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Semi r-ideals of commutative rings

Hani A. Khashan and Ece Yetkin Celikel

Abstract

For commutative rings with identity, we introduce and study the con-
cept of semi r-ideals which is a kind of generalization of both r-ideals
and semiprime ideals. A proper ideal I of a commutative ring R is called
semi r-ideal if whenever a2 ∈ I and AnnR(a) = 0, then a ∈ I. Several
properties and characterizations of this class of ideals are determined.
In particular, we investigate semi r-ideal under various contexts of con-
structions such as direct products, localizations, homomorphic images,
idealizations and amalagamations rings. We extend semi r-ideals of rings
to semi r-submodules of modules and clarify some of their properties.
Moreover, we define submodules satisfying the D-annihilator condition
and justify when they are semi r-submodules.

1 Introduction

Throughout, all rings are supposed to be commutative with identity and all
modules are unital. Let R be a ring and M an R-module. We recall that a
proper ideal I of a R is called semiprime if whenever a ∈ R such that a2 ∈ I,
then a ∈ I. It is well-known that I is semiprime in R if and only if I is a radical
ideal, that is I =

√
I where

√
I = {x ∈ R : xm ∈ I for some m ∈ Z}. In 2015,

R. Mohamadian [15] introduced the concept of r-ideals of commutative rings.
A proper ideal I of a ring R is called an r-ideal (resp. pr -ideal) if whenever
a, b ∈ R such that ab ∈ I and AnnR(a) = 0, then b ∈ I (resp. b ∈

√
I)

where AnnR(a) = {b ∈ R : ab = 0}. Prime and r-ideals are not comparable
in general; but it is verified that every maximal r-ideal in a ring is a prime
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ideal, while every minimal prime ideal is an r -ideal. In 2017, Tekir, Koc and
Oral [18] introduced the concept of n-ideals as a special kind of r-ideals by
considering the set of nilpotent elements instead of zero divisors. Recently, in
[20], Yetkin Celikel and Khashan generalized n-ideals by defining and studying
the class of semi n-ideals. A proper ideal I of R is called a semi n-ideal if for
a ∈ R, a2 ∈ I and a /∈

√
0 imply a ∈ I. Later, some other generalizations

of semiprime, n-ideals and r-ideals have been introduced, see for example,[4],
[10]-[12] and [19].

Motivated by semiprime ideals and semi n-ideals, we define a proper ideal
I of a ring R to be a semi r-ideal if whenever a ∈ R such that a2 ∈ I and
AnnR(a) = 0, then a ∈ I. It is clear that the class of semi r-ideals is a
generalization of that of semiprime and r-ideals. We start section 2 by giving
some examples (see Example 1) to show that this generalization is proper.
Next, we determine several equivalent characterizations of semi r-ideals (see
Theorem 1). Among many other results in this paper, we characterize rings
in which every ideal is a semi r-ideal (see Theorem 3). We investigate semi
r-ideals under various contexts of constructions such as homomorphic images,
quotient rings, localizations and polynomial rings (see Propositions 1 and 3,
Corollary 3, Theorem 4). Moreover, we discuss and characterize semi r-ideals
of cartesian product of rings (see Proposition 5, Theorems 5 and 6, Corollaries
4 and 5). Let R and S be two rings, J be an ideal of S and f : R→ S be a ring
homomorphism. We study some forms of semi r-ideals of the amalgamation
ring R onf J of R with S along J with respect to f (see Theorems 7 and 8).

Let M be an R-module, N be a submodule of M and I be an ideal of
R. As usual, we will use the notations (N :R M) and (N :M I) for the sets
{r ∈ R : rm ∈ N for all m ∈ M} and {m ∈ M : Im ⊆ N}, respectively. In
particular, the annihilator of an element m ∈ M (resp. r ∈ R) denoted by
AnnR(m) (resp. AnnM (r)), is (0 :R m) (resp. (0 :M r). We recall that the
torsion subgroup T (M) of an R-module M is defined as T (M) = {m ∈ M :
there exists 0 6= r ∈ R such that rm = 0}. It is easy to see that T (M) is a
submodule of M , called the torsion submodule. A module is torsion (resp.
torsion-free) if T (M) = M (resp. T (M) = {0}).

In 2009, the concept of semiprime submodules is presented. A proper
submodule is said to be semiprime if whenever r ∈ R, m ∈ M and r2m ∈ N ,
then rm ∈ N, [16]. Afterwards, the notions of r-submodule and sr-submodules
are introduced and studied in [13]. A proper submodule N is called an r-
submodule (resp. sr-submodule) of M if whenever rm ∈ N and AnnM (r) =
0M (resp. AnnR(m) = 0), then m ∈ N (resp. r ∈ (N :R M)). As a new
generalization of above structures, in Section 3, we define a proper submodule
N of M to be a semi r-submodule if whenever r ∈ R, m ∈M with r2m ∈ N ,
AnnM (r) = 0M and AnnR(m) = 0, then rm ∈ N . We illustrate (see Example
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4) that this generalization of r-submodules is proper. However, it is observed
that semi r-submodules coincides with semiprime submodules in any torsion-
free module. Then, we introduce a new condition for submodules, namely,
D-annihilator condition as follows: A proper submodule N of an R-module
M is said to satisfy the D-annihilator condition if whenever K is a submodule
of M and r ∈ R such that rK ⊆ N and AnnM (r) = 0M , then either K ⊆
N or K ∩ T (M) = {0M}. By using this condition, we totally characterize
semi r-submodules of finitely generated faithful multiplication R-modules (see
Proposition 8, Theorems 9 and 10, Corollary 6).

We recall that the idealization of an R-module M denoted by R(+)M , is
the commutative ring R×M with coordinate-wise addition and multiplication
defined as (r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1). For an ideal I of R and a
submodule N of M , I(+)N is an ideal of R(+)M if and only if IM ⊆ N . It
is well known from [2] that

zd(R(+)M) = {(r,m)| r ∈ zd(R) ∪ Z(M), m ∈M}

In Proposition 11, we clarify the relation between semi r-ideals of the ideal-
ization ring R(+)M and those of R which enables us to build some interesting
examples of semi r-ideals.

Let f : R1 → R2 be a ring homomorphism, J be an ideal of R2, M1 be
an R1-module, M2 be an R2-module and ϕ : M1 → M2 be an R1-module
homomorphism. The subring

R1 onf J = {(r, f(r) + j) : r ∈ R1, j ∈ J}

of R1×R2 is called the amalgamation of R1 and R2 along J with respect to f .
In [8], the amalgamation of M1 and M2 along J with respect to ϕ is defined
as

M1 onϕ JM2 = {(m1, ϕ(m1) +m2) : m1 ∈M1 and m2 ∈ JM2}

which is an (R1 onf J)-module. The last section is devoted to clarify semi
r-submodules of the amalgamation of modules.

2 Properties of semi r-ideals

This section deals with many properties of semi r-ideals. We justify the rela-
tions among the concepts of semiprime ideals, semi n-ideals and our new class
of ideals. Moreover, several characterizations and examples are presented. In
particular, we characterize rings in which every ideal is a semi r-ideal.

Definition 1. Let I be a proper ideal of a ring R. I is called a semi r-ideal
of R if whenever a ∈ R such that a2 ∈ I and AnnR(a) = 0, then a ∈ I.
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For any non-zero subset A of a ring R, we note that AnnR(A) is a semi
r-ideal of R. It is clear that the classes of semiprime ideals, r-ideals and semi
n-ideals are contained in the class of semi r-ideals. However, in general these
containments are proper as we illustrate in the following examples.

Example 1. Let p and q be prime integers.

1. Any non-zero semiprime ideal in an integral domain is a semi r-ideal
that is not an r-ideal.

2. In the ring Zp2q, the ideal
〈
p2
〉

is a semi r-ideal that is not a semi

n-ideal.

3. The zero ideal of a ring R is always a semi r-ideal but it is not a
semiprime ideal unless R is a semiprime ring.

4. Every ideal of a Boolean ring (a ring of which every element is idempo-
tent) is semi r-ideal. Consider the ideal I = 0 × 0 × Z2 of the Boolean
ring Z2 × Z2 × Z2. Then I is a semi r-ideal that is not prime.

5. In general pr-ideals and semi r-ideals are not comparable. Let T be a
reduced ring with subring Z and P be a nonzero minimal prime ideal
in T with P ∩ Z = (0). From [15, Example 2.17], J = x2P [x] is a pr
-ideal of the ring R = Z + xT [x]. Choose an element 0 6= p ∈ P . Then
(xp)2 ∈ J and AnnR(xa) = 0 but xa /∈ J . Thus, J is not a semi r-ideal.
Moreover, any non-zero prime ideal in an integral domain is clearly a
semi r-ideal that is not a pr-ideal.

If I and J are semi r-ideals of a ring R, then IJ and I + J need not be so
as we can see in the following example.

