and (1, 1) respectively.
Also, for positive integers n1, n2 with property n1 ≤ n2 the following equality
is satisfied [11].

dn1,n2 =

n1∑
i=0

(
n2

n1 − i

)(
n2 + i

i

)
. (4)

In the case of n1 = n2 = n, these numbers are reduced to the following
numbers.

D(n1, n2) = D(n) =
∑
k

(
n

k

)(
n+ k

k

)
=
∑
k

2n!

k!k!(n− k)!
. (5)

The numbers D(n) are called central Delannoy numbers. These numbers have
appeared as properties of lattice and posets. For some studies on these num-
bers can be looked at [4],[6],[9], [10], [12], [13], and [14]. In 2011, Sun studied
the Schröder numbers and also provided a generalization of the D(n) numbers,
and the relationships between central Delannoy numbers, and the Schröder
numbers [11]. Some elements of the sequenceD(n) are 1, 3, 13, 63, 321, 1683, . . .,
and their generating function is

G(x) =
1

1− 6x+ x2
=
∑
n≥0

D(n)xn = 1 + 3x+ 13x2 + . . . . (6)

For the numbers
∑n
l=0D(l)D(n− l) called Cauchy products, C− products. In

[2], the authors gave the following equations [13].

n∑
l=0

D(l)D(n− l) = (−1)ndet (diag(1,−6, 1)) , n ≥ 1, (7)

det (diag(1,−6, 1)) =
1

6n

n∑
l=0

(−1)l62l
(

l

n− l

)
. (8)

Moreover, the authors of this study stated that if any complex number c is
written instead of the value −6, the following equality is also valid. And they
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gave the following equality using the tridiagonal matrix Mn(c) which is of n×n
type

det(Mn(c)) =
(−1)n

cn

n∑
l=0

(−1)lc2l
(

l

n− l

)
= cn

n∑
m=0

(−1)m

c2m

(
n−m
m

)
= Dn(c).

(9)
In [12], the authors gave generating function and iterative correlation for the
numbers Dn(c) obtained with the help of the last equation. It should be noted
that the recursive relation of these numbers is

Dn(c) = cDn−1(c)−Dn−2(c), n ≥ 2 (10)

with D0(c) = 1, D1(c) = c. In addition to these, these authors gave the
C− products of these numbers and their relations, showing their relation to
Chebyshev polynomials. Moreover, the following equations are provided by
the elements of this sequence.

Dn(c) =
αn+1 − βn+1

α− β
, c 6= ±2. (11)

Dn(c) = n+ 1, c = 2; Dn(c) = (−1)n(n+ 1), c = −2. (12)

Here the values of α, β are roots of the characteristic equation of the sequence
{Dn(c)}. So, in order to write the sequence {Dn(c)} explicitly, for c 6= ±2, we
give

{Dn(c)}n≥0 =
{

1, c, c2 − 1, c3 − 2c, c4 − 3c2 + 1, . . . , Dn(c), . . .
}
. (13)

The aim of our study is to examine some basic and essential properties
of the sequence in question by using both recursion relations and quantum
integers.

2 q− Analog Representation for Dn(c)

In our work in [5], we examined Cauchy products of central Delannoy numbers
and derived some important identities, such as Cassini Catalan, using recursion
relations.

In this section, we analyzed q−analog representation for elements of the
sequence {Dn(c)} by using the relations of the elements of the second-order
integer sequences involving q−integers. It should be noted that quantum cal-
culus, or q−calculus for short, which was systematically developed by F. H.
Jackson, gained importance again with the transfer of structures known by
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many mathematicians to this area. The general properties of quantum inte-
gers are studied in detail in [7] and [1]. A quantum integer is a polynomial in
q of the form

[n]q = 1 + q + q2 + . . .+ qn−1 = [n], (14)

where n is any natural number [7]. As q goes to 1, [n]q goes to n and [0]q = 0
for n = 0. Accordingly, the equation [−n]q = −q−n[n]q can also be written
for negative real numbers. With the help of this definition, the q−factorial
equation is

[n]! = [n][n− 1] . . . [1],

where n is a positive integer. Thus, the q−binomial coefficients for non-
negative integers n and k are as follows [7](

n

k

)
q

=
([n][n− 1] . . . [n− k + 1])

([k][k − 1] . . . [1])
,

where limq→1−
(
n
k

)
q

=
(
n
k

)
. With the help of these definitions, we obtain the q−

form of central Delannoy numbers, also called q−central Delannoy numbers.
That is, for all q ∈ C − {1} , n ∈ N , we have

Dq(n) =

n∑
k=0

(
n

k

)
q

(
n+ k

n

)
q

q(
k+1
2 ). (15)

For n = 3, Dq(3) = (1 + q+ 2q2 + 3q3 + 2q4 + 2q5 + q6 + q7). When q = 1, we
get the known central Delannoy numbers.
Now, we have dealt with the identities provided by the elements of the sequence
{Dn(c)} using quantum calculus. In particular, we examine the elements of
this sequence for the numbers c 6= ±2. For this purpose, we assume i = α

√
−q

depending on the root α, with q ∈ C − {1} , n ∈ N . Notice that we give all
identities using only the numbers α and q.

