# Semi $r$-ideals of commutative rings 

Hani A. Khashan and Ece Yetkin Celikel


#### Abstract

For commutative rings with identity, we introduce and study the concept of semi $r$-ideals which is a kind of generalization of both $r$-ideals and semiprime ideals. A proper ideal $I$ of a commutative ring $R$ is called semi $r$-ideal if whenever $a^{2} \in I$ and $A n n_{R}(a)=0$, then $a \in I$. Several properties and characterizations of this class of ideals are determined. In particular, we investigate semi $r$-ideal under various contexts of constructions such as direct products, localizations, homomorphic images, idealizations and amalagamations rings. We extend semi $r$-ideals of rings to semi $r$-submodules of modules and clarify some of their properties. Moreover, we define submodules satisfying the $D$-annihilator condition and justify when they are semi $r$-submodules.


## 1 Introduction

Throughout, all rings are supposed to be commutative with identity and all modules are unital. Let $R$ be a ring and $M$ an $R$-module. We recall that a proper ideal $I$ of a $R$ is called semiprime if whenever $a \in R$ such that $a^{2} \in I$, then $a \in I$. It is well-known that $I$ is semiprime in $R$ if and only if $I$ is a radical ideal, that is $I=\sqrt{I}$ where $\sqrt{I}=\left\{x \in R: x^{m} \in I\right.$ for some $\left.m \in \mathbb{Z}\right\}$. In 2015, R. Mohamadian [15] introduced the concept of $r$-ideals of commutative rings. A proper ideal $I$ of a ring $R$ is called an $r$-ideal (resp. $p r$-ideal) if whenever $a, b \in R$ such that $a b \in I$ and $A n n_{R}(a)=0$, then $b \in I$ (resp. $b \in \sqrt{I}$ ) where $A n n_{R}(a)=\{b \in R: a b=0\}$. Prime and $r$-ideals are not comparable in general; but it is verified that every maximal $r$-ideal in a ring is a prime

[^0]ideal, while every minimal prime ideal is an $r$-ideal. In 2017, Tekir, Koc and Oral [18] introduced the concept of $n$-ideals as a special kind of $r$-ideals by considering the set of nilpotent elements instead of zero divisors. Recently, in [20], Yetkin Celikel and Khashan generalized $n$-ideals by defining and studying the class of semi $n$-ideals. A proper ideal $I$ of $R$ is called a semi $n$-ideal if for $a \in R, a^{2} \in I$ and $a \notin \sqrt{0}$ imply $a \in I$. Later, some other generalizations of semiprime, $n$-ideals and $r$-ideals have been introduced, see for example,[4], [10]-[12] and [19].

Motivated by semiprime ideals and semi $n$-ideals, we define a proper ideal $I$ of a ring $R$ to be a semi $r$-ideal if whenever $a \in R$ such that $a^{2} \in I$ and $A n n_{R}(a)=0$, then $a \in I$. It is clear that the class of semi $r$-ideals is a generalization of that of semiprime and $r$-ideals. We start section 2 by giving some examples (see Example 1) to show that this generalization is proper. Next, we determine several equivalent characterizations of semi $r$-ideals (see Theorem 1). Among many other results in this paper, we characterize rings in which every ideal is a semi $r$-ideal (see Theorem 3). We investigate semi $r$-ideals under various contexts of constructions such as homomorphic images, quotient rings, localizations and polynomial rings (see Propositions 1 and 3, Corollary 3, Theorem 4). Moreover, we discuss and characterize semi $r$-ideals of cartesian product of rings (see Proposition 5, Theorems 5 and 6, Corollaries 4 and 5). Let $R$ and $S$ be two rings, $J$ be an ideal of $S$ and $f: R \rightarrow S$ be a ring homomorphism. We study some forms of semi $r$-ideals of the amalgamation ring $R \bowtie^{f} J$ of $R$ with $S$ along $J$ with respect to $f$ (see Theorems 7 and 8).

