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Semi r-ideals of commutative rings
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Abstract

For commutative rings with identity, we introduce and study the con-
cept of semi r-ideals which is a kind of generalization of both r-ideals
and semiprime ideals. A proper ideal I of a commutative ring R is called
semi r-ideal if whenever a® € I and Anng(a) = 0, then a € I. Several
properties and characterizations of this class of ideals are determined.
In particular, we investigate semi r-ideal under various contexts of con-
structions such as direct products, localizations, homomorphic images,
idealizations and amalagamations rings. We extend semi r-ideals of rings
to semi r-submodules of modules and clarify some of their properties.
Moreover, we define submodules satisfying the D-annihilator condition
and justify when they are semi r-submodules.

1 Introduction

Throughout, all rings are supposed to be commutative with identity and all
modules are unital. Let R be a ring and M an R-module. We recall that a
proper ideal I of a R is called semiprime if whenever a € R such that a? € I,
then a € I. Tt is well-known that [ is semiprime in R if and only if 7 is a radical
ideal, that is I = v/T where /I = {z € R: 2™ € I for some m € Z}. In 2015,
R. Mohamadian [15] introduced the concept of r-ideals of commutative rings.
A proper ideal I of a ring R is called an r-ideal (resp. pr -ideal) if whenever
a,b € R such that ab € I and Anng(a) = 0, then b € I (resp. b € V1)
where Anng(a) = {b € R:ab=0}. Prime and r-ideals are not comparable
in general; but it is verified that every maximal r-ideal in a ring is a prime
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ideal, while every minimal prime ideal is an r -ideal. In 2017, Tekir, Koc and
Oral [18] introduced the concept of n-ideals as a special kind of r-ideals by
considering the set of nilpotent elements instead of zero divisors. Recently, in
[20], Yetkin Celikel and Khashan generalized n-ideals by defining and studying
the class of semi n-ideals. A proper ideal I of R is called a semi n-ideal if for
a € R, a> €I and a ¢ VO imply @ € I. Later, some other generalizations
of semiprime, n-ideals and r-ideals have been introduced, see for example,[4],
[10]-[12] and [19].

Motivated by semiprime ideals and semi n-ideals, we define a proper ideal
I of a ring R to be a semi r-ideal if whenever a € R such that a2 € I and
Anng(a) = 0, then a € I. It is clear that the class of semi r-ideals is a
generalization of that of semiprime and r-ideals. We start section 2 by giving
some examples (see Example 1) to show that this generalization is proper.
Next, we determine several equivalent characterizations of semi r-ideals (see
Theorem 1). Among many other results in this paper, we characterize rings
in which every ideal is a semi r-ideal (see Theorem 3). We investigate semi
r-ideals under various contexts of constructions such as homomorphic images,
quotient rings, localizations and polynomial rings (see Propositions 1 and 3,
Corollary 3, Theorem 4). Moreover, we discuss and characterize semi r-ideals
of cartesian product of rings (see Proposition 5, Theorems 5 and 6, Corollaries
4 and 5). Let R and S be two rings, J be an ideal of S and f : R — S be a ring
homomorphism. We study some forms of semi r-ideals of the amalgamation
ring R xf J of R with S along J with respect to f (see Theorems 7 and 8).

Let M be an R-module, N be a submodule of M and I be an ideal of
R. As usual, we will use the notations (N :g M) and (N :ps I) for the sets
{re R:rmé& N forall m € M} and {m € M : Im C N}, respectively. In
particular, the annihilator of an element m € M (resp. r € R) denoted by
Anng(m) (resp. Annp(r)), is (0 :g m) (vesp. (0 :pr 7). We recall that the
torsion subgroup T(M) of an R-module M is defined as T(M) = {m € M :
there exists 0 # r € R such that rm = 0}. It is easy to see that T'(M) is a
submodule of M, called the torsion submodule. A module is torsion (resp.
torsion-free) if T(M) = M (resp. T (M) = {0}).

In 2009, the concept of semiprime submodules is presented. A proper
submodule is said to be semiprime if whenever » € R, m € M and r’m € N,
then rm € N, [16]. Afterwards, the notions of r-submodule and sr-submodules
are introduced and studied in [13]. A proper submodule N is called an r-
submodule (resp. sr-submodule) of M if whenever rm € N and Anny(r) =
Oar (resp. Anng(m) = 0), then m € N (resp. 7 € (N :g M)). As a new
generalization of above structures, in Section 3, we define a proper submodule
N of M to be a semi r-submodule if whenever r» € R, m € M with r?m € N,
Annpr(r) = 0p and Anng(m) = 0, then rm € N. We illustrate (see Example
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4) that this generalization of r-submodules is proper. However, it is observed
that semi r-submodules coincides with semiprime submodules in any torsion-
free module. Then, we introduce a new condition for submodules, namely,
D-annihilator condition as follows: A proper submodule N of an R-module
M is said to satisfy the D-annihilator condition if whenever K is a submodule
of M and r € R such that rK C N and Anny(r) = Opr, then either K C
N or KNT(M) = {0p}. By using this condition, we totally characterize
semi r-submodules of finitely generated faithful multiplication R-modules (see
Proposition 8, Theorems 9 and 10, Corollary 6).

We recall that the idealization of an R-module M denoted by R(+)M, is
the commutative ring R x M with coordinate-wise addition and multiplication
defined as (r1,mq)(re, ma) = (r179,71ma + romy). For an ideal I of R and a
submodule N of M, I(+)N is an ideal of R(+)M if and only if IM C N. It
is well known from [2] that

zd(R(+)M) = {(r,m)| r € 2d(R) U Z(M), m € M}

In Proposition 11, we clarify the relation between semi r-ideals of the ideal-
ization ring R(+)M and those of R which enables us to build some interesting
examples of semi r-ideals.

Let f: Ry — Ry be a ring homomorphism, J be an ideal of Ry, M; be
an Rj-module, My be an Ry-module and ¢ : M7 — My be an R;-module
homomorphism. The subring

Rix/ J={(r,f(r)+j):7€Ry,jeJ}

of Ry X Ry is called the amalgamation of R; and R, along J with respect to f.
In [8], the amalgamation of M; and M, along J with respect to ¢ is defined
as

My x¥ JMy = {(ml,go(ml) —|—m2) :mq € M7 and msy € JMQ}

which is an (R; xf J)-module. The last section is devoted to clarify semi
r-submodules of the amalgamation of modules.

2 Properties of semi r-ideals

This section deals with many properties of semi r-ideals. We justify the rela-
tions among the concepts of semiprime ideals, semi n-ideals and our new class
of ideals. Moreover, several characterizations and examples are presented. In
particular, we characterize rings in which every ideal is a semi r-ideal.

Definition 1. Let I be a proper ideal of a ring R. I is called a semi r-ideal
of R if whenever a € R such that a*> € I and Anng(a) =0, then a € I.
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For any non-zero subset A of a ring R, we note that Anng(A) is a semi
r-ideal of R. It is clear that the classes of semiprime ideals, r-ideals and semi
n-ideals are contained in the class of semi r-ideals. However, in general these
containments are proper as we illustrate in the following examples.

Example 1. Let p and q be prime integers.

1. Any non-zero semiprime ideal in an integral domain is a semi r-ideal
that is not an r-ideal.

2. In the ring Zy»,, the ideal <}?> s a semi r-ideal that is not a semi
n-ideal.

3. The zero ideal of a ring R is always a semi r-ideal but it is not a
semiprime tdeal unless R is a semiprime ring.

4. Ewvery ideal of a Boolean ring (a ring of which every element is idempo-
tent) is semi r-ideal. Consider the ideal I = 0 X 0 X Zy of the Boolean
ring Zo X Zo X Zo. Then I is a semi r-ideal that is not prime.