Below, we give q− Binet form, which gives the general term of the sequence
{Dn(c)}.

Theorem 1. For the numbers q 6= 1; q, c ∈ C and n ≥ 0 the following
equality is satisfied.

Dn(c) = αn[n+ 1]q. (16)

Proof. If we use the equation [n]q = 1−qn
1−q and the definition of q, then we

obtain

Dn(c) =
1√
c2 − 4

(αn+1 − qn+1αn+1) =
αn+1(1− qn+1)

α(1− q)
= αn[n+ 1]q
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which completes the proof. Indeed, for n = 0, 1, 2, one can get

D0(c) = [1]q, D1(c) = α[2]q = c, D2(c) = α2[3]q = c2 − 1.

Corollary 1. The root α of the recursive relation related to the {Dn(c)} pro-
vides the following equality.

αn = αDn−1(c)−Dn−2(c). (17)

Proof. If the second side of the equation is considered with the help of Binet
form and definition of q, then the correctness of the desired equation can be
seen. So,

αDn−1(c)−Dn−2(c) = αn[n]q − αn−2[n− 1]q,

αDn−1(c)−Dn−2(c) =
αn

1− q
{

(1− qn)− q(1− qn−1)
}

= αn

is obtained. Thus, the claim is true.

Corollary 2. Successive elements of the sequence {Dn(c)} are prime between
them. (

αn[n+ 1]q, α
n+1[n+ 2]q

)
= 1. (18)

Proof. We write

Dn+1(c)
Dn(c)

= αn
{

[n]q+q
n(1+q)

[n]q+q
n

}
= αn

{
1−qn+qn(1−q2)

1−qn+1

}
= αn

{
1−qn+2

1−qn+1

}
.

(19)

So, the claim is true.

Below, we give Cassini’s identity, one of the important identities provided
by the elements of the sequence {Dn(c)}.

Theorem 2. For {Dn(c)}, we have

Dn+1(c)Dn−1(c)−D2
n(c) = −qnα2n. (20)

Proof. Using definition of the n− th term,

Dn+1(c)Dn−1(c)−D2
n(c) =

α2n

(1− q)2
{

(1− qn)(1− qn+2)− (1− qn+1)2
}
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can be written. If necessary algebraic operations are done after this, then for
the second side of equality

α2n

(1− q)2
{

(1− q)(qn+1 − qn)
}

is written. Thus, we get

Dn+1(c)Dn−1(c)−D2
n(c) =

α2n

(1− q)2
{

(−q)n(1− q)2
}

= −qnα2n.

The last equality is the desired result.

Corollary 3. The sequence {Dn(c)} is concave.

Proof. For q−analog recursive relation, we write the following equation.

αn+1[n+ 2]q = cαn[n+ 1]q − αn−1[n]q. (21)

To see the truth of the claim, the last equation and Cassini identity are used

Dn+1(c)Dn−1(c)−D2
n(c) = −qnα2n

then the following inequality is obtained.

α2n[n+ 1]2q − α2n[n]q[n+ 2]q � 0

which is the desired result.

Now, we give the q−generating function for the sequence {Dn(c)} below.

Theorem 3. The q−analog generating function for elements of the sequence
{Dn(c)} is

G(x) =
1 + (α[2]q − c[1]q)x

x2 − cx+ 1
. (22)

Proof. To prove the correctness of the claim, the following three equations
can be written using the Binet form provided by the elements of the sequence
{Dn(c)} and the recursive relation:∑

n≥0

αn[n+ 1]qx
n = [1]q + α[2]qx+ α2[3]qx

2 + . . .+ αn[n+ 1]qx
n + . . . ,

∑
n≥0

αn[n+ 1]qx
n+2 = [1]qx

2 +α[2]qx
3 +α2[3]qx

4 + . . .+αn[n+ 1]qx
n+2 + . . . ,
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∑
n≥0

−cαn[n+1]qx
n+1 = −c[1]qx−cα[2]qx

2−cα2[3]qx
3−. . .−cαn[n+1]qx

n+1−. . . .

If these equations are rearranged using the recursive relation, then the desired
equation is obtained.

The following theorem gives the Catalan identity, which is one of the im-
portant identities that the elements of this sequence provide.