Let $M$ be an $R$-module, $N$ be a submodule of $M$ and $I$ be an ideal of $R$. As usual, we will use the notations $\left(N:_{R} M\right)$ and $\left(N:_{M} I\right)$ for the sets $\{r \in R: r m \in N$ for all $m \in M\}$ and $\{m \in M: I m \subseteq N\}$, respectively. In particular, the annihilator of an element $m \in M$ (resp. $r \in R$ ) denoted by $A n n_{R}(m)$ (resp. $A n n_{M}(r)$ ), is $\left(0:_{R} m\right)$ (resp. ( $0:_{M} r$ ). We recall that the torsion subgroup $T(M)$ of an $R$-module $M$ is defined as $T(M)=\{m \in M$ : there exists $0 \neq r \in R$ such that $r m=0\}$. It is easy to see that $T(M)$ is a submodule of $M$, called the torsion submodule. A module is torsion (resp. torsion-free) if $T(M)=M($ resp. $T(M)=\{0\})$.

In 2009, the concept of semiprime submodules is presented. A proper submodule is said to be semiprime if whenever $r \in R, m \in M$ and $r^{2} m \in N$, then $r m \in N,[16]$. Afterwards, the notions of $r$-submodule and $s r$-submodules are introduced and studied in [13]. A proper submodule $N$ is called an $r$ submodule (resp. $s r$-submodule) of $M$ if whenever $r m \in N$ and $A n n_{M}(r)=$ $0_{M}\left(\right.$ resp. $\left.A n n_{R}(m)=0\right)$, then $m \in N$ (resp. $r \in\left(N:_{R} M\right)$ ). As a new generalization of above structures, in Section 3, we define a proper submodule $N$ of $M$ to be a semi $r$-submodule if whenever $r \in R, m \in M$ with $r^{2} m \in N$, $A n n_{M}(r)=0_{M}$ and $A n n_{R}(m)=0$, then $r m \in N$. We illustrate (see Example
4) that this generalization of $r$-submodules is proper. However, it is observed that semi $r$-submodules coincides with semiprime submodules in any torsionfree module. Then, we introduce a new condition for submodules, namely, $D$-annihilator condition as follows: A proper submodule $N$ of an $R$-module $M$ is said to satisfy the $D$-annihilator condition if whenever $K$ is a submodule of $M$ and $r \in R$ such that $r K \subseteq N$ and $A n n_{M}(r)=0_{M}$, then either $K \subseteq$ $N$ or $K \cap T(M)=\left\{0_{M}\right\}$. By using this condition, we totally characterize semi $r$-submodules of finitely generated faithful multiplication $R$-modules (see Proposition 8, Theorems 9 and 10, Corollary 6).

We recall that the idealization of an $R$-module $M$ denoted by $R(+) M$, is the commutative ring $R \times M$ with coordinate-wise addition and multiplication defined as $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+r_{2} m_{1}\right)$. For an ideal $I$ of $R$ and a submodule $N$ of $M, I(+) N$ is an ideal of $R(+) M$ if and only if $I M \subseteq N$. It is well known from [2] that

$$
z d(R(+) M)=\{(r, m) \mid r \in z d(R) \cup Z(M), m \in M\}
$$

In Proposition 11, we clarify the relation between semi $r$-ideals of the idealization ring $R(+) M$ and those of $R$ which enables us to build some interesting examples of semi $r$-ideals.

Let $f: R_{1} \rightarrow R_{2}$ be a ring homomorphism, $J$ be an ideal of $R_{2}, M_{1}$ be an $R_{1}$-module, $M_{2}$ be an $R_{2}$-module and $\varphi: M_{1} \rightarrow M_{2}$ be an $R_{1}$-module homomorphism. The subring

$$
R_{1} \bowtie^{f} J=\left\{(r, f(r)+j): r \in R_{1}, j \in J\right\}
$$

of $R_{1} \times R_{2}$ is called the amalgamation of $R_{1}$ and $R_{2}$ along $J$ with respect to $f$. In [8], the amalgamation of $M_{1}$ and $M_{2}$ along $J$ with respect to $\varphi$ is defined as

$$
M_{1} \bowtie^{\varphi} J M_{2}=\left\{\left(m_{1}, \varphi\left(m_{1}\right)+m_{2}\right): m_{1} \in M_{1} \text { and } m_{2} \in J M_{2}\right\}
$$

which is an $\left(R_{1} \bowtie^{f} J\right)$-module. The last section is devoted to clarify semi $r$-submodules of the amalgamation of modules.

## 2 Properties of semi $r$-ideals

This section deals with many properties of semi $r$-ideals. We justify the relations among the concepts of semiprime ideals, semi $n$-ideals and our new class of ideals. Moreover, several characterizations and examples are presented. In particular, we characterize rings in which every ideal is a semi $r$-ideal.