Example 2. Consider the ideals I = 〈x〉 and J = 〈x− 4〉 of the ring R = Z[x].
Then I and J are (semi) prime ideals and so are semi r-ideals of R. On the
other hand, I + J = 〈x, x− 4〉 = 〈x, 4〉 is not a semi r-ideal of R. Indeed,
(2 + x)2 ∈ I + J and AnnR(2 + x) = 0, but 2 + x /∈ I + J . Also, I2 =

〈
x2
〉

is
not a semi r-ideal of R as x2 ∈ I2 and AnnR(x) = 0, but x /∈ I2.

Next, we give the following characterization of semi r-ideals. By zd(R)
we denote the set of all zero divisor elements of a ring R. Moreover, reg(R)
denotes the set R\zd(R).

Theorem 1. Let I be a proper ideal of a ring R and k be a positive integer.
The following statements are equivalent.

1. I is a semi r-ideal of R.
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2. Whenever a ∈ R with 0 6= a2 ∈ I and AnnR(a) = 0, then a ∈ I.

3. Whenever a ∈ R with ak ∈ I and AnnR(a) = 0, then a ∈ I.

4.
√
I ⊆ zd(R) ∪ I.

Proof. (1)⇔(2). Suppose (2) holds and let a ∈ R such that a2 ∈ I and
AnnR(a) = 0. If a2 = 0, then a = 0 and the result follows obviously. If
a2 6= 0, then we are also done by (2). The converse part is obvious.

(1)⇒(3). Suppose ak ∈ I and AnnR(a) = 0 for a ∈ R. We use the
mathematical induction on k. If k ≤ 2, then the claim is clear. We now assume
that (3) holds for all 2 < t < k and show that it is also true for k. Suppose
k is even, say, k = 2m for some positive integer m. Since ak = (am)2 ∈ I
and clearly AnnR(am) = 0, then am ∈ I as I is a semi r-ideal. By the
induction hypothesis, we conclude that a ∈ I as needed. Suppose k is odd,
so that k + 1 = 2s for some s < k. Then similarly, we have (as)

2 ∈ I and
AnnR(as) = 0 which imply that as ∈ I and again by the induction hypothesis,
we conclude a ∈ I.

(3)⇒(4). Let a ∈
√
I. Then ak ∈ I for some k ≥ 1 and so by (3) a ∈ zd(R)

or a ∈ I. Thus,
√
I ⊆ zd(R) ∪ I.

(4)⇒(1). Straightforward.

Corollary 1. Let I be a semi r-ideal of a ring R and k be a positive integer.
If J is an ideal of R with Jk ⊆ I and J ∩ zd(R) = {0}, then J ⊆ I.

Proof. Suppose that Jk ⊆ I and J ∩ zd(R) = {0} for some ideal J of R. Let
0 6= a ∈ J . From the assumption J ∩ zd(R) = {0}, we have AnnR(a) = 0.
Thus, ak ∈ I implies that a ∈ I by Theorem 1 (3).

Corollary 2. Let I and J be proper ideals of a ring R such that I ∩ zd(R) =
J ∩ zd(R) = {0} .

1. If I and J are semi r-ideals of a ring R with I2 = J2, then I = J .

2. If I2 is a semi r-ideal, then I2 = I.

Proof. (1) Since I2 ⊆ J and J∩zd(R) = {0}, then we have I ⊆ J by Corollary
1. On the other hand, since J2 ⊆ I and J ∩zd(R) = {0} , we have J ⊆ I again
by Corollary 1, so we are done.

(2) A direct consequence of (1).

We note by example 1 that unlike r-ideals, if I is a semi r-ideal of a ring
R, then I need not be contained in zd(R). Also, clearly, semi r-ideals which
contain the zero divisors of a ring R are semiprime.

Next, we present a condition for a semi r-ideal to be an r-ideal. First, we
need the following lemma.
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Lemma 1. Let S be a non-empty subset of R where S ∩ zd(R) = ∅. If I is a
semi r-ideal of R with S * I, then (I : S) is a semi r-ideal of R.

Proof. Let a ∈ R such that a2 ∈ (I : S) and AnnR(a) = 0. Then (as)2 ∈ I
for all s ∈ S. As I is a semi r-ideal of R, we have either as ∈ zd(R) or
as ∈ I for all s ∈ S. If as ∈ zd(R), then S ∩ zd(R) = ∅ implies a ∈ zd(R), a
contradiction. Thus, as ∈ I for all s ∈ S and so a ∈ (I : S) as required.

Theorem 2. If I is maximal among all semi r-ideals of a ring R contained
in zd(R), then I is an r-ideal.

Proof. Let I be maximal among all semi r-ideals of a ring R contained in
zd(R). Suppose that ab ∈ I and AnnR(a) = 0. Then a /∈ I ∪ zd(R) and so
(I :R a) is a semi r-ideal of R by Lemma 1. Since clearly, (I :R a) ⊆ zd(R)
and I ⊆ (I :R a), then the maximality of I implies, I = (I :R a). Thus, b ∈ I
and I is an r-ideal.

Following [15], we call a ring R a uz-ring if R = U(R)∪zd(R). It is proved
in [15] that R is a uz-ring if and only if every ideal in R is an r-ideal. In
particular, a direct product of fields is an example of a uz-ring. Next, we
generalize this result to semi r-ideals.

Theorem 3. The following statements are equivalent for a ring R.

1. R is a uz-ring.

2. Every proper ideal of R is an r-ideal.

3. Every proper ideal of R is a semi r-ideal.

4. Every proper principal ideal of R is a semi r-ideal.

5. Every semi r-ideal is an r-ideal.

Proof. (1)⇒(2). Follows by [15, Proposition 3.4].
(2)⇒(3)⇒(4). Clear.
(4)⇒(1). Let x ∈ R\zd(R). If

〈
x2
〉

= R, then x ∈ U(R). Suppose
〈
x2
〉

is proper in R. Since x2 ∈
〈
x2
〉

and AnnR(x) = 0 , then by assumption,

x ∈
〈
x2
〉
. Thus, x = rx2 for some r ∈ R and so rx = 1 as AnnR(x) = 0.

Thus, again x ∈ U(R) and R = U(R) ∪ zd(R) as needed.
(1)⇒(5). Clear by (1)⇔(2).
(5)⇒(1). Since a maximal ideal of R is clearly a semi r-ideal, then by (5),

every maximal ideal in R is an r-ideal. Let r ∈ R. If r /∈ U(R), then r ∈ M
for some maximal ideal M of R and so r ∈ zd(R) by [15, Remark 2.3(d)].
Therefore, R = U(R) ∪ zd(R) and R is a uz-ring.
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Next, we discuss the behavior of semi r-ideals under homomorphisms.

Proposition 1. Let f : R1 → R2 be a ring homomorphism. The following
statements hold.

1. If f is an epimorphism, I1 ⊆ Ker(f) and I1 is a semi r-ideal of R1 such
that I1 ∩ zd(R1) = {0}, then f(I1) is a semi r-ideal of R2.

2. If f is an isomorphism and I2 is a semi r-ideal of R2, then f−1(I2) is a
semi r-ideal of R1.

Proof. (1) Let a ∈ R2 such that a2 ∈ f(I1) and a /∈ f(I1). Then there exists
x ∈ R1\I1 such that a = f(x). Since f(x2) = a2 ∈ f(I1), then x2 ∈ I1 as
Ker(f) ⊆ I1. Now, I1 is a semi r-ideal of R1 implies x ∈ zd(R1). If x = 0,
then a = f(x) ∈ zd(R2). Suppose x 6= 0 and choose 0 6= y ∈ R such that
xy = 0. Then f(y) 6= 0 since otherwise y ∈ I1∩zd(R1), a contradiction. Thus,
again a = f(x) ∈ zd(R2) and f(I1) is a semi r-ideal of R2.

(2) Suppose I2 is a semi r-ideal of R2. Let x ∈ R1 such that x2 ∈ f−1(I2)
and x /∈ f−1(I2). Then f(x2) = f(x)2 ∈ I2 and f(x) /∈ I2 which imply
f(x) ∈ zd(R2). Since f is an isomorphism, then clearly x ∈ zd(R1) and
f−1(I2) is a semi r-ideal of R1.

In view of Proposition 1, we have the following result for quotient rings.

Corollary 3. Let I and J be ideals of a ring R with J ⊆ I.

1. If I is a semi r-ideal of R and I∩zd(R) = {0}, then I/J is a semi r-ideal
of R/J .

2. If I/J is a semi r-ideal of R/J and J is an r-ideal of R, then I is a semi
r-ideal of R.

Proof. (1). Consider the natural epimorphism π : R→ R/J with Ker(π) = J
and apply Proposition 1.

(2). Let a ∈ R such that a2 ∈ I and a /∈ zd(R). Then (a+ J)2 = a2 + J ∈
I/J . If a + J ∈ zd(R/I), then there is b /∈ J such that ab ∈ J . Since J is a
semi r-ideal of R, we get a ∈ zd(R), a contradiction. Thus, a + J /∈ zd(R/I)
which yields a+ J ∈ I/J as I/J is a semi n-ideal of R/J and so a ∈ I.