5. In general pr-ideals and semi r-ideals are mot comparable. Let T be a
reduced ring with subring Z and P be a nonzero minimal prime ideal
in T with PNZ = (0). From [15, Example 2.17], J = x?P[x] is a pr
-ideal of the ring R = 7Z + xT[x]. Choose an element 0 # p € P. Then
(zp)? € J and Anng(xza) =0 but xa ¢ J. Thus, J is not a semi r-ideal.
Moreover, any non-zero prime ideal in an integral domain is clearly a
semi r-ideal that is not a pr-ideal.

If I and J are semi r-ideals of a ring R, then I.J and I + J need not be so
as we can see in the following example.

Example 2. Consider the ideals I = (x) and J = (x — 4) of the ring R = Z|x].
Then I and J are (semi) prime ideals and so are semi r-ideals of R. On the
other hand, I + J = (x,x —4) = (x,4) is not a semi r-ideal of R. Indeed,
(2+x)> €I+ J and Annp(2+2) =0, but 2+ x ¢ I + J. Also, I* = (x?) is
not a semi r-ideal of R as x?> € I? and Anng(z) =0, but x ¢ I2.

Next, we give the following characterization of semi r-ideals. By zd(R)
we denote the set of all zero divisor elements of a ring R. Moreover, reg(R)
denotes the set R\zd(R).

Theorem 1. Let I be a proper ideal of a ring R and k be a positive integer.
The following statements are equivalent.

1. I is a semi r-ideal of R.
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2. Whenever a € R with 0 # a® € I and Anng(a) =0, then a € I.
3. Whenever a € R with a* € I and Anng(a) = 0, then a € I.
4. VI C zd(R)UT.

Proof. (1)&(2). Suppose (2) holds and let a € R such that a*> € I and
Anng(a) = 0. If a®> = 0, then a = 0 and the result follows obviously. If
a? # 0, then we are also done by (2). The converse part is obvious.

(1)=(3). Suppose a* € I and Anng(a) = 0 for a € R. We use the
mathematical induction on k. If £ < 2, then the claim is clear. We now assume
that (3) holds for all 2 < t < k and show that it is also true for k. Suppose
k is even, say, k = 2m for some positive integer m. Since a* = (a™)? € I
and clearly Anng(a™) = 0, then ™ € I as I is a semi r-ideal. By the
induction hypothesis, we conclude that a € I as needed. Suppose k is odd,
so that k + 1 = 2s for some s < k. Then similarly, we have (a*)®> € I and
Anng(a®) = 0 which imply that a® € I and again by the induction hypothesis,
we conclude a € I.

(3)=(4). Let a € VI. Then a* € I for some k > 1 and so by (3) a € zd(R)
ora e I. Thus, VI C zd(R)UI.

(4)=(1). Straightforward. O

Corollary 1. Let I be a semi r-ideal of a ing R and k be a positive integer.
If J is an ideal of R with J* C I and JNzd(R) = {0}, then J C I.

Proof. Suppose that J¥ C I and J N zd(R) = {0} for some ideal J of R. Let
0 # a € J. From the assumption J N zd(R) = {0}, we have Anng(a) = 0.
Thus, a* € I implies that a € I by Theorem 1 (3). O

Corollary 2. Let I and J be proper ideals of a ring R such that I N zd(R) =
JNzd(R) ={0}.

1. If I and J are semi r-ideals of a ring R with I2 = J2, then I = J.
2. If I? is a semi r-ideal, then 12 = I.

Proof. (1) Since I? C J and JNzd(R) = {0}, then we have I C J by Corollary
1. On the other hand, since J> C I and JNzd(R) = {0}, we have J C I again
by Corollary 1, so we are done.

(2) A direct consequence of (1). O

We note by example 1 that unlike r-ideals, if I is a semi r-ideal of a ring
R, then I need not be contained in zd(R). Also, clearly, semi r-ideals which
contain the zero divisors of a ring R are semiprime.

Next, we present a condition for a semi r-ideal to be an r-ideal. First, we
need the following lemma.
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Lemma 1. Let S be a non-empty subset of R where SN zd(R)=0. IfI is a
semi r-ideal of R with S € I, then (I : S) is a semi r-ideal of R.

Proof. Let a € R such that a? € (I : S) and Anng(a) = 0. Then (as)? € I
for all s € S. As I is a semi r-ideal of R, we have either as € zd(R) or
as € I for all s € S. If as € zd(R), then SN zd(R) = 0 implies a € zd(R), a
contradiction. Thus, as € I for all s € S and so a € (I : S) as required. O

Theorem 2. If I is maximal among all semi r-ideals of a ring R contained
in zd(R), then I is an r-ideal.

Proof. Let I be maximal among all semi r-ideals of a ring R contained in
zd(R). Suppose that ab € I and Anng(a) = 0. Then a ¢ I U zd(R) and so
(I :p a) is a semi r-ideal of R by Lemma 1. Since clearly, (I :r a) C zd(R)
and I C (I :g a), then the maximality of I implies, I = (I :g a). Thus, b€ I
and I is an r-ideal. O

Following [15], we call a ring R a uz-ring if R = U(R)Uzd(R). It is proved
in [15] that R is a wz-ring if and only if every ideal in R is an r-ideal. In
particular, a direct product of fields is an example of a uz-ring. Next, we
generalize this result to semi r-ideals.

Theorem 3. The following statements are equivalent for a ring R.
1. R is a uz-ring.
2. Every proper ideal of R is an r-ideal.
3. Every proper ideal of R is a semi r-ideal.
4. Every proper principal ideal of R is a semi r-ideal.
5. Every semi r-ideal is an r-ideal.

Proof. (1)=(2). Follows by [15, Proposition 3.4].

(2)=(3)=(4). Clear.

(4)=>(1). Let z € R\zd(R). If (2?) = R, then z € U(R). Suppose (z?)
is proper in R. Since 22 € <x2> and Anng(z) = 0, then by assumption,
z € (2?). Thus, z = rz? for some r € R and so rz = 1 as Anng(z) = 0.
Thus, again « € U(R) and R = U(R) U zd(R) as needed.

(1)=(5). Clear by (1)<=(2).

(5)=(1). Since a maximal ideal of R is clearly a semi r-ideal, then by (5),
every maximal ideal in R is an r-ideal. Let r € R. If r ¢ U(R), then r € M
for some maximal ideal M of R and so r € zd(R) by [15, Remark 2.3(d)].
Therefore, R = U(R) U zd(R) and R is a uz-ring. O
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Next, we discuss the behavior of semi r-ideals under homomorphisms.

Proposition 1. Let f : Ry — Ry be a ring homomorphism. The following
statements hold.

1. If f is an epimorphism, I; C Ker(f) and I; is a semi r-ideal of Ry such
that I N zd(Ry) = {0}, then f(I1) is a semi r-ideal of Rs.

2. If f is an isomorphism and I is a semi r-ideal of Ry, then f~1(I5) is a
semi r-ideal of R;.

Proof. (1) Let a € Ry such that a® € f(I;) and a ¢ f(I;). Then there exists
x € Ri\I1 such that a = f(z). Since f(z?) = a®> € f(I1), then 2® € I; as
Ker(f) C I,. Now, I is a semi r-ideal of Ry implies = € zd(R;). If x = 0,
then a = f(x) € 2d(Rs). Suppose x # 0 and choose 0 # y € R such that
a2y = 0. Then f(y) # 0 since otherwise y € I Nzd(R1), a contradiction. Thus,
again a = f(z) € zd(R2) and f(I) is a semi r-ideal of Rs.

(2) Suppose I is a semi r-ideal of Ry. Let x € Ry such that 2% € f~1(I5)
and z ¢ f71(Iy). Then f(2?) = f(2)?> € Iy and f(x) ¢ I, which imply
f(x) € 2d(R3). Since f is an isomorphism, then clearly x € zd(R;) and
f71(Iy) is a semi r-ideal of R;. O

In view of Proposition 1, we have the following result for quotient rings.

Corollary 3. Let I and J be ideals of a ring R with J C I.