Definition 1. Let $I$ be a proper ideal of a ring $R$. $I$ is called a semi r-ideal of $R$ if whenever $a \in R$ such that $a^{2} \in I$ and $\operatorname{Ann}_{R}(a)=0$, then $a \in I$.

For any non-zero subset $A$ of a ring $R$, we note that $A n n_{R}(A)$ is a semi $r$-ideal of $R$. It is clear that the classes of semiprime ideals, $r$-ideals and semi $n$-ideals are contained in the class of semi $r$-ideals. However, in general these containments are proper as we illustrate in the following examples.

Example 1. Let $p$ and $q$ be prime integers.

1. Any non-zero semiprime ideal in an integral domain is a semi r-ideal that is not an r-ideal.
2. In the ring $\mathbb{Z}_{p^{2} q}$, the ideal $\left\langle\overline{p^{2}}\right\rangle$ is a semi r-ideal that is not a semi $n$-ideal.
3. The zero ideal of a ring $R$ is always a semi r-ideal but it is not a semiprime ideal unless $R$ is a semiprime ring.
4. Every ideal of a Boolean ring (a ring of which every element is idempotent) is semi $r$-ideal. Consider the ideal $I=0 \times 0 \times \mathbb{Z}_{2}$ of the Boolean ring $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Then $I$ is a semi $r$-ideal that is not prime.
5. In general pr-ideals and semi r-ideals are not comparable. Let $T$ be a reduced ring with subring $\mathbb{Z}$ and $P$ be a nonzero minimal prime ideal in $T$ with $P \cap \mathbb{Z}=(0)$. From [15, Example 2.17], $J=x^{2} P[x]$ is a $p r$ -ideal of the ring $R=\mathbb{Z}+x T[x]$. Choose an element $0 \neq p \in P$. Then $(x p)^{2} \in J$ and $A n n_{R}(x a)=0$ but $x a \notin J$. Thus, $J$ is not a semi r-ideal. Moreover, any non-zero prime ideal in an integral domain is clearly a semi r-ideal that is not a pr-ideal.

If $I$ and $J$ are semi $r$-ideals of a ring $R$, then $I J$ and $I+J$ need not be so as we can see in the following example.

Example 2. Consider the ideals $I=\langle x\rangle$ and $J=\langle x-4\rangle$ of the ring $R=\mathbb{Z}[x]$. Then $I$ and $J$ are (semi) prime ideals and so are semi r-ideals of $R$. On the other hand, $I+J=\langle x, x-4\rangle=\langle x, 4\rangle$ is not a semi $r$-ideal of $R$. Indeed, $(2+x)^{2} \in I+J$ and $A n n_{R}(2+x)=0$, but $2+x \notin I+J$. Also, $I^{2}=\left\langle x^{2}\right\rangle$ is not a semi $r$-ideal of $R$ as $x^{2} \in I^{2}$ and $\operatorname{Ann}_{R}(x)=0$, but $x \notin I^{2}$.

Next, we give the following characterization of semi $r$-ideals. By $z d(R)$ we denote the set of all zero divisor elements of a ring $R$. Moreover, $\operatorname{reg}(R)$ denotes the set $R \backslash z d(R)$.

Theorem 1. Let $I$ be a proper ideal of a ring $R$ and $k$ be a positive integer. The following statements are equivalent.

1. $I$ is a semi $r$-ideal of $R$.
2. Whenever $a \in R$ with $0 \neq a^{2} \in I$ and $A n n_{R}(a)=0$, then $a \in I$.
3. Whenever $a \in R$ with $a^{k} \in I$ and $\operatorname{Ann}_{R}(a)=0$, then $a \in I$.
4. $\sqrt{I} \subseteq z d(R) \cup I$.