If I ∩ zd(R) 6= {0} in Corollary 3(1), then the result need not be true.
For example, 4Z(+)Z4 is a semi r-ideal of Z(+)Z4, see Remark 11. But
4Z(+)Z4/0(+)Z4

∼= 4Z is not a semi r-ideal of Z(+)Z4/0(+)Z4
∼= Z. We

also note that the condition ” J is an r-ideal” in Corollary 3(2) is crucial. For
example 8Z/16Z is a semi r-ideal of Z/16Z but 8Z is not a semi r-ideal of Z.

In particular, Corollary 3 holds if J ⊆ zd(R).
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Proposition 2. The intersection of any family of semi r-ideals is a semi
r-ideal.

Proof. Let {Iα : α ∈ Λ} is a family of semi r-ideals. Suppose a2 ∈
⋂
α∈Λ

Iα and

a /∈
⋂
α∈Λ

Iα. Then a /∈ Iγ for some γ ∈ Λ. Since Iγ is a semi r-ideal, we have

a ∈ zd(R) and so
⋂
α∈Λ

Iα is a semi r-ideal.

Let I be a proper ideal of R. In the following we give the relationship
between semi r-ideals of a ring and those of its localization ring by using the
notation ZI(R) which denotes the set {r ∈ R | rs ∈ I for some s ∈ R\I}.

Proposition 3. Let S be a multiplicatively closed subset of a ring R such that
S ∩ zd(R) = ∅. Then the following hold.

1. If I is a semi r-ideal of R such that I∩S = ∅, then S−1I is a semi r-ideal
of S−1R.

2. If S−1I is a semi r-ideal of S−1R and S ∩ ZI(R) = ∅, then I is a semi
r-ideal of R.

Proof. (1) Suppose for a
s ∈ S

−1R that
(
a
s

)2 ∈ S−1I and
(
a
s

)
/∈ S−1I. Then

there exits u ∈ S such that ua2 ∈ I and so (ua)2 ∈ I. Since clearly ua /∈ I and
I is a semi r-ideal, we have ua ∈ zd(R), say, (ua)b = 0 for some 0 6= b ∈ R.
Thus, a

s ·
b
1 = uab

us = 0S−1R and b
1 6= 0S−1R as S ∩ zd(R) = ∅. Thus, a

s ∈
zd(S−1R) and S−1I is a semi r-ideal of S−1R.

(2) Suppose a2 ∈ I for a ∈ R. Since S−1I is a semi n-ideal of S−1R and(
a
1

)2 ∈ S−1I, we have either a
1 ∈ S

−1I or a
1 ∈ zd(S−1R). If a

1 ∈ S
−1I, then

there exists u ∈ S such that ua ∈ I. Since S ∩ zd(R) = ∅, we conclude that
a ∈ I. If a1 ∈ zd(S−1R), then there is b

t 6= 0S−1R such that ab
t = a

1 ·
b
t = 0S−1R.

Hence, vab = 0 for some v ∈ S and so ab = 0 as S ∩ zd(R) = ∅. Thus,
a ∈ zd(R) as b 6= 0 and I is a semi r-ideal of R.

We recall that if f =
m∑
i=1

aix
i ∈ R[x], then the ideal 〈a1, a2, · · · , am〉 of

R generated by the coefficients of f is called the content of f and is denoted
by c(f). It is well known that if f and g are two polynomials in R[x], then
the content formula c(g)m+1c(f) = c(g)mc(fg) holds where m is the degree
of f , [9, Theorem 28.1]. For an ideal I of R, it can be easily seen that
I[x] = {f(x) ∈ R[x] : c(f) ⊆ I}.

Definition 2. A ring R is said to satisfy the property (∗) if whenever f ∈
reg(R[x]), then c(f)\ {0} ⊆ reg(R).
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Theorem 4. Let I be an ideal of a ring R.

1. If I[x] is a semi r-ideal of R[x], then I is a semi r-ideal of R.

2. If R satisfies the property (∗) and I is a semi r-ideal of R, then I[x] is a
semi r-ideal of R[x]

Proof. (1) Suppose I[x] is a semi r-ideal of R[x]. Let a ∈ R such that a2 ∈
I and AnnR(a) = 0. Then Clearly, a2 ∈ I[x] and AnnR[x](a) = 0. By
assumption, a ∈ I[x] and so a ∈ I as required.

(2) Suppose R satisfies the property (∗) and I is a semi r-ideal of R.

Let f(x) ∈ R[x] such that (f(x))
2 ∈ I[x] and AnnR[x](f(x)) = 0. Then

c(f2) ⊆ I and so by the content formula, (c(f))2 = c(f2) ⊆ I. Moreover,
c(f)∩zd(R) = {0} as R satisfies the property (∗) and so c(f) ⊆ I by Corollary
1. It follows that f(x) ∈ I[x] and we are done.

In general, if S is an overring of a ring R, then we may find a semi r-ideal
J of S where J ∩R is not a semi r-ideal in R.

Example 3. Let S = Z× Z and consider the ring homomorphism ϕ : Z −→
Z×Z defined by ϕ(x) = (x, 0). Then ϕ is a monomorphism and so R = ϕ(Z) is
a domain. Now, J = AnnS((0, 1)) is a nonzero (semi) r-ideal in S. However,
clearly, R ⊆ J and so J ∩R = R is not a semi r-ideal in R.

Let S be an overring ring of a ring R . Following [15], R is said to be
essential in S if J ∩R 6= {0} for every nonzero ideal J of S .

Proposition 4. Let R ⊆ S be rings such that R is essential in S. If J is a
semi r -ideal of S, then J ∩R is a semi r-ideal in R.

Proof. Let a ∈ R such that a2 ∈ J ∩ R and AnnR(a) = 0. Then a ∈ S
with a2 ∈ J and AnnS(a) = 0. Indeed, if AnnS(a) 6= 0, then R being
essential implies AnnS(a) ∩ R 6= {0}. Thus, there exists 0 6= r ∈ R such that
r ∈ AnnS(a) and so r ∈ AnnR(a), a contradiction. Since J is a semi r -ideal
of S, then a ∈ J ∩R and the result follows.,

The rest of this section is devoted to discuss semi r-ideals of cartesian
products of rings and their particular subrings: the amalgamation rings.

Proposition 5. Let R = R1 ×R2 where R1 and R2 are two rings and I1, I2
be proper ideals of R1 and R2, respectively. Then I1×R2 (resp. R1× I2) is a
semi r-ideal of R if and only if I1 is a semi r-ideal of R1 (resp. I2 is a semi
r-ideal of R2).
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Proof. Let I1 × R2 be a semi r-ideal of R and a ∈ R1 with a2 ∈ I1 and
AnnR1(a) = 0. Then (a, 1)2 ∈ I1 × R2 and AnnR(a, 1) = (0, 0) imply that
(a, 1) ∈ I1 × R2 and so a ∈ I1. Thus I1 is a semi r-ideal of R1. Conversely,
suppose that (a, b)2 ∈ I1 × R2 and AnnR(a, b) = (0, 0). Then a2 ∈ I1 and
clearly AnnR1

(a) = 0 which implies a ∈ I1. Hence, (a, b) ∈ I1 ×R2, so we are
done. The proof of the case R1 × I2 is similar.

The following corollary generalizes Proposition 5.

Corollary 4. Let R1, R2, · · · , Rn be rings, R = R1 × R2 × · · · × Rn and Ii
be a proper ideal of Ri for each i = 1, 2, · · ·n. Then for all j = 1, 2, · · ·n,
I = R1 × · · · ×Rj−1 × Ij ×Rj+1 × · · · ×Rn is a semi r-ideal of R if and only
if Ij is a semi r-ideal of Rj.

Theorem 5. Let R1 and R2 be two rings, R = R1 × R2 and I1, I2 be proper
ideals in R1 and R2, respectively.