1. If I is a semi r-ideal of R and INzd(R) = {0}, then I/.J is a semi r-ideal
of R/J.

2. If I/J is a semi r-ideal of R/J and J is an r-ideal of R, then I is a semi
r-ideal of R.

Proof. (1). Consider the natural epimorphism 7 : R — R/J with Ker(n) = J
and apply Proposition 1.

(2). Let a € R such that a® € I and a ¢ 2d(R). Then (a+ J)2=a’>+J €
I/J. If a+J € zd(R/I), then there is b ¢ J such that ab € J. Since J is a
semi r-ideal of R, we get a € zd(R), a contradiction. Thus, a + J ¢ zd(R/I)
which yields a + J € I/J as I/J is a semi n-ideal of R/J and so a € I. O

If I Nzd(R) # {0} in Corollary 3(1), then the result need not be true.
For example, 4Z(+)Z4 is a semi r-ideal of Z(+)Z4, see Remark 11. But
A7(+)Z4/0(+)Zy = AZ is not a semi r-ideal of Z(+)Z4/0(+)Zy = Z. We
also note that the condition ” J is an r-ideal” in Corollary 3(2) is crucial. For
example 8Z/16Z is a semi r-ideal of Z/16Z but 8Z is not a semi r-ideal of Z.

In particular, Corollary 3 holds if J C zd(R).
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Proposition 2. The intersection of any family of semi r-ideals is a semi
r-ideal.

Proof. Let {I, : a € A} is a family of semi r-ideals. Suppose a?> € [ I, and
a€A

a¢ () Io. Then a ¢ I, for some v € A. Since I, is a semi r-ideal, we have
a€EA
a € zd(R) and so [ I, is a semi r-ideal. O

acA

Let I be a proper ideal of R. In the following we give the relationship
between semi r-ideals of a ring and those of its localization ring by using the
notation Z7(R) which denotes the set {r € R | rs € I for some s € R\I}.

Proposition 3. Let S be a multiplicatively closed subset of a ring R such that
SNzd(R) = 0. Then the following hold.

1. If I is a semi r-ideal of R such that INS = (), then S~'T is a semi r-ideal
of ST1R.

2. If S7'1 is a semi r-ideal of S™'R and SN Z;(R) = ), then [ is a semi
r-ideal of R.

Proof. (1) Suppose for ¢ € S~'R that (% ) € S7'I and (¢) ¢ S7'I. Then
there exits u € S such that ua? € I and so (ua)? € I. Since clearly ua ¢ I and
I is a semi r-ideal, we have ua € zd(R) say, (ua)b = 0 for some 0 # b € R.
Thus, %% = ““b = 0g- 1Rand # 0g-1p as SN zd(R) = 0. Thus, ¢ €

2d(S7'R) and S° 1] is a semi r- 1dea1 of S7IR.
(2) Suppose a? € I for a € R. Since S™'I is a semi n-ideal of S~!R and

(%)2 € S, we have either ¢ € S™'T or ¢ € zd(S™'R). If ¢ € S7'I, then
there exists u € S such that ua € I. Since SN zd(R) = (), we conclude that
acl. If §€ 2d(ST'R), then there is % # 0g-1p such that %b = %% =0g-1p.
Hence, vab = 0 for some v € S and so ab = 0 as SN zd(R) = . Thus,

a € zd(R) as b# 0 and I is a semi r-ideal of R. O

m

We recall that if f = Z a;x" € R[z], then the ideal (a1,as, - ,an) of

R generated by the coefﬁcwnts of f is called the content of f and is denoted
by ¢(f). It is well known that if f and g are two polynomials in R[x], then
the content formula c(g)™c(f) = c(9)™c(fg) holds where m is the degree
of f, [9, Theorem 28.1]. For an ideal I of R, it can be easily seen that

Iz] = {f(x) € Rlz] : (f) € I}.

Definition 2. A ring R is said to satisfy the property () if whenever f €
reg(R[z]), then c(f)\{0} C reg(R).
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Theorem 4. Let I be an ideal of a ring R.

1. If I[x] is a semi 7-ideal of R[z], then I is a semi r-ideal of R.

2. If R satisfies the property (%) and I is a semi r-ideal of R, then I[z] is a
semi r-ideal of R[x]

Proof. (1) Suppose I[z] is a semi r-ideal of R[x]. Let a € R such that a® €
I and Anng(a) = 0. Then Clearly, a®> € I[z] and Annpgp(a) = 0. By
assumption, a € I[x] and so a € I as required.

(2) Suppose R satisfies the property () and I is a semi r-ideal of R.
Let f(z) € R[z] such that (f(z))® € I[z] and Annpg(f(z)) = 0. Then
c(f?) € I and so by the content formula, (c¢(f))? = ¢(f?) € I. Moreover,
e(f)Nzd(R) = {0} as R satisfies the property () and so ¢(f) C I by Corollary
1. It follows that f(z) € I[z] and we are done. O

In general, if S'is an overring of a ring R, then we may find a semi r-ideal
J of S where J N R is not a semi r-ideal in R.

Example 3. Let S = 7Z x Z and consider the ring homomorphism ¢ : 7, —>
ZxZ defined by o(x) = (z,0). Then ¢ is a monomorphism and so R = ©(Z) is
a domain. Now, J = Anng((0,1)) is a nonzero (semi) r-ideal in S. However,
clearly, R C J and so JN R = R is not a semi r-ideal in R.

Let S be an overring ring of a ring R . Following [15], R is said to be
essential in S if J N R # {0} for every nonzero ideal J of S .

Proposition 4. Let R C S be rings such that R is essential in S. If J is a
semi 1 -ideal of S, then JN R is a semi r-ideal in R.

Proof. Let a € R such that a> € JN R and Anng(a) = 0. Then a € S
with a® € J and Anng(a) = 0. Indeed, if Anng(a) # 0, then R being
essential implies Anng(a) N R # {0}. Thus, there exists 0 # r € R such that
r € Anng(a) and so r € Anng(a), a contradiction. Since J is a semi r -ideal
of S, then a € J N R and the result follows., O

The rest of this section is devoted to discuss semi r-ideals of cartesian
products of rings and their particular subrings: the amalgamation rings.

Proposition 5. Let R = Ry X Ry where Ry and Ry are two rings and I, I
be proper ideals of Ry and R, respectively. Then I} X Ra (resp. Ry X I2) is a
semi r-ideal of R if and only if I is a semi r-ideal of Ry (resp. Iy is a semi
r-ideal of Ry ).
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Proof. Let I; x Ry be a semi r-ideal of R and ¢ € Ry with a® € I; and
Anng,(a) = 0. Then (a,1)? € I; x Ry and Anng(a,1) = (0,0) imply that
(a,1) € I X Ry and so a € I;. Thus I; is a semi r-ideal of R;. Conversely,
suppose that (a,b)? € I} x Ry and Anng(a,b) = (0,0). Then a? € I; and
clearly Annp, (a) = 0 which implies a € I;. Hence, (a,b) € I X Ra, so we are
done. The proof of the case Ry X I5 is similar. O]

The following corollary generalizes Proposition 5.

Corollary 4. Let Ri,Rs, -+ , R, be rings, R = Ry X Ry X --- X R,, and I;
be a proper ideal of R; for each i = 1,2,---n. Then for all j = 1,2,---n,
I=Ry x - xRj_1 xIj x Rjy1 x--- xR, is a semi r-ideal of R if and only
if I; is a semi r-ideal of R;.

Theorem 5. Let Ry and Rs be two rings, R = Ry X Ry and I, Iy be proper
tdeals in Ry and Rs, respectively.