Proof. (1) $\Leftrightarrow(2)$. Suppose (2) holds and let $a \in R$ such that $a^{2} \in I$ and $A n n_{R}(a)=0$. If $a^{2}=0$, then $a=0$ and the result follows obviously. If $a^{2} \neq 0$, then we are also done by (2). The converse part is obvious.
$(1) \Rightarrow(3)$. Suppose $a^{k} \in I$ and $A n n_{R}(a)=0$ for $a \in R$. We use the mathematical induction on $k$. If $k \leq 2$, then the claim is clear. We now assume that (3) holds for all $2<t<k$ and show that it is also true for $k$. Suppose $k$ is even, say, $k=2 m$ for some positive integer $m$. Since $a^{k}=\left(a^{m}\right)^{2} \in I$ and clearly $A n n_{R}\left(a^{m}\right)=0$, then $a^{m} \in I$ as $I$ is a semi $r$-ideal. By the induction hypothesis, we conclude that $a \in I$ as needed. Suppose $k$ is odd, so that $k+1=2 s$ for some $s<k$. Then similarly, we have $\left(a^{s}\right)^{2} \in I$ and $A n n_{R}\left(a^{s}\right)=0$ which imply that $a^{s} \in I$ and again by the induction hypothesis, we conclude $a \in I$.
$(3) \Rightarrow(4)$. Let $a \in \sqrt{I}$. Then $a^{k} \in I$ for some $k \geq 1$ and so by (3) $a \in z d(R)$ or $a \in I$. Thus, $\sqrt{I} \subseteq z d(R) \cup I$.
$(4) \Rightarrow(1)$. Straightforward.
Corollary 1. Let $I$ be a semi r-ideal of a ring $R$ and $k$ be a positive integer. If $J$ is an ideal of $R$ with $J^{k} \subseteq I$ and $J \cap z d(R)=\{0\}$, then $J \subseteq I$.
Proof. Suppose that $J^{k} \subseteq I$ and $J \cap z d(R)=\{0\}$ for some ideal $J$ of $R$. Let $0 \neq a \in J$. From the assumption $J \cap z d(R)=\{0\}$, we have $A n n_{R}(a)=0$. Thus, $a^{k} \in I$ implies that $a \in I$ by Theorem 1 (3).

Corollary 2. Let $I$ and $J$ be proper ideals of a ring $R$ such that $I \cap z d(R)=$ $J \cap z d(R)=\{0\}$.

1. If $I$ and $J$ are semi $r$-ideals of a ring $R$ with $I^{2}=J^{2}$, then $I=J$.
2. If $I^{2}$ is a semi $r$-ideal, then $I^{2}=I$.

Proof. (1) Since $I^{2} \subseteq J$ and $J \cap z d(R)=\{0\}$, then we have $I \subseteq J$ by Corollary 1. On the other hand, since $J^{2} \subseteq I$ and $J \cap z d(R)=\{0\}$, we have $J \subseteq I$ again by Corollary 1, so we are done.
(2) A direct consequence of (1).

We note by example 1 that unlike $r$-ideals, if $I$ is a semi $r$-ideal of a ring $R$, then $I$ need not be contained in $z d(R)$. Also, clearly, semi $r$-ideals which contain the zero divisors of a ring $R$ are semiprime.

Next, we present a condition for a semi $r$-ideal to be an $r$-ideal. First, we need the following lemma.

Lemma 1. Let $S$ be a non-empty subset of $R$ where $S \cap z d(R)=\emptyset$. If $I$ is a semi $r$-ideal of $R$ with $S \nsubseteq I$, then $(I: S)$ is a semi $r$-ideal of $R$.

Proof. Let $a \in R$ such that $a^{2} \in(I: S)$ and $A n n_{R}(a)=0$. Then $(a s)^{2} \in I$ for all $s \in S$. As $I$ is a semi $r$-ideal of $R$, we have either as $\in z d(R)$ or as $\in I$ for all $s \in S$. If as $\in z d(R)$, then $S \cap z d(R)=\emptyset$ implies $a \in z d(R)$, a contradiction. Thus, as $\in I$ for all $s \in S$ and so $a \in(I: S)$ as required.

Theorem 2. If $I$ is maximal among all semi r-ideals of a ring $R$ contained in $z d(R)$, then $I$ is an $r$-ideal.

Proof. Let $I$ be maximal among all semi $r$-ideals of a ring $R$ contained in $z d(R)$. Suppose that $a b \in I$ and $A n n_{R}(a)=0$. Then $a \notin I \cup z d(R)$ and so $\left(I:_{R} a\right)$ is a semi $r$-ideal of $R$ by Lemma 1. Since clearly, $\left(I:_{R} a\right) \subseteq z d(R)$ and $I \subseteq\left(I:_{R} a\right)$, then the maximality of $I$ implies, $I=\left(I:_{R} a\right)$. Thus, $b \in I$ and $I$ is an $r$-ideal.

Following [15], we call a ring $R$ a $u z$-ring if $R=U(R) \cup z d(R)$. It is proved in [15] that $R$ is a $u z$-ring if and only if every ideal in $R$ is an $r$-ideal. In particular, a direct product of fields is an example of a $u z$-ring. Next, we generalize this result to semi $r$-ideals.