1. If I1 and I2 are semi r-ideals of R1 and R2, respectively, then I = I1×I2
is a semi r-ideal of R.

2. If I = I1 × I2 is a semi r-ideal of R, then either I1 is a semi r-ideal of
R1 or I2 is a semi r-ideal of R2.

3. If I = I1 × I2 is a semi r-ideal of R and I2 * zd(R2), then I1 is a semi
r-ideal of R1.

4. If I = I1 × I2 is a semi r-ideal of R and I1 * zd(R1), then I2 is a semi
r-ideal of R2.

Proof. (1) Let (a, b) ∈ R such that (a2, b2) = (a, b)2 ∈ I and AnnR(a, b) =
(0, 0). Then a2 ∈ I1, b2 ∈ I2 and clearly AnnR1

(a) = AnnR2
(b) = 0. There-

fore, a ∈ I1, b ∈ I2 and so (a, b) ∈ I as needed.
(2).Suppose I = I1 × I2 is a semi r-ideal of R but I1 and I2 are not semi

r-ideals of R1 and R2, respectively. Choose a ∈ R1 and b ∈ R2 such that
a2 ∈ I1, b2 ∈ I2, AnnR1(a) = 0 and AnnR2

(b) = 0 but a /∈ I1 and b /∈ I2.
Then (a, b)2 ∈ I and clearly, AnnR(a, b) = (0, 0). By assumption, we have
(a, b) ∈ I which is a contradiction. Therefore, either I1 is a semi r-ideal of R1

or I2 is a semi r-ideal of R2.
(3) Suppose a2 ∈ I1 for some a ∈ R1 with AnnR1(a) = 0. Since I2 *

Z(R2), we can choose b ∈ I2 ∩ reg(R2). Then (a, b)2 ∈ I and AnnR(a, b) =
(0, 0). It follows that (a, b) ∈ I; and hence a ∈ I1.

(4) is similar to (3).
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The converse of Theorem 5(1) is not true in general. For example, 4Z× 0
is a semi r-ideal in Z × Z by Proposition 2. On the other hand, the ideal 4Z
is not a semi r-ideals of Z.

The following corollary generalizes Theorem 5 to any finite direct product
of rings. The proof is similar to that of Theorem 5.

Corollary 5. Let R1, R2, · · · , Rn be rings, R = R1×R2× · · · ×Rn and Ii be
a proper ideal of Ri for each i = 1, 2, · · ·n.

1. If Ii is a semi r-ideals of Ri for each i = 1, 2, · · ·n, then I = I1 × I2 ×
· · · × In is a semi r-ideal of R.

2. If I = I1 × I2 × · · · × In is a semi r-ideal of R, then Ij is a semi r-ideal
of Rj for at least one j ∈ {1, 2, · · · , n}.

3. If I = I1 × I2 × · · · × In is a semi r-ideal of R and Ij * Z(Rj) for all
j 6= i, then Ii is a semi r-ideal of Ri.

Lemma 2. Let R = R1 × R2 × · · · × Rn where Ri’s are rings and Rj is
reduced ring for some j = 1, ..., n. If Ii is an ideal of Ri for all i 6= j, then
I = I1 × · · · × Ij−1 × 0× Ij+1 × · · · × In is a semi r-ideal of R.

Proof. Let a = (a1, a2, ..., an) ∈ R with a2 ∈ I. Then a2
j = 0 which implies

aj = 0 as Rj is reduced. Since AnnR(a) = AnnR(a1, ..., aj−1, 0, aj+1, ..., an) 6=
0, I is a semi r-ideal of R.

Next, we present a characterization for semi r-ideals of cartesian products
of domains.

Theorem 6. Let R1, R2, · · · , Rn (n ≥ 2) be domains, R = R1×R2×· · ·×Rn
and Ii be an ideal of Ri for each i = 1, 2, · · ·n. Then I = I1 × I2 × · · · × In is
a semi r-ideal of R if and only if one of the following statements holds

1. Ij = {0} for at least one j ∈ {1, 2, · · · , n}.

2. There exists j ∈ {1, 2, · · ·n} such that Ii is a semi r-ideal of Ri for all
i = 1, · · · , j and Ii = Ri for all i = j + 1, · · · , n.

3. Ii is a semi r-ideals of Ri for each i = 1, 2, · · ·n.

Proof. Suppose I = I1 × I2 × · · · × In is a semi r-ideal of R. Suppose that
all Ii’s are nonzero. If for all i ∈ {1, 2, · · ·n}, Ii is proper in Ri, then Ii
is a semi r-ideals of Ri by Corollary 5(3). Without loss of generality as-
sume that I1, ..., Ij are proper in R1, · · · , Rj , respectively and Ii = Ri for all
i ∈ {j + 1, ..., n}. For each i ∈ {2, ..., j}, choose a nonzero element bi ∈ Ii.
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Let a ∈ R1 such that a2 ∈ I1. Since (a, b2, b3, ...bj , 1Rj+1 , ..., 1Rn)2 ∈ I and
AnnR(a, b2, b3, ...bj , 1Rj+1 , ..., 1Rn) = 0, we have (a, b2, b3, ...bj , 1Rj+1 , ..., 1Rn) ∈
I and so a ∈ I1. Therefore, I1 is a semi r-ideal of R1. Similarly, Ii is a semi
r-ideals of Ri for all i ∈ {1, ..., j}.

Conversely, if (1) holds, then I is clearly a semi r-ideal of R. Suppose that
I1, ..., Ij are semi r-ideals and Ik = Rk for all k ∈ {j + 1, ..., n}. Let a =
(a1, a2, ..., an) ∈ R with a2 ∈ I and AnnR(a) = 0. Then for each i ∈ {1, ..., j},
a2
i ∈ I and AnnRi

(ai) = 0 as Ri’s are domain. Thus, ai ∈ Ii and so a ∈ I.
Finally, if (3) holds, then I = I1 × I2 × · · · × In is a semi r-ideal of R by
Corollary 5(1).

Let R and S be two rings, J be an ideal of S and f : R → S be a
ring homomorphism. As a subring of R × S, the amalgamation of R and
S along J with respect to f is defined by R onf J = (a, f(a) + j) : a ∈ R,
j ∈ J}. If f is the identity homomorphism on R, then we get the amalgamated
duplication of R along an ideal J , R on J = {(a, a+ j) : a ∈ R, j ∈ J}. For
more related definitions and several properties of this kind of rings, one can
see [6]. If I is an ideal of R and K is an ideal of f(R) + J , then I onf
J = {(i, f(i) + j) : i ∈ I, j ∈ J} and K̄f = {(a, f(a) + j) : a ∈ R, j ∈ J ,
f(a) + j ∈ K} are ideals of R onf J , [7].

Lemma 3. [3] Let R, S, J and f be as above. Let A = {(r, f(r) + j)|r ∈
zd(R)} and B = {(r, f(r) + j)|j′(f(r) + j) = 0 for some j′ ∈ J\{0}}. Then
zd(R onf J) ⊆ A ∪B.

Next, we determine conditions under which I onf J and K̄f are semi r-
ideals of R onf J .

Theorem 7. Let R, S, J and f be as above. If I is a semi r-ideal of R, then
I onf J is a semi r-ideal of R onf J . The converse is true if f(reg(R))∩Z(J) =
∅

Proof. Suppose I is a semi r-ideal of R. Let (a, f(a) + j) ∈ R onf J such
that (a, f(a) + j)2 = (a2, f(a2) + 2jf(a) + j2) ∈ I onf J and (a, f(a) + j) /∈
zd(R onf J). Then a2 ∈ I and a /∈ zd(R) by Lemma 3. Therefore, a ∈ I and
so (a, f(a) + j) ∈ I onf J as needed. Now, suppose f(reg(R)) ∩ Z(J) = ∅ and
I onf J is a semi r-ideal of R onf J . Let a2 ∈ I for a ∈ R and a /∈ zd(R).
Then (a, f(a)) ∈ R onf J with (a, f(a))2 = (a2, f(a2)) ∈ I onf J . If (a, f(a)) ∈
zd(R onf J), then Lemma 3 implies f(a) ∈ Z(J) which is a contradiction.
Therefore, (a, f(a)) /∈ zd(R onf J) and so (a, f(a)) ∈ I onf J as I onf J is a
semi r-ideal of R onf J . Thus, a ∈ I as required.

Theorem 8. Let f : R → S be a ring homomorphism and J,K be ideals of
S. If K is a semi r-ideal of f(R) + J , then K̄f is a semi r-ideal of R onf J .
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1. If K is a semi r-ideal of f(R) + J and zd(f(R) + J) = Z(J), then K̄f is
a semi r-ideal of R onf J .

2. If K̄f is a semi r-ideal of R onf J , f(zd(R)) ⊆ zd(f(R) + J) and
f(zd(R))J = 0, then K is a semi r-ideal of f(R) + J .

Proof. (1) Suppose K is a semi r-ideal of f(R)+J . Let (a, f(a)+j) ∈ R onf J
such that (a, f(a)+j)2 = (a2, (f(a)+j)2) ∈ K̄f and (a, f(a)+j) /∈ zd(R onf J).
Then (f(a) + j)2 ∈ K and by Lemma 3, f(a) + j /∈ Z(J) = zd(f(R) + J).
Therefore, f(a) + j ∈ K and (a, f(a) + j) ∈ K̄f as needed.