Theorem 4. For n ≥ k, we have

Dn+k(c)Dn−k(c)−D2
n(c) = −qn−k+1α2n[k]q. (23)

Proof. From the definition Dn(c),

Dn+k(c)Dn−k(c)−D2
n(c) = α2n([n+ k + 1]q[n− k + 1]q − [n+ 1]q[n+ 1]q)

can be written. If the q−analog definition of n numbers is also used, the
following equations are obtained.

Dn+k(c)Dn−k(c)−D2
n(c) = α2n q

n+1(2− qk − q−k

(1− q)2
=
−α2nqn+1(1− qk)2

(1− q)2qk
,

Dn+k(c)Dn−k(c)−D2
n(c) = −qn−k+1α2n[k]q.

Note that this Catalan identity is given when k = 1 reduces to Cassini’s
identity. Indeed,

Dn+1(c)Dn−1(c)−D2
n(c) = −qnα2n.

Thus, it is shown that the alleged equality is true.

In the following, we give the elements of the sequence {Dn(c)} provide
equality as called Vajda’s identity.

Theorem 5. For elements of the sequence {Dn(c)}, we have

Dn+m(c)Dn+k(c)−Dn(c)Dn+m+k(c) = α2n+m+kqn+1[m]q[k]q. (24)

Proof. From the definition of the formulas Dn+m(c), Dn+k(c), the first side of
the desired equation is written as follows

α2n+m+k([n+ k + 1]q[n+m+ 1]q − [n+ 1]q[n+m+ k + 1]q)

= α2n+m+k

{
qn+k+1(qm − 1) + qn+1(1− q)m

(1− q)2

}
.



ON CAUCHY PRODUCTS OF q− CENTRAL DELANNOY NUMBERS 174

Then, if necessary simplifications and calculations are taken, then

Dn+m(c)Dn+k(c)−Dn(c)Dn+m+k(c) = −α2n+m+k (1− qm)qn+1(1− qk)

(1− q)2

is obtained. Using the definition of q−integer in this last equation, the follow-
ing equality

Dn+m(c)Dn+k(c)−Dn(c)Dn+m+k(c) = α2n+m+kqn+1[m]q[k]q

is obtained so that the proof is finished. For k = 1, this equality is as follows.

Dn+m(c)Dn+1(c)−Dn(c)Dn+m+1(c) = α2n+m+1qn+1[m]q.

In the following, we prove that the elements of the sequence {Dn(c)} satisfy
the d’Ocagne identity.

Theorem 6. For elements of the sequence {Dn(c)}, we have

Dm(c)Dn+1(c)−Dn(c)Dm+1(c) = αn+m+1qn+1[m− n]q. (25)

Proof. Using the necessary definitions, the second side of the claimed equation
can be written as follows.

αn+m+1

(1− q)2
{

(1− qm+1)(1− qn+2)− (1− qn+1)(1− qm+2)
}
.

In here, if the necessary operations are done, then

Dm(c)Dn+1(c)−Dn(c)Dm+1(c) =
αn+m+1

(1− q)2
{
qn+1 − qm+1

}
,

Dm(c)Dn+1(c)−Dn(c)Dm+1(c) = αn+m+1 {[m+ 1]q − [n+ 1]q}

is obtained. And then,

Dm(c)Dn+1(c)−Dn(c)Dm+1(c) = αn+m+1qn+1
(

1−qm−n

1−q

)
= αn+m+1qn+1[m− n]q

is achieved. So, the proof is completed.

Theorem 7. The following equality is provided for the elements of sequence
{Dn(c)};

Dn+1(c) +Dn−1(c) = cαk[k + 1]q. (26)
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Proof. From the definition Dn(c),

Dn+1(c) +Dn−1(c) = αk+1
{

(1−qk+2)+q(1−qk)
1−q

}
= αk+1

{
(1+q)q(1−qk+1

1−q

}
,

Dn+1(c) +Dn−1(c) = αk+1(1 + q)[k + 1]q

is obtained. Also, considering c
α which is the value of 1+q in the last equation,

Dn+1(c) +Dn−1(c) = cαk[k + 1]q

is obtained that the proof is completed.

Corollary 4. The following equality is provided for elements of the sequence
{Dn(c)};

Dk+n(c) +Dk−n(c) = αk+n(1 + qn)[k + 1]q. (27)

Note that if the last equation is used and n is written instead of k, then
the following equation is obtained, which is a very useful formula.

D2n(c) = α2n(1 + qn)[n+ 1]q − 1. (28)

3 Conclusion

In this paper, we have considered a special sequence related to Delannoy num-
bers. We have dealt with the properties of the sequence that have been exam-
ined using q−calculus. Since many properties of sequences can be examined
much more easily with the help of q−calculus, this study can be used in similar
studies.
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