Theorem 3. The following statements are equivalent for a ring $R$.

1. $R$ is a $u z$-ring.
2. Every proper ideal of $R$ is an $r$-ideal.
3. Every proper ideal of $R$ is a semi $r$-ideal.
4. Every proper principal ideal of $R$ is a semi $r$-ideal.
5. Every semi $r$-ideal is an $r$-ideal.

Proof. (1) $\Rightarrow(2)$. Follows by [15, Proposition 3.4].
$(2) \Rightarrow(3) \Rightarrow(4)$. Clear.
$(4) \Rightarrow(1)$. Let $x \in R \backslash z d(R)$. If $\left\langle x^{2}\right\rangle=R$, then $x \in U(R)$. Suppose $\left\langle x^{2}\right\rangle$ is proper in $R$. Since $x^{2} \in\left\langle x^{2}\right\rangle$ and $A n n_{R}(x)=0$, then by assumption, $x \in\left\langle x^{2}\right\rangle$. Thus, $x=r x^{2}$ for some $r \in R$ and so $r x=1$ as $A n n_{R}(x)=0$. Thus, again $x \in U(R)$ and $R=U(R) \cup z d(R)$ as needed.
$(1) \Rightarrow(5)$. Clear by $(1) \Leftrightarrow(2)$.
$(5) \Rightarrow(1)$. Since a maximal ideal of $R$ is clearly a semi $r$-ideal, then by (5), every maximal ideal in $R$ is an $r$-ideal. Let $r \in R$. If $r \notin U(R)$, then $r \in M$ for some maximal ideal $M$ of $R$ and so $r \in z d(R)$ by [15, Remark 2.3(d)]. Therefore, $R=U(R) \cup z d(R)$ and $R$ is a $u z$-ring.

Next, we discuss the behavior of semi $r$-ideals under homomorphisms.
Proposition 1. Let $f: R_{1} \rightarrow R_{2}$ be a ring homomorphism. The following statements hold.

1. If $f$ is an epimorphism, $I_{1} \subseteq \operatorname{Ker}(f)$ and $I_{1}$ is a semi $r$-ideal of $R_{1}$ such that $I_{1} \cap z d\left(R_{1}\right)=\{0\}$, then $f\left(I_{1}\right)$ is a semi $r$-ideal of $R_{2}$.
2. If $f$ is an isomorphism and $I_{2}$ is a semi $r$-ideal of $R_{2}$, then $f^{-1}\left(I_{2}\right)$ is a semi $r$-ideal of $R_{1}$.

Proof. (1) Let $a \in R_{2}$ such that $a^{2} \in f\left(I_{1}\right)$ and $a \notin f\left(I_{1}\right)$. Then there exists $x \in R_{1} \backslash I_{1}$ such that $a=f(x)$. Since $f\left(x^{2}\right)=a^{2} \in f\left(I_{1}\right)$, then $x^{2} \in I_{1}$ as $\operatorname{Ker}(f) \subseteq I_{1}$. Now, $I_{1}$ is a semi $r$-ideal of $R_{1}$ implies $x \in z d\left(R_{1}\right)$. If $x=0$, then $a=f(x) \in z d\left(R_{2}\right)$. Suppose $x \neq 0$ and choose $0 \neq y \in R$ such that $x y=0$. Then $f(y) \neq 0$ since otherwise $y \in I_{1} \cap z d\left(R_{1}\right)$, a contradiction. Thus, again $a=f(x) \in z d\left(R_{2}\right)$ and $f\left(I_{1}\right)$ is a semi $r$-ideal of $R_{2}$.
(2) Suppose $I_{2}$ is a semi $r$-ideal of $R_{2}$. Let $x \in R_{1}$ such that $x^{2} \in f^{-1}\left(I_{2}\right)$ and $x \notin f^{-1}\left(I_{2}\right)$. Then $f\left(x^{2}\right)=f(x)^{2} \in I_{2}$ and $f(x) \notin I_{2}$ which imply $f(x) \in z d\left(R_{2}\right)$. Since $f$ is an isomorphism, then clearly $x \in z d\left(R_{1}\right)$ and $f^{-1}\left(I_{2}\right)$ is a semi $r$-ideal of $R_{1}$.

In view of Proposition 1, we have the following result for quotient rings.
Corollary 3. Let $I$ and $J$ be ideals of a ring $R$ with $J \subseteq I$.