1. If I; and I5 are semi r-ideals of Ry and Rs, respectively, then I = I; x I
is a semi r-ideal of R.

2. If I = I; x I is a semi r-ideal of R, then either I; is a semi r-ideal of
Ry or I is a semi r-ideal of Rs.

3. If I =11 x I is a semi r-ideal of R and I» ¢ zd(R2), then I; is a semi
r-ideal of R;.

4. If I = I, x I, is a semi r-ideal of R and I; ¢ zd(R;), then I, is a semi
r-ideal of Rs.

Proof. (1) Let (a,b) € R such that (a?,b?) = (a,b)?> € I and Anng(a,b) =
(0,0). Then a? € Iy, b? € I3 and clearly Anng,(a) = Anng,(b) = 0. There-
fore, a € I, b € Iy and so (a,b) € I as needed.

(2).Suppose I = I; x I is a semi r-ideal of R but I; and I5 are not semi
r-ideals of R; and Rs, respectively. Choose a € R; and b € Ry such that
a? € I, b* € I, Anngi(a) = 0 and Anng,(b) = 0but a ¢ I and b ¢ I.
Then (a,b)? € I and clearly, Anng(a,b) = (0,0). By assumption, we have
(a,b) € I which is a contradiction. Therefore, either I; is a semi r-ideal of Ry
or I is a semi r-ideal of Rs.

(3) Suppose a? € I; for some a € Ry with Anng,(a) = 0. Since I ¢
Z(Rs), we can choose b € Iy Nreg(Ry). Then (a,b)? € T and Anng(a,b) =
(0,0). It follows that (a,b) € I; and hence a € I.

(4) is similar to (3). O
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The converse of Theorem 5(1) is not true in general. For example, 4Z x 0
is a semi r-ideal in Z x Z by Proposition 2. On the other hand, the ideal 4Z
is not a semi r-ideals of Z.

The following corollary generalizes Theorem 5 to any finite direct product
of rings. The proof is similar to that of Theorem 5.

Corollary 5. Let Ry, Ra, -+ , R, be rings, R= Ry X Ry X --- X R, and I; be
a proper ideal of R; for eachi=1,2,---n.

1. If I; is a semi r-ideals of R; for each ¢ = 1,2,---n, then I = I} x I3 X
-.-x I, is a semi r-ideal of R.

2. If I =1 x Iy x --- x I, is a semi r-ideal of R, then I; is a semi 7-ideal
of R; for at least one j € {1,2,--- ,n}.

3. U I =1 x Iy x -+ x I, is a semi r-ideal of R and I; ¢ Z(R;) for all
j # 1, then I; is a semi r-ideal of R;.

Lemma 2. Let R = Ry x Ry X --- X R, where R;’s are rings and R; is
reduced ring for some j = 1,...,n. If I; is an ideal of R; for all i # j, then
I=I5 x--xIi_1 x0x1Ijz1 x---x1I, is a semi r-ideal of R.

Proof. Let a = (ay,ay,...,an) € R with a® € I. Then a7 = 0 which implies
a; = 0 as R; isreduced. Since Anng(a) = Anng(a1,...,a;-1,0,a541, ..., an) #
0, I is a semi r-ideal of R. O

Next, we present a characterization for semi r-ideals of cartesian products
of domains.

Theorem 6. Let Ry, Ry, -+ , R, (n > 2) be domains, R= Ry X Ry x---x Ry,
and I; be an ideal of R; for eachi=1,2,---n. Then [ =11 X Is X -+- X I, is
a semi r-ideal of R if and only if one of the following statements holds

1. I; = {0} for at least one j € {1,2,--- ,n}.

2. There exists j € {1,2,---n} such that I; is a semi r-ideal of R; for all
i=1,---,jand [; = R; forallt=j5+1,--- | n.

3. I; is a semi r-ideals of R; for each 1 =1,2,---n.

Proof. Suppose I = I1 x I3 x -+ X I, is a semi r-ideal of R. Suppose that
all I;’s are nonzero. If for all i € {1,2,---n}, I; is proper in R;, then I;
is a semi r-ideals of R; by Corollary 5(3). Without loss of generality as-
sume that Iy, ..., I; are proper in Ry, -, Rj, respectively and I; = R; for all
i € {j+1,...,n}. For each i € {2,...,j}, choose a nonzero element b; € I;.
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Let ¢ € Ry such that a®> € I;. Since (a7b2,b37...bj713j+1,...,1Rn)2 € I and
AnnR(a, ba, b3, ...bj, leJrl, . 1R'n.) = 0, we have (a, bs, b3, ...bj, 1Rj+17 ey 1R") €
I and so a € I;. Therefore, I; is a semi r-ideal of R;. Similarly, I; is a semi
r-ideals of R; for all ¢ € {1,...,5}.

Conversely, if (1) holds, then I is clearly a semi r-ideal of R. Suppose that
I,...,I; are semi r-ideals and I, = Ry for all k € {j + 1,...,n}. Let a =
(a1, a9, ...,a,) € R with a? € I and Anng(a) = 0. Then for each i € {1, ..., j},
a? € T and Anng,(a;) = 0 as R;’s are domain. Thus, a; € I; and so a € I.
Finally, if (3) holds, then I = I} x Iy X -+ X I, is a semi r-ideal of R by
Corollary 5(1). O

Let R and S be two rings, J be an ideal of S and f : R — S be a
ring homomorphism. As a subring of R x S, the amalgamation of R and
S along J with respect to f is defined by R xf J = (a, f(a) + j) : a € R,
j € J}. If f is the identity homomorphism on R, then we get the amalgamated
duplication of R along an ideal J, R x J = {(a,a+j):a € R, j € J}. For
more related definitions and several properties of this kind of rings, one can
see [6]. If I is an ideal of R and K is an ideal of f(R) + J, then I w/
J={(,fi)+4):iel,jeJ} and KI = {(a,f(a) +j) :a € R, j € J,
f(a) +j € K} are ideals of R xf J, [7].

Lemma 3. [3] Let R, S, J and f be as above. Let A = {(r, f(r) + j)|r €
zd(R)} and B = {(r, f(r) + D|F'(f(r) +35) =0 for some j' € J\{0}}. Then
2d(Rw! J)C AUB.

Next, we determine conditions under which I x/ J and K/ are semi r-
ideals of R x/ J.

Theorem 7. Let R, S, J and f be as above. If I is a semi r-ideal of R, then
I xf J is a semir-ideal of R w% J. The converse is true if f(reg(R))NZ(J) =
0

Proof. Suppose I is a semi r-ideal of R. Let (a, f(a) +j) € R x/ J such
that (a, f(a) + §)° = (a2, (&) +2jf(a) + %) € T w! J and (a, f(a) + j) ¢
zd(R 7 J). Then a® € I and a ¢ 2d(R) by Lemma 3. Therefore, a € I and
so (a, f(a) +4) € I x/ J as needed. Now, suppose f(reg(R))N Z(J) = () and
I %7 Jis a semi r-ideal of R x/ J. Let a®> € I for a € R and a ¢ zd(R).
Then (a, f(a)) € R x/ J with (a, f(a))? = (a?, f(a?)) € I x/ J. If (a, f(a)) €
zd(R xf J), then Lemma 3 implies f(a) € Z(J) which is a contradiction.
Therefore, (a, f(a)) ¢ zd(R %/ J) and so (a, f(a)) € I x Jas I x/ Jisa
semi r-ideal of R x/ .J. Thus, a € I as required. O

Theorem 8. Let f: R — S be a ring homomorphism and J, K be ideals of
S. If K is a semi r-ideal of f(R) + J, then K7 is a semi r-ideal of R x/ J.
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1. If K is a semi r-ideal of f(R)+.J and zd(f(R)+J) = Z(J), then K/ is
a semi r-ideal of R 7 J.

2. If K7/ is a semi r-ideal of R xf J, f(2d(R)) C zd(f(R) + J) and
f(zd(R))J =0, then K is a semi r-ideal of f(R) + J.

Proof. (1) Suppose K is a semi r-ideal of f(R)+.J. Let (a, f(a)+7) € R x/ J
such that (a,f(a)+j)2 = (a?, (f(a)+3)?) € K/ and (a, f(a)+j) ¢ zd(R xS J).
Then (f(a) 4+ j)* € K and by Lemma 3, f(a) +j ¢ Z(J) = (f( )+ J).
Therefore, f(a )+] € K and (a, f(a) +j) € K/ as needed.