(2) Suppose K̄f is a semi r-ideal of R onf J and f(zd(R))J = 0. Let
f(a) + j ∈ f(R) + J such that (f(a) + j)2 ∈ K and f(a) + j /∈ zd(f(R) + J).
Then (a, f(a)+ j) ∈ R onf J with (a, f(a)+ j)2 ∈ K̄f . Suppose (a, f(a)+ j) ∈
zd(R onf J). Then as Z(J) ⊆ zd(f(R) + J) and by Lemma 3, we conclude
that a ∈ zd(R). Since f(a) ∈ zd(f(R) + J), then f(a)f(b) = 0 for some
0 6= f(b) ∈ f(R). Thus, (f(a)+j)f(b) = 0 as f(zd(R))J = 0 which contradicts
that f(a) + j /∈ zd(f(R) + J). Therefore, (a, f(a) + j) /∈ zd(R onf J) and so
(a, f(a) + j) ∈ K̄f . It follows that f(a) + j ∈ K and K is a semi r-ideal of
f(R) + J .

3 Semi r-submodules of modules over commutative rings

The aim of this section is to extend semi r-ideals of commutative rings to semi
r-submodules of modules over commutative rings. Recall that a module M is
said to be faithful if AnnR(M) = (0 :R M) = 0R.

Definition 3. Let M be an R-module and N a proper submodule of M.

1. N is called a semiprime submodule if whenever r2m ∈ N , then rm ∈ N.
[16]

2. N is called a r-submodule if whenever rm ∈ N and AnnM (r) = 0M ,
then m ∈ N. [13]

3. N is called a sr-submodule if whenever rm ∈ N and AnnR(m) = 0, then
m ∈ N. [13]

Definition 4. Let M be an R-module and N a proper submodule of M . We
call N a semi r-submodule if whenever r ∈ R, m ∈ M with r2m ∈ N ,
AnnM (r) = 0M and AnnR(m) = 0, then rm ∈ N .

The reader clearly observe that any semi r-submodule of an R-module R
is a semi r-ideal of R. The zero submodule is always a semi r-submodule of
M. Also, see the implications:
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r-submodule
↘

sr-submodule → semi r-submodule
↗

semiprime submodule

However, the next examples show that these arrows are irreversible.

Example 4.

1. Consider the submodule N = 6Z × 〈0〉 of the Z-module M = Z × Z.
Let r ∈ Z and m = (m1,m2) ∈ M such that r2 · (m1,m2) ∈ N. Then
r2m1 ∈ 6Z, r2m2 = 0 and AnnZ(r) = AnnZ(m1) = AnnZ(m2) = 0 as Z
is a domain. Since 6Z and 〈0〉 are semi r-ideals of Z, then r·(m1,m2) ∈ N
and so N is a semi r-submodule of M . On the other hand, we have
2 · (3, 0) ∈ N with AnnM (2) = 0M and AnnZ((3, 0)) = 0 but (3, 0) /∈ N
and so N is neither r-submodule nor sr-submodule of M .

2. Consider the submodule N = 〈4̄〉 × 〈0〉 of the Z-module M = Z8 × Z.
Let r ∈ Z and m = (m1,m2) ∈ M such that r2 · (m1,m2) ∈ N. Then it
is clear to observe that AnnZ(r) = AnnZ(m1) = AnnZ(m2) = 0. Since
again N is a semi r-submodule of M as 〈4̄〉 is a semi r-ideal of Z8 and
〈0〉 is a semi r-ideals of Z. However, 22 · (1̄, 0) ∈ N but 2 · (1̄, 0) /∈ N and
so N is not a semiprime submodule of M .

Proposition 6. Let M be an R-module, N a proper submodule of M and
k any positive integer. Then N is a semi r-submodule of M if and only if
whenever r ∈ R, m ∈ M with rkm ∈ N , AnnM (r) = 0M and AnnR(m) = 0,
then rm ∈ N .

Proof. The proof follows by mathematical induction on k in a similar way to
that of Theorem 1 (3).

We recall that a module M is torsion (resp. torsion-free) if T (M) = M
(resp. T (M) = {0}) where T (M) = {m ∈ M : there exists 0 6= r ∈ R such
that rm = 0}. It is clear that any torsion-free module is faithful.

Proposition 7. Semi r-submodules and semiprime submodules are coincide
in any torsion-free module.

Proof. Since every semiprime submodule is semi r-submodule, we need to
show the converse. Let N be a semi r-submodule of an R-module M , r ∈ R,
m ∈ M with r2m ∈ N . Keeping in mind that M is torsion-free, we have
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AnnR(m) = 0. Now, suppose that m′ ∈ AnnM (r). Then rm′ = 0 and if
r = 0, then clearly rm ∈ N . If r 6= 0, then m′ = 0 again as M is torsion-free.
Since N is a semi r-submodule, we conclude rm ∈ N , as required.

Definition 5. A proper submodule N of an R-module M is said to satisfy the
D-annihilator condition if whenever K is a submodule of M and r ∈ R such
that rK ⊆ N and AnnM (r) = 0M , then either K ⊆ N or K ∩ T (M) = {0M}.

Obviously, any r-submodule satisfies the D-annihilator condition. The
converse is not true in general. For example the submodule N = 6Z × 〈0〉 of
the Z-module M = Z×Z clearly satisfies the D-annihilator condition. On the
other hand, N is not an r-submodule of M , (see Example 4(1)). It is clear
that any proper submodule of a torsion-free module satisfies the D-annihilator
condition. However, we may find a submodule satisfying the D-annihilator
condition in a torsion module. For example, for any positive integer n, every
proper submodule of the Z-module Zn satisfies the D-annihilator condition.
Indeed, suppose that rm ∈

〈
d̄
〉

for some integer d dividing n. Put n = cd then

crm̄ = 0. Since AnnM (r) = 0M , we get cm̄ = 0 and so m̄ ∈
〈
d̄
〉
.

Proposition 8. Let N be a proper submodule of an R-module M satisfying
the D-annihilator condition. Then the following are equivalent.

1. N is a semi r-submodule of M.

2. For r ∈ R and a submodule K of M with r2K ⊆ N and AnnM (r) = 0M ,
then rK ⊆ N .

Proof. (1)⇒(2). Suppose that r2K ⊆ N and AnnM (r) = 0M = AnnM (r2).
If K ⊆ N , then we are done. If K * N , then AnnR(k) = 0R for each k ∈ K
since by assumption K ∩ T (M) = {0M}. Since N is a semi r-submodule, we
conclude that rk ∈ N . Therefore, rk ∈ N for all k ∈ K and the result follows.

(2)⇒(1). is straightforward.

Recall that an R-module M is called a multiplication module if every
submodule N of M has the form IM for some ideal I of R. Moreover, we
have N = (N :R M)M . Next, we conclude a useful characterization for semi
r-submodules. First, recall the following lemmas.

Lemma 4. [17] Let N be a submodule of a finitely generated faithful multi-
plication R-module M. For an ideal I of R, (IN :R M) = I(N :R M), and in
particular, (IM :R M) = I.

Lemma 5. [1] Let N is a submodule of faithful multiplication R-module M .
If I is a finitely generated faithful multiplication ideal of R, then
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1. N = (IN :M I).

2. If N ⊆ IM , then (JN :M I) = J(N :M I) for any ideal J of R.

Theorem 9. Let M be a finitely generated faithful multiplication R-module.
Then a submodule N = IM satisfying the D-annihilator condition is a semi
r-submodule of M if and only if I is a semi r-ideal of R.

Proof. Suppose N = IM is a semi r-submodule of M and let r ∈ R such
that r2 ∈ I with AnnR(r) = 0. We claim that AnnM (r) = 0M . Indeed, if
there is 0M 6= m ∈ M such that rm = 0M , then 〈r〉 (〈m〉 :R M) = (〈rm〉 :R
M) = (0M :R M) = 0 by Lemma 4. Thus, (〈m〉 :R M) = 0 as AnnR(r) = 0
and then 〈m〉 = (〈m〉 :R M)M = 0M , a contradiction. Since N satisfies the
D-annihilator condition and r2M ⊆ IM , then rM ⊆ IM by Proposition 8.
Thus, r ∈ (rM :R M) ⊆ (IM :R M) = I, as needed.

Conversely, suppose that I is a semi r-ideal of R. Let r ∈ R and K = JM
be a submodule of M such that r2JM = r2K ⊆ IM and AnnM (r) = 0M .
Take A = rJ and note that A2 ⊆ r2JM : M ⊆ (IM :R M) = I by Lemma 4.
Now, we claim that A ∩ zd(R) = {0}. Suppose on contrary that there exists
0 6= a = rj ∈ A such that AnnR(a) 6= 0. Choose 0 6= b ∈ R with ab = rjb = 0.
Then rjbM = 0M and so jbM = 0M as AnnM (r) = 0M . Since b 6= 0, jM ⊆ K
and N satisfies the D-annihilator condition, then jM = 0 and we conclude j =
0 as M is faithful, which is a contradiction. Therefore, A ∩ zd(R) = {0} and
A ⊆ I by Corollary 1. Thus, rK = rJM = AM ⊆ IM = N as needed.

In view of Theorem 9 we give the following characterization.

Corollary 6. Let R be a ring and M be a finitely generated faithful multi-
plication R-module. For a submodule N of M satisfying the D-annihilator
condition, the following statements are equivalent.