1. If $I$ is a semi $r$-ideal of $R$ and $I \cap z d(R)=\{0\}$, then $I / J$ is a semi $r$-ideal of $R / J$.
2. If $I / J$ is a semi $r$-ideal of $R / J$ and $J$ is an $r$-ideal of $R$, then $I$ is a semi $r$-ideal of $R$.

Proof. (1). Consider the natural epimorphism $\pi: R \rightarrow R / J$ with $\operatorname{Ker}(\pi)=J$ and apply Proposition 1.
(2). Let $a \in R$ such that $a^{2} \in I$ and $a \notin z d(R)$. Then $(a+J)^{2}=a^{2}+J \in$ $I / J$. If $a+J \in z d(R / I)$, then there is $b \notin J$ such that $a b \in J$. Since $J$ is a semi $r$-ideal of $R$, we get $a \in z d(R)$, a contradiction. Thus, $a+J \notin z d(R / I)$ which yields $a+J \in I / J$ as $I / J$ is a semi $n$-ideal of $R / J$ and so $a \in I$.

If $I \cap z d(R) \neq\{0\}$ in Corollary 3(1), then the result need not be true. For example, $4 \mathbb{Z}(+) \mathbb{Z}_{4}$ is a semi $r$-ideal of $\mathbb{Z}(+) \mathbb{Z}_{4}$, see Remark 11. But $4 \mathbb{Z}(+) \mathbb{Z}_{4} / 0(+) \mathbb{Z}_{4} \cong 4 \mathbb{Z}$ is not a semi $r$-ideal of $\mathbb{Z}(+) \mathbb{Z}_{4} / 0(+) \mathbb{Z}_{4} \cong \mathbb{Z}$. We also note that the condition " $J$ is an $r$-ideal" in Corollary 3(2) is crucial. For example $8 \mathbb{Z} / 16 \mathbb{Z}$ is a semi $r$-ideal of $\mathbb{Z} / 16 \mathbb{Z}$ but $8 \mathbb{Z}$ is not a semi $r$-ideal of $\mathbb{Z}$.

In particular, Corollary 3 holds if $J \subseteq z d(R)$.

Proposition 2. The intersection of any family of semi r-ideals is a semi $r$-ideal.

Proof. Let $\left\{I_{\alpha}: \alpha \in \Lambda\right\}$ is a family of semi $r$-ideals. Suppose $a^{2} \in \bigcap_{\alpha \in \Lambda} I_{\alpha}$ and $a \notin \bigcap_{\alpha \in \Lambda} I_{\alpha}$. Then $a \notin I_{\gamma}$ for some $\gamma \in \Lambda$. Since $I_{\gamma}$ is a semi $r$-ideal, we have $a \in z d(R)$ and so $\bigcap_{\alpha \in \Lambda} I_{\alpha}$ is a semi $r$-ideal.

Let $I$ be a proper ideal of $R$. In the following we give the relationship between semi $r$-ideals of a ring and those of its localization ring by using the notation $Z_{I}(R)$ which denotes the set $\{r \in R \mid r s \in I$ for some $s \in R \backslash I\}$.

Proposition 3. Let $S$ be a multiplicatively closed subset of a ring $R$ such that $S \cap z d(R)=\emptyset$. Then the following hold.

1. If $I$ is a semi $r$-ideal of $R$ such that $I \cap S=\emptyset$, then $S^{-1} I$ is a semi $r$-ideal of $S^{-1} R$.
2. If $S^{-1} I$ is a semi $r$-ideal of $S^{-1} R$ and $S \cap Z_{I}(R)=\emptyset$, then $I$ is a semi $r$-ideal of $R$.