(2) Suppose K7 is a semi r-ideal of R x/ J and f(zd(R))J = 0. Let
F(a) 5 € F(R) + 7 such that ((a) +)° € K and f(a) +] & 2d(f(R) + J).
Then (a, f(a) +j) € R xf J with (a, f(a)+7)% € K. Suppose (a, f(a)+j) €
2d(R x/ J). Then as Z(J) C zd(f(R) + J) and by Lemma 3, we conclude
that @ € zd(R). Since f(a) € zd(f(R) + J), then f(a)f(b) = 0 for some
0# f(b) € f(R). Thus, (f(a)+7)f(b) =0as f(zd(R))J = 0 which contradicts
that f(a) + j ¢ zd(f(R) + J). Therefore, (a, f(a) + j) ¢ zd(R x¥ J) and so
(a, f(a) + j) € K. Tt follows that f(a) +j € K and K is a semi r-ideal of
F(R) +J. O

3 Semi r-submodules of modules over commutative rings

The aim of this section is to extend semi r-ideals of commutative rings to semi
r-submodules of modules over commutative rings. Recall that a module M is
said to be faithful if Anng(M) = (0:5 M) = 0pg.

Definition 3. Let M be an R-module and N a proper submodule of M.

1. N is called a semiprime submodule if whenever 7>m € N, then rm € N.
[16]

2. N is called a r-submodule if whenever rm € N and Annp(r) = Oy,
then m € N. [13]

3. N is called a sr-submodule if whenever rm € N and Anng(m) = 0, then
m € N. [13]

Definition 4. Let M be an R-module and N a proper submodule of M. We
call N a semi r-submodule if whenever r € R, m € M with r>m € N,
Annpr(r) = 0pr and Anng(m) =0, then rm € N.

The reader clearly observe that any semi r-submodule of an R-module R
is a semi r-ideal of R. The zero submodule is always a semi r-submodule of
M. Also, see the implications:
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r-submodule

p

sr-submodule — semi r-submodule

e

semiprime submodule

However, the next examples show that these arrows are irreversible.

Example 4.

1. Consider the submodule N = 6Z x (0) of the Z-module M = Z x Z.
Let 7 € Z and m = (my,ma) € M such that r2 - (my,ms) € N. Then
r?my € 6Z, r’mg = 0 and Annz(r) = Anng(my) = Anng(mz) =0 as Z
is a domain. Since 6Z and (0) are semi r-ideals of Z, then r-(my,ma) € N
and so N is a semi r-submodule of M. On the other hand, we have
2-(3,0) € N with Annps(2) = 0pr and Anngz((3,0)) =0 but (3,0) ¢ N
and so N is neither r-submodule nor sr-submodule of M.

2. Consider the submodule N = (4) x (0) of the Z-module M = Zg x Z.
Let r € Z and m = (my, mg) € M such that r? - (my,ms) € N. Then it
is clear to observe that Anngz(r) = Anngz(mi) = Anngz(mz) = 0. Since
again N is a semi r-submodule of M as (4) is a semi r-ideal of Zg and
(0) is a semi 7-ideals of Z. However, 22-(1,0) € N but 2-(1,0) ¢ N and

so N is not a semiprime submodule of M.

Proposition 6. Let M be an R-module, N a proper submodule of M and
k any positive integer. Then N is a semi r-submodule of M if and only if
whenever r € R, m € M with r*m € N, Anny(r) = 0 and Anng(m) =0,
then rm € N.

Proof. The proof follows by mathematical induction on k in a similar way to
that of Theorem 1 (3). O

We recall that a module M is torsion (resp. torsion-free) if T'(M) = M
(resp. T(M) = {0}) where T(M) = {m € M : there exists 0 # r € R such
that rm = 0}. It is clear that any torsion-free module is faithful.

Proposition 7. Semi r-submodules and semiprime submodules are coincide
in any torsion-free module.

Proof. Since every semiprime submodule is semi r-submodule, we need to
show the converse. Let N be a semi r-submodule of an R-module M, r € R,
m € M with 7>m € N. Keeping in mind that M is torsion-free, we have
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Anng(m) = 0. Now, suppose that m’ € Annp(r). Then rm/ = 0 and if
r = 0, then clearly rm € N. If r # 0, then m’ = 0 again as M is torsion-free.
Since N is a semi r-submodule, we conclude rm € N, as required. O

Definition 5. A proper submodule N of an R-module M is said to satisfy the
D-annihilator condition if whenever K is a submodule of M and r € R such

that rK C N and Annpy(r) = Opr, then either K C N or KNT(M) = {0x}.

Obviously, any r-submodule satisfies the D-annihilator condition. The
converse is not true in general. For example the submodule N = 6Z x (0) of
the Z-module M = Z x Z clearly satisfies the D-annihilator condition. On the
other hand, N is not an r-submodule of M, (see Example 4(1)). It is clear
that any proper submodule of a torsion-free module satisfies the D-annihilator
condition. However, we may find a submodule satisfying the D-annihilator
condition in a torsion module. For example, for any positive integer n, every
proper submodule of the Z-module Z,, satisfies the D-annihilator condition.
Indeed, suppose that rm € <@ for some integer d dividing n. Put n = c¢d then
erm = 0. Since Annp(r) = 0y, we get ¢m = 0 and so m € <J>

Proposition 8. Let N be a proper submodule of an R-module M satisfying
the D-annihilator condition. Then the following are equivalent.

1. N is a semi r-submodule of M.

2. For r € R and a submodule K of M with 7> K C N and Annys(r) = O,
then rK C N.

Proof. (1)=>(2). Suppose that 72K C N and Anny(r) = 0y = Annps(r?).
If K C N, then we are done. If K ¢ N, then Anng(k) = Og for each k € K
since by assumption K N T (M) = {0a}. Since N is a semi r-submodule, we
conclude that vk € N. Therefore, 7k € N for all k € K and the result follows.

(2)=(1). is straightforward. O

Recall that an R-module M is called a multiplication module if every
submodule N of M has the form I'M for some ideal I of R. Moreover, we
have N = (N :g M)M. Next, we conclude a useful characterization for semi
r-submodules. First, recall the following lemmas.

Lemma 4. [17] Let N be a submodule of a finitely generated faithful multi-
plication R-module M. For an ideal I of R, (IN :g M) =I(N :g M), and in
particular, (IM :p M) = 1.

Lemma 5. [1] Let N is a submodule of faithful multiplication R-module M.
If I is a finitely generated faithful multiplication ideal of R, then
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1. N = (IN ‘M I)
2. If N CIM, then (JN :pp I) = J(N :pr I) for any ideal J of R.

Theorem 9. Let M be a finitely generated faithful multiplication R-module.
Then a submodule N = IM satisfying the D-annihilator condition is a semsi
r-submodule of M if and only if I is a semi r-ideal of R.

Proof. Suppose N = IM is a semi r-submodule of M and let » € R such
that r2 € I with Anng(r) = 0. We claim that Anny(r) = Op. Indeed, if
there is 0py # m € M such that rm = Oy, then (r) ((m) :g M) = ((rm) :r
M) = (0p :g M) =0 by Lemma 4. Thus, ((m) :g M) =0 as Anng(r) =0
and then (m) = ((m) :p M)M = 0p, a contradiction. Since N satisfies the
D-annihilator condition and 72M C IM, then rM C IM by Proposition 8.
Thus, r € (rM :g M) C (IM :g M) =1, as needed.