1. N is a semi r-submodule of M .

2. (N :R M) is semi r-ideal of R.

3. N = IM for some semi r-ideal I of R.

Let N be a submodule of an R-module M and I be an ideal of R. The
residual of N by I is the set (N :M I) = {m ∈ M : Im ⊆ N}. It is
clear that (N :M I) is a submodule of M containing N . More generally,
for any subset S ⊆ R, (N :M S) is a submodule of M containing N . We
recall that M -rad(N) denotes the intersection of all prime submodules of M
containing N . Moreover, if M is finitely generated faithful multiplication, then
M -rad(N) =

√
(N :R M)M , [17].
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Proposition 9. Let M be a finitely generated multiplication R-module and N
be a semi r-submodule of M satisfying the D-annihilator condition.

1. For any ideal I of R with (N :M I) 6= M , (N :M I) is a semi r-submodule
of M.

2. If M is faithful, then (M -rad(N) :R M) ⊆ zd(R) ∪
√

(N :R M).

Proof. (1) First, we show that (N :M I) satisfies the D-annihilator condition.
Let K be a submodule of M and r ∈ R such that rK ⊆ (N :M I), K *
(N :M I) and AnnM (r) = 0M . Then rIK ⊆ N and so IK ∩ T (M) = {0M}.
It follows clearly that K ∩ T (M) = {0M} as needed. Suppose N is a semi r-
submodule of M . Let K be a submodule of M such that r2K ⊆ (N :M I) and
AnnM (r) = 0M . Then r2IK ⊆ N which implies that rIK ⊆ N by Proposition
8 and thus, rK ⊆ (N :M I). Therefore, (N :M I) is a semi r-submodule of M
again by Proposition 8.

(2) Since N be a semi r-submodule, (N :R M) is a semi r-ideal of R by
Corollary 6. Then the claim follows as M -rad(N) =

√
(N :R M)M and by

using Theorem 1(4).

Next, we discuss when IN is a semi r-submodule of a finitely generated
multiplication module M where I is an ideal of R and N is a submodule
of M . Recall that a submodule N of an R-module M is said to be pure if
JN = JM ∩N for every ideal J of R.

Theorem 10. Let I be an ideal of a ring R, M be a finitely generated faithful
multiplication R-module and N be a submodule of M such that IN satisfies
the D-annihilator condition.

1. If I is a semi r-ideal of R and N is a pure semi r-submodule of M , then
IN is a semi r-submodule of M .

2. Let I be a finitely generated faithful multiplication ideal of R. If IN is
semi r-submodule of M , then either I is a semi r-ideal of R or N is a
semi r-submodule of M .

Proof. (1) Suppose that r2K ⊆ IN and AnnM (r) = 0M for some r ∈ R and a
submodule K = JM of M . If we take A = rJ , then A2 ⊆ r2JM : M ⊆ (IN :
M) = I(N : M) ⊆ I ∩ (N : M). By Theorem 9, (N :R M) is a semi r-ideal.
We show that A ∩ zd(R) = {0}. Let x ∈ A ∩ zd(R), say, x = ry for some
y ∈ J . Choose a nonzero z ∈ R such that xz = ryz = 0. Then ryzM = 0M
and since AnnM (r) = 0M , we have yzM = 0M . Since M is faithful and z 6= 0,
we conclude that yM = 0M and so y = 0. Thus x = 0, as required. Since
(N :R M) is a semi r-ideal, then A ⊆ (N :R M) by Corollary 1. Therefore,
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rK = AM ⊆ (N :R M)M = N . On the other hand, since I is also a semi
r-ideal, we have A ⊆ I and so rK = AM ⊆ IM . Since N is pure, we conclude
that rK ⊆ IM ∩N = IN and we are done.

(2) First, by using Lemma 5, we note clearly that N satisfies the D-
annihilator condition. We have two cases.

Case I. Let N = M . Then I = I(N :R M) = (IN :R M) is a semi r-ideal
of R by Corollary 6.

Case II. Let N be proper. Observe that by Lemma 5, we have the equality
(N :R M) = ((IN :M I) :R M) = (I(N :R M) :M I). Suppose that r2 ∈
(N :R M) and r /∈ zd(R). Then (rI)2 ⊆ r2I ⊆ I(N :R M) = (IN :R M)
by Lemma 4. Here, similar to the proof of Theorem 9, it can be easily verify
that rI ∩ zd(R) = {0}. Since (IN :R M) is a semi r-ideal, rI ⊆ (IN :R M) =
I(N :R M) which means r ∈ (I(N :R M) :M I) = (N :R M) by Lemma 5.
Thus, (N :R M) is a semi r-ideal of R and Corollary 6 implies that N is a
semi r-submodule of M .

Next, we study the behavior of the semi r-submodule property under mod-
ule homomorphisms.

Proposition 10. Let M and M ′ be R-modules and f : M → M ′ be an R-
module homomorphism.

1. If f is an epimorphism and N is a semi r-submodule of M such that
Ker(f) ⊆ N and N ∩ T (M) = {0M}, then f(N) is a semi r-submodule
of M ′.

2. If f is an isomorphism and N ′ is a semi r-submodule of M ′, then f−1(N ′)
is a semi r-submodule of M .

Proof. (1). Let N be a semi r-submodule of M and r ∈ R, m′ := f(m) ∈M ′
(m ∈M) such that r2m′ ∈ f(N), AnnM ′′(r) = 0M ′ and AnnR(f(m)) = 0M ′ .
Then r2m ∈ N as Ker(f) ⊆ N . We show that AnnM (r) = 0M . If r = 0,
then the claim is obvious. Suppose r 6= 0 and there is m1 ∈ M such that
rm1 = 0M . Then rf(m1) = 0M ′ and so f(m1) = 0M ′ as AnnM ′′(r) = 0M ′ .
Thus, m1 ∈ Ker(f) ∩ T (M) ⊆ N ∩ T (M) = {0M} as needed. Also, it is clear
that AnnR(m) = 0M . Therefore, rm ∈ N and so rm′ ∈ f(N) as required.

(2). Let N ′ is a semi r-submodule of M ′. Suppose that r2m ∈ f−1(N ′),
AnnM (r) = 0M and AnnR(m) = 0 for some r ∈ R and m ∈ M . Then
r2f(m) = f(r2m) ∈ N ′, AnnM ′(r) = 0M ′ and AnnR(f(m)) = 0. Indeed, if
rm′ = 0 for some 0 6= m′ = f(m1) ∈ M ′, then rm1 ∈ K erf = {0M} and
clearly 0 6= m1 ∈M , a contradiction. Similarly, if there exists 0 6= c ∈ R such
that cf(m) = 0M ′ , then cm = 0M which is also a contradiction. Since N ′ is
a semi R-submodule, then rf(m) ∈ N ′ and so rm ∈ f−1(N ′). Thus, f−1(N ′)
is a semi r-submodule of M.
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In the following, we discuss semi r-submodules of localizations of modules.
Here, the notation ZN (R) denotes the set {r ∈ R: rm ∈ N for some m ∈
M\N}.

Theorem 11. Let S be a multiplicatively closed subset of a ring R and M be
an R-module such that S ∩ Z(M) = ∅.

1. If N is a semi r-submodule of M such that (N :R M) ∩ S = ∅, then
S−1N is a semi r-submodule of S−1M.

2. If S−1N is a semi r-submodule of S−1R and S ∩ ZN (R) = ∅, then N is
a semi r-submodule of M.

Proof. (1) Let rs ∈ S
−1R, mt ∈ S

−1M with
(
r
s

)2 (m
t

)
∈ S−1N , AnnS−1M ( rs ) =

0S−1M and AnnS−1R(mt ) = 0S−1R . Choose u ∈ S such that r2(um) ∈ N .
We show that AnnM (r) = 0M and AnnR(um) = 0. First, assume that rm′ =

0M for some m′ ∈ M. Then
(
r
s

) (
m′

1

)
= 0S−1M and so m′

1 = 0S−1M as

AnnS−1M ( rs ) = 0S−1M . Hence, there exists v ∈ S such that vm′ = 0M . Since
S ∩ Z(M) = ∅, then m′ = 0M and so AnnM (r) = 0M . Secondly, assume

that r′um = 0 for some r′ ∈ R. Then r′u
1
m
t = 0S−1M and AnnS−1R(mt ) =

0S−1R imply that r′us = 0 for some s ∈ S. But, clearly, um 6= 0M and so
us ∈ S ∩ Z(M) = ∅, a contradiction. Hence, AnnR(um) = 0. Therefore,
r2(um) ∈ N implies that rum ∈ N and so r

s
m
t = rum

sut ∈ S
−1N .