Proof. (1) Suppose for $\frac{a}{s} \in S^{-1} R$ that $\left(\frac{a}{s}\right)^{2} \in S^{-1} I$ and $\left(\frac{a}{s}\right) \notin S^{-1} I$. Then there exits $u \in S$ such that $u a^{2} \in I$ and so $(u a)^{2} \in I$. Since clearly $u a \notin I$ and $I$ is a semi $r$-ideal, we have $u a \in z d(R)$, say, $(u a) b=0$ for some $0 \neq b \in R$. Thus, $\frac{a}{s} \cdot \frac{b}{1}=\frac{u a b}{u s}=0_{S^{-1} R}$ and $\frac{b}{1} \neq 0_{S^{-1} R}$ as $S \cap z d(R)=\emptyset$. Thus, $\frac{a}{s} \in$ $z d\left(S^{-1} R\right)$ and $S^{-1} I$ is a semi $r$-ideal of $S^{-1} R$.
(2) Suppose $a^{2} \in I$ for $a \in R$. Since $S^{-1} I$ is a semi $n$-ideal of $S^{-1} R$ and $\left(\frac{a}{1}\right)^{2} \in S^{-1} I$, we have either $\frac{a}{1} \in S^{-1} I$ or $\frac{a}{1} \in z d\left(S^{-1} R\right)$. If $\frac{a}{1} \in S^{-1} I$, then there exists $u \in S$ such that $u a \in I$. Since $S \cap z d(R)=\emptyset$, we conclude that $a \in I$. If $\frac{a}{1} \in z d\left(S^{-1} R\right)$, then there is $\frac{b}{t} \neq 0_{S^{-1} R}$ such that $\frac{a b}{t}=\frac{a}{1} \cdot \frac{b}{t}=0_{S^{-1} R}$. Hence, vab $=0$ for some $v \in S$ and so $a b=0$ as $S \cap z d(R)=\emptyset$. Thus, $a \in z d(R)$ as $b \neq 0$ and $I$ is a semi $r$-ideal of $R$.

We recall that if $f=\sum_{i=1}^{m} a_{i} x^{i} \in R[x]$, then the ideal $\left\langle a_{1}, a_{2}, \cdots, a_{m}\right\rangle$ of $R$ generated by the coefficients of $f$ is called the content of $f$ and is denoted by $c(f)$. It is well known that if $f$ and $g$ are two polynomials in $R[x]$, then the content formula $c(g)^{m+1} c(f)=c(g)^{m} c(f g)$ holds where $m$ is the degree of $f,[9$, Theorem 28.1]. For an ideal $I$ of $R$, it can be easily seen that $I[x]=\{f(x) \in R[x]: c(f) \subseteq I\}$.

Definition 2. A ring $R$ is said to satisfy the property (*) if whenever $f \in$ $\operatorname{reg}(R[x])$, then $c(f) \backslash\{0\} \subseteq \operatorname{reg}(R)$.

Theorem 4. Let $I$ be an ideal of a ring $R$.

1. If $I[x]$ is a semi $r$-ideal of $R[x]$, then $I$ is a semi $r$-ideal of $R$.
2. If $R$ satisfies the property $(*)$ and $I$ is a semi $r$-ideal of $R$, then $I[x]$ is a semi $r$-ideal of $R[x]$

Proof. (1) Suppose $I[x]$ is a semi $r$-ideal of $R[x]$. Let $a \in R$ such that $a^{2} \in$ $I$ and $A n n_{R}(a)=0$. Then Clearly, $a^{2} \in I[x]$ and $A n n_{R[x]}(a)=0$. By assumption, $a \in I[x]$ and so $a \in I$ as required.
(2) Suppose $R$ satisfies the property ( $*$ ) and $I$ is a semi $r$-ideal of $R$. Let $f(x) \in R[x]$ such that $(f(x))^{2} \in I[x]$ and $A n n_{R[x]}(f(x))=0$. Then $c\left(f^{2}\right) \subseteq I$ and so by the content formula, $(c(f))^{2}=c\left(f^{2}\right) \subseteq I$. Moreover, $c(f) \cap z d(R)=\{0\}$ as $R$ satisfies the property $(*)$ and so $c(f) \subseteq I$ by Corollary 1. It follows that $f(x) \in I[x]$ and we are done.

In general, if $S$ is an overring of a ring $R$, then we may find a semi $r$-ideal $J$ of $S$ where $J \cap R$ is not a semi $r$-ideal in $R$.

Example 3. Let $S=\mathbb{Z} \times \mathbb{Z}$ and consider the ring homomorphism $\varphi: \mathbb{Z} \longrightarrow$ $\mathbb{Z} \times \mathbb{Z}$ defined by $\varphi(x)=(x, 0)$. Then $\varphi$ is a monomorphism and so $R=\varphi(\mathbb{Z})$ is a domain. Now, $J=A n n_{S}((0,1))$ is a nonzero (semi) r-ideal in $S$. However, clearly, $R \subseteq J$ and so $J \cap R=R$ is not a semi $r$-ideal in $R$.