Conversely, suppose that I is a semi r-ideal of R. Let r € Rand K = JM
be a submodule of M such that r2JM = r?K C IM and Anny(r) = 0.
Take A = rJ and note that A2 C r2JM : M C (IM :g M) = I by Lemma 4.
Now, we claim that A N zd(R) = {0}. Suppose on contrary that there exists
0+# a=rj € Asuch that Anng(a) # 0. Choose 0 # b € R with ab = rjb = 0.
Then rjbM = 0jpr and so jbM = 0y as Annpr(r) = 0ps. Since b # 0, jM C K
and N satisfies the D-annihilator condition, then jM = 0 and we conclude j =
0 as M is faithful, which is a contradiction. Therefore, AN zd(R) = {0} and
A C I by Corollary 1. Thus, rK =rJM = AM C IM = N as needed. O

In view of Theorem 9 we give the following characterization.

Corollary 6. Let R be a ring and M be a finitely generated faithful multi-
plication R-module. For a submodule N of M satisfying the D-annihilator
condition, the following statements are equivalent.

1. N is a semi r-submodule of M.
2. (N :p M) is semi r-ideal of R.
3. N =1IM for some semi r-ideal I of R.

Let N be a submodule of an R-module M and I be an ideal of R. The
residual of N by I is the set (N :py I) = {m € M : Im C N}. It is
clear that (N :p I) is a submodule of M containing N. More generally,
for any subset S C R, (N :jpr S) is a submodule of M containing N. We
recall that M-rad(N) denotes the intersection of all prime submodules of M
containing N. Moreover, if M is finitely generated faithful multiplication, then
M-rad(N) = +/(N :g M)M, [17].
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Proposition 9. Let M be a finitely generated multiplication R-module and N
be a semi r-submodule of M satisfying the D-annihilator condition.

1. For any ideal I of R with (N :ps I) # M, (N :pr I) is a semi r-submodule
of M.

2. If M is faithful, then (M-rad(N) :g M) C zd(R)U /(N :g M).

Proof. (1) First, we show that (N :ps I) satisfies the D-annihilator condition.
Let K be a submodule of M and r € R such that K C (N :p I), K ¢
(N :pr I) and Annps(r) = 0pr. Then 7IK C N and so IK NT(M) = {0p}.
It follows clearly that K N T (M) = {Ops} as needed. Suppose N is a semi 7-
submodule of M. Let K be a submodule of M such that 72K C (N :p; I) and
Annps(r) = 0p7. Then r2I K C N which implies that rIK C N by Proposition
8 and thus, rK C (N :ps I). Therefore, (N :ps I) is a semi r-submodule of M
again by Proposition 8.

(2) Since N be a semi r-submodule, (N :g M) is a semi r-ideal of R by
Corollary 6. Then the claim follows as M-rad(N) = /(N :g M)M and by
using Theorem 1(4). O

Next, we discuss when IN is a semi r-submodule of a finitely generated
multiplication module M where [ is an ideal of R and N is a submodule
of M. Recall that a submodule N of an R-module M is said to be pure if
JN = JM N N for every ideal J of R.

Theorem 10. Let I be an ideal of a ring R, M be a finitely generated faithful
multiplication R-module and N be a submodule of M such that IN satisfies
the D-annihilator condition.

1. If I is a semi r-ideal of R and N is a pure semi r-submodule of M, then
IN is a semi r-submodule of M.

2. Let I be a finitely generated faithful multiplication ideal of R. If IN is
semi r-submodule of M, then either I is a semi r-ideal of R or N is a
semi r-submodule of M.

Proof. (1) Suppose that 72K C IN and Annp;(r) = 0 for some r € R and a
submodule K = JM of M. If we take A =rJ, then A2 C r2JM : M C (IN :
M)=I(N:M)CIN(N:M). By Theorem 9, (N :g M) is a semi r-ideal.
We show that AN zd(R) = {0}. Let z € AN zd(R), say, x = ry for some
y € J. Choose a nonzero z € R such that xz = ryz = 0. Then ryzM = 0y,
and since Ann s (r) = 07, we have yzM = 0. Since M is faithful and z # 0,
we conclude that yM = 0p; and so y = 0. Thus = = 0, as required. Since
(N :g M) is a semi r-ideal, then A C (N :g M) by Corollary 1. Therefore,
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rK = AM C (N :g M)M = N. On the other hand, since I is also a semi
r-ideal, we have A C I and so rK = AM C IM. Since N is pure, we conclude
that rK CIM NN = IN and we are done.

(2) First, by using Lemma 5, we note clearly that N satisfies the D-
annihilator condition. We have two cases.

Case I. Let N =M. Then I = I(N :g M) = (IN :g M) is a semi r-ideal
of R by Corollary 6.

Case II. Let N be proper. Observe that by Lemma 5, we have the equality
(N ‘R M) = ((IN ‘M I) ‘R M) = (I(N ‘R M) M I) Suppose that r? ¢
(N :g M) and 7 ¢ 2d(R). Then (rI)®> C 721 C I(N :g M) = (IN :x M)
by Lemma 4. Here, similar to the proof of Theorem 9, it can be easily verify
that I N zd(R) = {0}. Since (IN :g M) is a semi r-ideal, rI C (IN :p M) =
I(N :g M) which means r € (I(N :g M) :pp I) = (N :g M) by Lemma 5.
Thus, (N :g M) is a semi r-ideal of R and Corollary 6 implies that N is a
semi r-submodule of M. O

Next, we study the behavior of the semi r-submodule property under mod-
ule homomorphisms.

Proposition 10. Let M and M’ be R-modules and f : M — M' be an R-
module homomorphism.

1. If f is an epimorphism and N is a semi r-submodule of M such that
Ker(f) C N and NNT(M) = {0p}, then f(N) is a semi r-submodule
of M'.

2. If f is an isomorphism and N’ is a semi r-submodule of M’, then f~1(N’)
is a semi r-submodule of M.

Proof. (1). Let N be a semi r-submodule of M and r € R, m’ := f(m) € M’
(m € M) such that r?m’ € f(N), Anny,, (r) = 0 - and Anng(f(m)) = 0 -
Then r2m € N as Ker(f) € N. We show that Anny(r) = Oy If r = 0,
then the claim is obvious. Suppose r # 0 and there is m; € M such that
rmy = Ops. Then rf(mq) = Opr and so f(mq) = 0a as Anngp, (1) = Opr 0.
Thus, m; € Ker(f)NT(M) C NNT(M) = {0p} as needed. Also, it is clear
that Anng(m) = 0p . Therefore, rm € N and so rm’ € f(N) as required.
(2). Let N’ is a semi r-submodule of M’. Suppose that 72m € f~1(N’),
Annpr(r) = 0p and Anng(m) = 0 for some r € R and m € M. Then
r2f(m) = f(r*m) € N', Annpp(r) = Oy and Anng(f(m)) = 0. Indeed, if
rm’ = 0 for some 0 # m' = f(my) € M’, then rm; € Kerf = {0y} and
clearly 0 # m; € M, a contradiction. Similarly, if there exists 0 # ¢ € R such
that ¢f(m) = 0pr, then em = 0pr which is also a contradiction. Since N’ is
a semi R-submodule, then rf(m) € N’ and so rm € f~1(N’). Thus, f~1(N’)
is a semi r-submodule of M. O
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In the following, we discuss semi r-submodules of localizations of modules.
Here, the notation Zx(R) denotes the set {r € R: rm € N for some m €
M\N}.

Theorem 11. Let S be a multiplicatively closed subset of a ring R and M be
an R-module such that SN Z(M) = (.