(2) Suppose that r2m ∈ N with AnnM (r) = 0M and AnnR(m) = 0 for

some r ∈ R and m ∈ M. Now,
(
r
1

)2 m
1 ∈ S

−1N . If AnnS−1M ( r1 ) 6= 0S−1M ,

then there exists 0S−1M 6= m′

t ∈ S
−1M such that r

1
m′

t = 0S−1M which implies
urm′ = 0M for some u ∈ S. Since AnnM (r) = 0M , we have um′ = 0M and
m′

t = um′

ut = 0S−1M , a contradiction. Now, assume that AnnS−1R(m1 ) 6=
0S−1R. Then r′

s′
m
1 = 0S−1M for some 0S−1R 6= r′

s′ ∈ S
−1R. Thus, r′vm = 0

for some v ∈ S and clearly r′m 6= 0M . Hence, again v ∈ S ∩ Z(M) = ∅, a
contradiction. Thus, AnnS−1M ( r1 ) = 0S−1M and AnnS−1R(m1 ) = 0S−1R imply
that r

1
m
1 ∈ S

−1N and so wrm ∈ N for some w ∈ S. Since S ∩ ZN (M) = ∅,
we conclude that rm ∈ N , as desired.

We recall from [2] that for an R-module M , we have

zd(R(+)M) = {(r,m)| r ∈ zd(R) ∪ Z(M), m ∈M}

where Z(M) = {r ∈ R : rm = 0 for some 0M 6= m ∈M}. In the following
proposition, we justify the relation between semi r-ideals of R and those of
the idealization ring R(+)M .

Proposition 11. Let M be an R-module and I be a proper ideal of R.
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1. If I is a semi r-ideal of R, then I(+)M is a semi r-ideal of R(+)M.
Moreover, the converse is true if Z(M) ⊆ zd(R).

2. If I is a semi r-ideal of R and N is an r-submodule of M , then I(+)N
is a semi r-ideal of R(+)M . Moreover, the converse is true if Z(M) ⊆
zd(R).

Proof. (1). Suppose that (a,m)2 ∈ I(+)M and (a,m) /∈ zd(R(+)M). Then
a2 ∈ I and a /∈ zd(R). Since I is a semi r-ideal, we conclude that a ∈ I
and so (a,m) ∈ I(+)M . Now, assume that Z(M) ⊆ zd(R) and I(+)M is
a semi r-ideal of R(+)M . Let a ∈ R such that a2 ∈ I but a /∈ I. Then
(a, 0)2 ∈ I(+)M and (a, 0) /∈ I(+)M which imply that (a, 0) ∈ zd(R(+)M).
Since Z(M) ⊆ zd(R), we conclude that a ∈ zd(R) and we are done.

(2). Suppose that (a,m)2 ∈ I(+)N and (a,m) /∈ zd(R(+)M). Then
a ∈ I as in (1). Moreover, a.m ∈ N as IM ⊆ N . Since also, a /∈ Z(M),
then AnnM (a) = 0. Therefore, m ∈ N as N is an r-submodule of M and
(a,m) ∈ I(+)N as needed. If Z(M) ⊆ zd(R), then similar to the proof of (1),
the converse holds.

Remark 1. In general, if Z(M) * zd(R), then the converse of Proposition
11 need not be true. For example, consider the idealization ring R = Z(+)Z4

and the ideal 4Z(+)Z4 of R. Let (a,m)2 ∈ 4Z(+)Z4 for (a,m) ∈ R. Then
a2 ∈ 4Z and so (a,m) ∈ 2Z×Z4 = zd(R). Thus, 4Z(+)Z4 is a (semi) r-ideal
of R. On the other hand, 4Z is not a semi r-ideal of Z.

4 Semi r-submodules of amalgamated modules

Let R be a ring, J an ideal of R and M an R-module. Recently, in [5], the
duplication of the R-module M along the ideal J (denoted by M on J) is
defined as

M on J = {(m,m′) ∈M ×M : m−m′ ∈ JM}

which is an (R on J)-module with scaler multiplication defined by (r, r + j) ·
(m,m′) = (rm, (r+ j)m′) for r ∈ R, j ∈ J and (m,m′) ∈M on J . For various
properties and results concerning this kind of modules, one may see [5].

Let J be an ideal of a ring R and N be a submodule of an R-module M .
Then

N on J = {(n,m) ∈ N ×M : n−m ∈ JM}

and
N̄ = {(m,n) ∈M ×N : m− n ∈ JM}

are clearly submodules of M on J . Moreover,
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AnnRonJ(M on J) = (r, r + j) ∈ R on I|r ∈ AnnR(M) and j ∈ AnnR(M) ∩ J}

and so M on J is a faithful R on J -module if and only if M is a faithful
R-module, [5, Lemma 3.6].

In general, let f : R1 → R2 be a ring homomorphism, J be an ideal of R2,
M1 be an R1-module, M2 be an R2-module (which is an R1-module induced
naturally by f) and ϕ : M1 → M2 be an R1-module homomorphism. The
subring

R1 onf J = {(r, f(r) + j) : r ∈ R1, j ∈ J}

of R1×R2 is called the amalgamation of R1 and R2 along J with respect to f .
In [8], the amalgamation of M1 and M2 along J with respect to ϕ is defined
as

M1 onϕ JM2 = {(m1, ϕ(m1) +m2) : m1 ∈M1 and m2 ∈ JM2}

which is an (R1 onf J)-module with the scaler product defined as

(r, f(r) + j)(m1, ϕ(m1) +m2) = (rm1, ϕ(rm1) + f(r)m2 + jϕ(m1) + jm2)

For submodules N1 and N2 of M1 and M2, respectively, one can easily justify
that the sets

N1 onϕ JM2 = {(m1, ϕ(m1) +m2) ∈M1 onϕ JM2 : m1 ∈ N1}

and

N2
ϕ

= {(m1, ϕ(m1) +m2) ∈M1 onϕ JM2 : ϕ(m1) +m2 ∈ N2}

are submodules of M1 onϕ JM2.
Note that if R = R1 = R2, M = M1 = M2, f = IdR and ϕ = IdM , then

the amalgamation of M1 and M2 along J with respect to ϕ is exactly the
duplication of the R-module M along the ideal J . Moreover, in this case, we
have N1 onϕ JM2 = N on J and N2

ϕ
= N̄ .

Theorem 12. Consider the (R1 onf J)-module M1 onϕ JM2 defined as above.
Assume JM2 = {0M2

} and let N1 be submodule of M1. Then

1. N1 is an r-submodule of M1 if and only if N1 onϕ JM2 is an r-submodule
of M1 onϕ JM2.

2. If N1 is a semi r-submodule of M1, then N1 onϕ JM2 is a semi r-
submodule of M1 onϕ JM2.
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3. If M2 is faithful and N1 onϕ JM2 is a semi r-submodule of M1 onϕ JM2,
then N1 is a semi r-submodule of M1.

Proof. (1) Let N1 be an r-submodule of M1 and let (r1, f(r1) + j) ∈ R1 onf J ,
(m1, ϕ(m1)) ∈M1 onϕ JM2 such that (r1, f(r1)+j)(m1, ϕ(m1)) ∈ N1 onϕ JM2

and AnnM1onϕJM2
((r1, f(r1) + j)) = 0M1onϕJM2

. Then r1m1 ∈ N1 and we
prove that AnnM1

(r1) = 0M1
. Suppose r1m

′
1 = 0M1

for some m′1 ∈M1. Then
(r1, f(r1) + j)(m′1, ϕ(m′1)) = (0M1

, jϕ(m′1)) = (0M1
, 0M2

) as JM2 = {0M2
}.

Thus, (m′1, ϕ(m′1)) ∈ AnnM1onϕJM2
((r1, f(r1)+j)) = 0M1onϕJM2

. Hence, m′1 =
0M1 and AnnM1(r1) = 0M1 . By assumption, m1 ∈ N1 and then (m1, ϕ(m1)) ∈
N1 onϕ JM2, as needed.

Conversely, let r1 ∈ R1 andm1 ∈M1 such that r1m1 ∈ N1 andAnnM1
(r1) =

0M1
. Then (r1, f(r1)) ∈ R1 onf J , (m1, ϕ(m1)) ∈M1 onϕ JM2 and (r1, f(r1))

(m1, ϕ(m1)) = (r1m1, ϕ(r1m1)) ∈ N1 onϕ JM2.
Moreover, AnnM1onϕJM2((r1, f(r1))) = 0M1onϕJM2 . Indeed, suppose that there
(m′1, ϕ(m′1)) ∈ M1 onϕ JM2 such that (r1, f(r1))(m′1, ϕ(m′1)) = 0M1onϕJM2 .
Then (m′1, ϕ(m′1)) = (0M1

, 0M2
) as AnnM1

(r1) = 0M1
. Since N1 onϕ JM2

is an r-submodule of M1 onϕ JM2, then (m1, ϕ(m1)) ∈ N1 onϕ JM2 so that
m1 ∈ N1 and we are done.