1. If N is a semi r-submodule of M such that (N :g M) NS = 0, then
SN is a semi r-submodule of S~1M.

2. If S7IN is a semi r-submodule of 'R and SN Zy(R) = 0, then N is
a semi r-submodule of M.

Proof. (1)Let £ € S™'R, ™ € §~1M with (£)* () € SN, Anng-1 (L) =
Os-1pr and Anng-15(F) = 0g-15 . Choose u € S such that r?(um) € N.
We show that Annps(r) = 0pr and Anng(um) = 0. First, assume that rm’ =

O for some m’ € M. Then (%) (mT/ = 0g-1)7 and so mT/ = Og-1p7 as

Anng-1p(%) = 0g-1p. Hence, there exists v € S such that vm' = 0p7. Since
SN Z(M) =0, then m" = 0p; and so Anny(r) = Opr. Secondly, assume
that r’um = 0 for some ' € R. Then T'T“% = O0g-1p7 and Anng-1p(7F) =
Og-1p imply that r’us = 0 for some s € S. But, clearly, um # 0j; and so
us € SN Z(M) = 0, a contradiction. Hence, Anng(um) = 0. Therefore,

r?(um) € N implies that rum € N and so £% = Z4m ¢ G-
(2) Suppose that 72m € N with Anny(r) = Oy and Anng(m) = 0 for

some r € R and m € M. Now, ({)2 T € STIN. If Anng-1p(§) # Og-1ar,

then there exists Og-1,7 # mT/ € S~1M such that %mT/ = 0g-17 which implies
urm’ = 0py for some u € S. Since Annp(r) = Opr, we have um’ = 0y and
mT/ = “T”Z/ = Og-1p, a contradiction. Now, assume that Anng-1z(F) #

Os-1g- Then 52 = 0g-1; for some Og-1p # ’S"—: € S7'R. Thus, r'vm = 0
for some v € S and clearly r'm # 03;. Hence, again v € SN Z(M) = 0, a
contradiction. Thus, Anng-1,;(7) = 0g-1p and Anng-1z(F) = 0g-1 imply
that 22 € S™'N and so wrm € N for some w € S. Since SN Zy(M) = 0,
we conclude that rm € N, as desired. O

We recall from [2] that for an R-module M, we have
zd(R(+)M) = {(r,m)| r € zd(R) U Z(M), m € M}

where Z(M) = {r € R:rm =0 for some Opy #m € M}. In the following
proposition, we justify the relation between semi r-ideals of R and those of
the idealization ring R(+)M.

Proposition 11. Let M be an R-module and I be a proper ideal of R.
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1. If I is a semi r-ideal of R, then I(+)M is a semi r-ideal of R(+)M.
Moreover, the converse is true if Z(M) C zd(R).

2. If I is a semi r-ideal of R and N is an r-submodule of M, then I(+)N
is a semi r-ideal of R(+)M. Moreover, the converse is true if Z(M) C
zd(R).

Proof. (1). Suppose that (a,m)? € I(+)M and (a,m) ¢ zd(R(+)M). Then
a?> € I and a ¢ 2d(R). Since I is a semi r-ideal, we conclude that a € I
and so (a,m) € I(+)M. Now, assume that Z(M) C zd(R) and I(+)M is
a semi r-ideal of R(+)M. Let a € R such that a® € I but a ¢ I. Then
(a,0)? € I(+)M and (a,0) ¢ I(+)M which imply that (a,0) € zd(R(+)M).
Since Z(M) C zd(R), we conclude that a € zd(R) and we are done.

(2). Suppose that (a,m)? € I(+)N and (a,m) ¢ zd(R(+)M). Then
a € I as in (1). Moreover, a.m € N as IM C N. Since also, a ¢ Z(M),
then Annps(a) = 0. Therefore, m € N as N is an r-submodule of M and
(a,m) € I(+)N as needed. If Z(M) C zd(R), then similar to the proof of (1),
the converse holds. O

Remark 1. In general, if Z(M) ¢ zd(R), then the converse of Proposition
11 need not be true. For example, consider the idealization ring R = Z(+)Z4
and the ideal 4Z(+)Z4 of R. Let (a,m)* € 4Z(+)Zy for (a,m) € R. Then
a? € 47 and so (a,m) € 2Z x Zy = zd(R). Thus, 4Z(+)Z4 is a (semi) r-ideal
of R. On the other hand, 47 is not a semi r-ideal of Z.

4 Semi r-submodules of amalgamated modules

Let R be a ring, J an ideal of R and M an R-module. Recently, in [5], the
duplication of the R-module M along the ideal J (denoted by M x J) is
defined as

MxJ={(mm)eMxM:m-m'eJM}

which is an (R x J)-module with scaler multiplication defined by (r,r + j) -
(m,m’) = (rm,(r+j)m') forr € R, j € J and (m,m’) € M x J. For various
properties and results concerning this kind of modules, one may see [5].

Let J be an ideal of a ring R and N be a submodule of an R-module M.
Then

NxJ={(nm)e NxM:n—meJM}

and -
N={(mn)eMxN:m-neJM}

are clearly submodules of M x J. Moreover,
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Annpug(M x J)=(r,r+j) € Rx I|lr € Anng(M) and j € Anng(M)N J}

and so M x J is a faithful R x J -module if and only if M is a faithful
R-module, [5, Lemma 3.6).

In general, let f : Ry — Rs be a ring homomorphism, J be an ideal of R,
M, be an Ryi-module, My be an Ry-module (which is an Ri-module induced
naturally by f) and ¢ : M7 — My be an Rj-module homomorphism. The
subring

R/ J={(r,f(r)+j):7€Ry,jeJ}

of Ry X Ry is called the amalgamation of R; and R, along J with respect to f.
In [8], the amalgamation of M; and My along J with respect to ¢ is defined
as

My ¥ JMy = {(my,o(my1) + ms) : my € My and ma € JM>}

which is an (R; xf J)-module with the scaler product defined as
(r, f(r) + j)(ma, o(ma) +mz) = (rma, o(rma) + f(r)me + je(ma) + jmo)

For submodules N7 and Ny of M; and My, respectively, one can easily justify
that the sets

Ny ¥ JMs = {(m1,p(m1) + ma) € My X¥ JMs : my € N1}
and

No¥ = {(m1, p(m1) +ma) € My %% JMy : o(m1) +ms € No}

are submodules of M7 X% JMs.

Note that if R = Ry = Ry, M = My = My, f = Idr and ¢ = Idy;, then
the amalgamation of M; and My along J with respect to ¢ is exactly the
duplication of the R-module M along the ideal J. Moreover, in this case, we
have N; X% JMy = N x J and Ny* = N.

Theorem 12. Consider the (Ry x/ J)-module My x% JM, defined as above.
Assume JMy = {0p1,} and let N1 be submodule of My. Then

1. Nj is an r-submodule of M; if and only if N1 x¥ JMs; is an r-submodule
of M1 X 7 JM2

2. If Ny is a semi r-submodule of Mj, then N; x¥ JMs is a semi 7-
submodule of M; X% JMs,.
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3. If My is faithful and N7 1% JMs is a semi r-submodule of M7 x¥ JMs,
then N7 is a semi r-submodule of M.

Proof. (1) Let Ny be an r-submodule of M; and let (r1, f(r1) +j) € Ry x/ J,
(m1,0(m1)) € My x¥ JMs such that (r1, f(r1)+7)(m1,o(m1)) € N1 )¢ JMy
and Annarwesn, (71, f(r1) + 7)) = Oanmesn,.- Then rymy € Ni and we
prove that Annpy, (r1) = Opg, . Suppose rim) = 0y, for some mj € M;. Then
(11, £r1) + ), (m4) = Oar,, jo (1) = (Onry,Oary) a5 TMy = {Opg,
Thus, (m7, p(m})) € Annagwesn, (11, f(r1)+7)) = Oarywe sar, - Hence, my =
Ons, and Annpy, (1) = Opg, . By assumption, my € N7 and then (mq, p(m1)) €
N1 1% JMs, as needed.