(2) Let (r1, f(r1) + j) ∈ R1 onf J and (m1, ϕ(m1)) ∈ M1 onϕ JM2 such
that (r1, f(r1) + j)2(m1, ϕ(m1)) ∈ N1 onϕ JM2, AnnM1onϕJM2((r1, f(r1) +
j)) = 0M1onϕJM2

and AnnR1onfJ((m1, ϕ(m1))) = 0R1onfJ . Then r2
1m1 ∈ N1

and similar to the proof of (1), we have AnnM1
(r1) = 0M1

. We show that
AnnR1

(m1) = 0R1
. Assume on the contrary that there is nonzero element

r1 ∈ R1 such that r1m1 = 0R1 . Then, (r1, f(r1))(m1, ϕ(m1)) = 0M1onϕJM2 , but
our assumption AnnR1onfJ((m1, ϕ(m1))) = 0R1onfJ implies that (r1, f(r1)) =
0R1onfJ ; i.e. r1 = 0R1

, a contradiction. Thus AnnR1
(m1) = 0R1

, and it follows
that r1m1 ∈ N1 and so (r1, f(r1) + j)(m1, ϕ(m1) +m2) ∈ N1 onϕ JM2.

(3) Since M2 is faithful, then clearly J = {0R2
}. Let r1 ∈ R1 and

m1 ∈ M1 such that r2
1m1 ∈ N1, AnnM1(r1) = 0M1 and AnnR1(m1) = 0R1 .

Then (r1, f(r1))2(m1, ϕ(m1)) ∈ N1 onϕ JM2 where (r1, f(r1)) ∈ R1 onf J
and (m1, ϕ(m1)) ∈ M1 onϕ JM2. Again, similar to the proof of (1), we
have AnnM1onϕJM2

((r1, f(r1))) = 0M1onϕJM2
. Moreover, suppose there is

(r′1, f(r′1)) ∈ R1 onf J such that (r′1m1, ϕ(r′1m1)) = (r′1, f(r′1)+j)(m1, ϕ(m1)) =
0M1onϕJM2 . Then (r′1, f(r′1)) = (0R1 , 0R2) as AnnR1(m1) = 0R1 . Therefore,
AnnR1onfJ((m1, ϕ(m1))) = 0M1onϕJM2 . By assumption, (r1, f(r1))(m1, ϕ(m1))
∈ N1 onϕ JM2. It follows that r1m1 ∈ N1 and N1 is a semi r-submodule of
M1.

Corollary 7. Let N be a submodule of an R-module M and J be an ideal of
R. Then
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1. If N on J is an r-submodule of M on J , then N is an r-submodule of M .
The converse is true if JM = 0M .

2. If N on J is a semi r-submodule of M on J , then N is a semi r-submodule
of M . The converse is true if JM = 0M .

Proof. (1) Let r ∈ R and m ∈ M such that rm ∈ N and AnnM (r) = 0M .
Then (r, r)(m,m) ∈ N on J and clearly, AnnMonJ((r, r)) = 0MonJ . Thus,
(m,m) ∈ N on J and so m ∈ N as needed. Conversely, suppose JM = 0M and
let (r, r+ j) ∈ R on J , (m,m+m′) ∈M on J such that (r, r+ j)(m,m+m′) ∈
N on J and AnnMonJ((r, r+j)) = 0MonJ . If rm′′ = 0M for some m′′ ∈M , then
(r, r + j)(m′′,m′′) = (0, jm′′) = (0M , 0M ) as JM = 0M . Thus, m′′ = 0M and
AnnM (r) = 0M . Since rm ∈ N , then m ∈ N and so (m,m+m′) ∈ N on J .

(2) Let r ∈ R and m ∈ M such that r2m ∈ N , AnnM (r) = 0M and
AnnR(m) = 0R. Then (r, r)2(m,m) ∈ N on J . If there exists an element
(m′,m′′) of M on J , (r, r)(m′,m′′) = (0M , 0M ), then clearly (m′,m′′) =
(0M , 0M ) as AnnM (r) = 0M ; and so AnnMonJ((r, r)) = 0MonJ . Also, if for
(r′, r′ + j) ∈ R on J , (r′, r′ + j)(m,m) = (0M , 0M ), then (r′, r′ + j) = (0R, 0R)
and AnnRonJ((m,m)) = 0RonJ . By assumption, (r, r)(m,m) ∈ N on J and so
rm ∈ N . The proof of the converse part is similar to that of the converse of
(1).

Theorem 13. Consider the (R1 onf J)-module M1 onϕ JM2 defined as in
Theorem 12 and let N2 be a submodule of M2.

1. If N2 is an r-submodule of M2, JM2 6= {0M2} and T (M2) ⊆ JM2, then
N2

ϕ
is an r-submodule of M1 onϕ JM2. Moreover, if f is an epimorphism

and ϕ is an isomorphism, then the converse holds.

2. If f and ϕ are isomorphisms and N2
ϕ

is a semi r-submodule of M1 onϕ
JM2, then N2 is a semi r-submodule of M2.

Proof. (1). SupposeN2 is an r-submodule ofM2. Let (r1, f(r1)+j) ∈ R1 onf J
and (m1, ϕ(m1)+m2) ∈M1 on JM2 such that (r1, f(r1)+j)(m1, ϕ(m1)+m2) ∈
N2

ϕ
and AnnM1onϕJM2((r1, f(r1)+j)) = 0M1onϕJM2 . Then (f(r1)+j)(ϕ(m1)+

m2) ∈ N2 and AnnM2((f(r1) + j)) = 0M2 . Indeed, suppose (f(r1) + j)m′2 =
0M2

for some 0M2
6= m′2 ∈M2. If m′2 ∈ JM2, then (r1, f(r1) + j)(0M1

, 0M2
+

m′2) = 0M1onJM2
where (0M1

, 0M2
+m′2) 6= 0M1onJM2

, a contradiction. If m′2 /∈
JM2, then m′2 /∈ T (M2) and so (f(r1)+j) = 0R2

. If we choose 0 6= m′′2 ∈ JM2,
then (r1, f(r1) + j)(0M1 ,m

′′
2) = 0M1onJM2 which is also a contradiction. By

assumption, ϕ(m1) +m2) ∈ N2 and so (m1, ϕ(m1) +m2) ∈ N2
ϕ

.
Conversely, suppose ϕ is an isomorphism and N2

ϕ
is an r-submodule of

M1 onϕ JM2. Let r2 = f(r1) ∈ R2 and m2 = ϕ(m1) ∈ M2 such that r2m2 ∈
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N2 and AnnM2(r2) = 0M2 . Then (r1, r2) ∈ R1 onf J , (m1,m2) ∈M1 onϕ JM2

and (r1, r2)(m1,m2) ∈ N2
ϕ

. Suppose on contrary that there is (m′1, ϕ(m′1) +
m′2) 6= 0M1onϕJM2

such that (r1, r2)(m′1, ϕ(m′1)+m′2) = 0M1onϕJM2
. If ϕ(m′1)+

m′2 6= 0M2
, we get a contradiction. If ϕ(m′1) +m′2 = 0M2

(and so m′1 6= 0M1
),

then clearly r2m
′
2 = 0M2

and then m′2 = 0M2
. It follows that ϕ(m′1) = 0M2

and
so m′1 = 0M1 , a contradiction. Since N2

ϕ
is an r-submodule of M1 onϕ JM2,

then (m1,m2) ∈ N2
ϕ

and so m2 ∈ N2 as required.
(3) Let r2 = f(r1) ∈ R2 and m2 = ϕ(m1) ∈ M2 such that r2

2m2 ∈ N2,
AnnM2

(r2) = 0M2
and AnnR2

(m2) = 0R2
. Then (r1, r2))2(m1,m2) ∈ N2

ϕ

where (r1, f(r1)) ∈ R1 onf J and (m1, ϕ(m1)) ∈ M1 onϕ JM2. Similar to the
proof of the converse part of (1), we have AnnM1onϕJM2

((r1, r2)) = 0M1onϕJM2
.

We prove that AnnR1onfJ((m1,m2)) = 0R1onfJ . Let (r′1, f(r′1) + j′) ∈ R1 onf J
such that (r′1, f(r′1) + j′)(m1,m2) = 0M1onϕJM2 . Then f(r′1) + j′ = 0R2 and
r′1m1 = 0M1

. Thus, f(r′1)m2 = 0 and so f(r′1) = 0R2
. Since f is one to one,

then r′1 = 0R1
and so (r′1, f(r′1) + j′) = 0R1onfJ as needed. By assumption,

(r1, r2))(m1,m2) ∈ N2
ϕ

and so r2m2 ∈ N2.

Corollary 8. Let N be a submodule of an R-module M and J be an ideal of
R. Then

1. If N̄ is an r-submodule of M on J , then N is an r-submodule of M . The
converse is true if JM = 0M .

2. If N̄ is a semi r-submodule of M on J , then N is a semi r-submodule of
M . The converse is true if JM = 0M .

Proof. The proof is similar to that of Corollary 7 and left to the reader.
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