Conversely, let 1 € Ry and my € My such that rymy € Ny and Annpy, (r1) =

Oar,- Then (ry, f(r1)) € Ry )P T, (m1,p(my)) € My x% JMy and (ry, f(r1))
(ml,cp(ml)) = (rlml,cp(rlml)) € N1 x¥ JMs.
Moreover, Annas, wesn, (71, f(r1))) = Onry e sas, - Indeed, suppose that there
(mf,p(my)) € My x% JMs such that (r1, f(r1))(m),o(m})) = O wesn,-
Then (m},o(m})) = (Oar,0n;) as Annpyg, (r1) = Opr,. Since Ny x¥ JM,
is an r-submodule of My x¥ JMs, then (my,p(my)) € Ny X% JMsy so that
my € N7 and we are done.

(2) Let (1, f(r1) +j) € Ry w/ J and (my,(m1)) € My x¥ JMsy such
that (1, f(r1) + j)*(m1, o(m1)) € N1 w® JMa, Annprsegan (11, f(r1) +
7)) = Ontymesnr, and Anng, s 5((m1, 9(m1))) = Og,wry. Then rimy € Ny
and similar to the proof of (1), we have Annpy, (r1) = Op,. We show that
Anng,(my1) = Og,. Assume on the contrary that there is nonzero element
r1 € Ry such that rymy = Og,. Then, (r1, f(r1))(m1, ©(m1)) = Onrr we g, DUt
our assumption Anng, s (M1, ¢(m1))) = Og, xss implies that (ry, f(r1)) =
Og,xfs; i.e. 71 = Og,, a contradiction. Thus Anng, (m1) = Og, , and it follows
that rymy € Ny and so (71, f(r1) + 7)(m1, (m1) + ms) € Ny X% JMo.

(3) Since Mj is faithful, then clearly J = {Og,}. Let m € R; and
my € M such that r?m; € Ny, Annpy (r1) = Op, and Anng, (my) = Og,.
Then (r1, f(r1))%(m1, p(m1)) € N1 x® JMy where (r1, f(r1)) € Ry =/ J
and (my1,¢o(my1)) € My x? JM,. Again, similar to the proof of (1), we
have Annpg, wesn, (11, f(r1))) = Oapymesn,. Moreover, suppose there is
(1, f(r1)) € Ry @/ Jsuch that (rimy, p(rima)) = (r{, f(r})+5)(m1, p(m1)) =
Onywegn,- Then (1, f(r})) = (Ogr,,0r,) as Anng,(m1) = Og,. Therefore,
Ay (1, 9(m1))) = Oatyseo gty By assumption, (r, £(r1))(ma, p(ms))
€ Ny )% JMs. It follows that rym; € Ny and N; is a semi r-submodule of
M;. O

Corollary 7. Let N be a submodule of an R-module M and J be an ideal of
R. Then
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1. If N x J is an r-submodule of M x .J, then N is an r-submodule of M.
The converse is true if JM = 0.

2. If N x J is a semi r-submodule of M x J, then NN is a semi r-submodule
of M. The converse is true if JM = 0.

Proof. (1) Let r € R and m € M such that rm € N and Annp(r) = Oy
Then (r,r)(m,m) € N x J and clearly, Annprws((r,7)) = Oprwg. Thus,
(m,m) € N x J and so m € N as needed. Conversely, suppose JM = 0,; and
let (r,r+j) € Rx J, (m,m+m') € M x J such that (r,r+j)(m,m+m’) €
N » J and Annarw g ((r,7+7)) = Oarwg. If rm”” = 0y for some m” € M, then
(ryr+7)(m”,m") = (0,7m"”) = (0pr,0ps) as JM = 0py. Thus, m” = 0y and
Annpr(r) = 0pr. Since rm € N, then m € N and so (m,m+m’) € N x J.
(2) Let 7 € R and m € M such that >m € N, Annp(r) = Oy and
Anng(m) = Og. Then (r,7)*(m,m) € N x J. If there exists an element
(m',m"”) of M x J, (r,r)(m’,m"”) = (0p1,0n), then clearly (m’,m”) =
(Oas,0a7) as Annp(r) = Opr; and so Annpgws((r,7)) = Oprwg. Also, if for
(r,r"+j)e Rw J, (r',r" 4+ j)(m,m) = (0pr,0nr), then (+',7' 4+ ) = (Og,0R)
and Anngys((m,m)) = Ogpxs. By assumption, (r,r)(m,m) € N x J and so
rm € N. The proof of the converse part is similar to that of the converse of
(1). O

Theorem 13. Consider the (Ry w/ J)-module M, x¥? JMs defined as in
Theorem 12 and let No be a submodule of M.

L. If Ny is an r-submodule of My, JMj; # {0ar,} and T'(Ms) C J My, then
N7 is an r-submodule of M; % JMs. Moreover, if f is an epimorphism
and ¢ is an isomorphism, then the converse holds.

2. If f and ¢ are isomorphisms and N>7 is a semi r-submodule of M; X%
JMs, then N is a semi r-submodule of Ms.

Proof. (1). Suppose N is an r-submodule of My. Let (1, f(r1)+j) € Ry x/ J
and (ma, p(my)+msa) € My x J My such that (r1, f(r1)+7)(m1, p(m1)+mz) €
N,” and Annag, e, (1, £(r1)+5)) = Oty e sar,- Then (f(r1)+7)(p(ma)+
mo) € Ny and Annpg, ((f(r1) + J)) = Oar,. Indeed, suppose (f(r1) + j)mb =
Opz, for some 0py, # mh € Ma. If my € JMy, then (r1, f(r1) + 7)(Oas,, Ong, +
mb) = Opr, wans, Where (Oagy, Opz, +mb) # Opry g, , & contradiction. If mf ¢
JMs, then mb, ¢ T'(Ms) and so (f(r1)+7) = Og,. If we choose 0 # mf € J Mo,
then (r1, f(r1) + 7)(0pr,, m5) = Oprywsm, which is also a contradiction. By
assumption, ¢(m1) +ma) € Ny and so (my, p(my) +ms) € No”.

Conversely, suppose ¢ is an isomorphism and N7 is an r-submodule of
My x¥ JMy. Let ro = f(r1) € Ry and my = p(my) € My such that roms €
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Ny and Annyy, (r2) = Opr,. Then (rq,72) € Ry xF J, (my,ma) € My %% JM,
and (r1,72)(my,my) € No©. Suppose on contrary that there is (m/, ¢(m/) +
mb) # Opgy we g m, Such that (ry, re)(mh, o(m))+mb) = Oy wegnr,- I @(m))+
mb # Opr,, we get a contradiction. If p(m)) +mb = 0pr, (and so mf # Oar),
then clearly romf = 0y, and then mb = 0pz,. It follows that ¢(m]) = 0y, and
so my = 0y, a contradiction. Since Ff is an r-submodule of M; X% JMs,
then (my, mg) € Ew and so my € N» as required.

(3) Let 7o = f(r1) € Re and mg = ¢p(my1) € My such that rims € Na,
Annyg, (r2) = Opg, and Anng,(ms) = Og,. Then (r1,72))%(m1,ms) € Ny*
where (r1, f(r1)) € Ry xf J and (mq, p(m1)) € My =¥ JM,. Similar to the
proof of the converse part of (1), we have Annps, we an, ((71,72)) = Ongy we J0 -
We prove that Anng, s 7((m1,m2)) = O0g, wss. Let (7], f(r]) +5') € Ry x/ J
such that (r{, f(r1) + 7/)(m1,m2) = Onrymegnm,. Then f(r]) + 5 = Og, and
rimy1 = Opg,. Thus, f(r])me = 0 and so f(r]) = Or,. Since f is one to one,
then r{ = Og, and so (7], f(r}1) +j') = Ogr,wss as needed. By assumption,
(r1,72))(m1,m2) € No” and so rems € No. O

Corollary 8. Let N be a submodule of an R-module M and J be an ideal of
R. Then

1. If N is an r-submodule of M x .J, then N is an r-submodule of M. The
converse is true if JM = 0.

2. If N is a semi r-submodule of M x J, then N is a semi r-submodule of
M. The converse is true if JM = 0,,.

Proof. The proof is similar to that of Corollary 7 and left to the reader. [
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