Let $S$ be an overring ring of a ring $R$. Following [15], $R$ is said to be essential in $S$ if $J \cap R \neq\{0\}$ for every nonzero ideal $J$ of $S$.

Proposition 4. Let $R \subseteq S$ be rings such that $R$ is essential in $S$. If $J$ is a semi $r$-ideal of $S$, then $J \cap R$ is a semi $r$-ideal in $R$.

Proof. Let $a \in R$ such that $a^{2} \in J \cap R$ and $\operatorname{Ann}_{R}(a)=0$. Then $a \in S$ with $a^{2} \in J$ and $A n n_{S}(a)=0$. Indeed, if $A n n_{S}(a) \neq 0$, then $R$ being essential implies $\operatorname{Ann}_{S}(a) \cap R \neq\{0\}$. Thus, there exists $0 \neq r \in R$ such that $r \in A n n_{S}(a)$ and so $r \in A n n_{R}(a)$, a contradiction. Since $J$ is a semi $r$-ideal of $S$, then $a \in J \cap R$ and the result follows.,

The rest of this section is devoted to discuss semi $r$-ideals of cartesian products of rings and their particular subrings: the amalgamation rings.

Proposition 5. Let $R=R_{1} \times R_{2}$ where $R_{1}$ and $R_{2}$ are two rings and $I_{1}, I_{2}$ be proper ideals of $R_{1}$ and $R_{2}$, respectively. Then $I_{1} \times R_{2}$ (resp. $R_{1} \times I_{2}$ ) is a semi $r$-ideal of $R$ if and only if $I_{1}$ is a semi $r$-ideal of $R_{1}$ (resp. $I_{2}$ is a semi $r$-ideal of $R_{2}$ ).

Proof. Let $I_{1} \times R_{2}$ be a semi $r$-ideal of $R$ and $a \in R_{1}$ with $a^{2} \in I_{1}$ and $A n n_{R_{1}}(a)=0$. Then $(a, 1)^{2} \in I_{1} \times R_{2}$ and $\operatorname{Ann}_{R}(a, 1)=(0,0)$ imply that $(a, 1) \in I_{1} \times R_{2}$ and so $a \in I_{1}$. Thus $I_{1}$ is a semi $r$-ideal of $R_{1}$. Conversely, suppose that $(a, b)^{2} \in I_{1} \times R_{2}$ and $\operatorname{Ann}_{R}(a, b)=(0,0)$. Then $a^{2} \in I_{1}$ and clearly $\operatorname{Ann}_{R_{1}}(a)=0$ which implies $a \in I_{1}$. Hence, $(a, b) \in I_{1} \times R_{2}$, so we are done. The proof of the case $R_{1} \times I_{2}$ is similar.

The following corollary generalizes Proposition 5.
Corollary 4. Let $R_{1}, R_{2}, \cdots, R_{n}$ be rings, $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ and $I_{i}$ be a proper ideal of $R_{i}$ for each $i=1,2, \cdots n$. Then for all $j=1,2, \cdots n$, $I=R_{1} \times \cdots \times R_{j-1} \times I_{j} \times R_{j+1} \times \cdots \times R_{n}$ is a semi $r$-ideal of $R$ if and only if $I_{j}$ is a semi $r$-ideal of $R_{j}$.

Theorem 5. Let $R_{1}$ and $R_{2}$ be two rings, $R=R_{1} \times R_{2}$ and $I_{1}, I_{2}$ be proper ideals in $R_{1}$ and $R_{2}$, respectively.

1. If $I_{1}$ and $I_{2}$ are semi $r$-ideals of $R_{1}$ and $R_{2}$, respectively, then $I=I_{1} \times I_{2}$ is a semi $r$-ideal of $R$.
2. If $I=I_{1} \times I_{2}$ is a semi $r$-ideal of $R$, then either $I_{1}$ is a semi $r$-ideal of $R_{1}$ or $I_{2}$ is a semi $r$-ideal of $R_{2}$.
3. If $I=I_{1} \times I_{2}$ is a semi $r$-ideal of $R$ and $I_{2} \nsubseteq z d\left(R_{2}\right)$, then $I_{1}$ is a semi $r$-ideal of $R_{1}$.
4. If $I=I_{1} \times I_{2}$ is a semi $r$-ideal of $R$ and $I_{1} \nsubseteq z d\left(R_{1}\right)$, then $I_{2}$ is a semi $r$-ideal of $R_{2}$.

Proof. (1) Let $(a, b) \in R$ such that $\left(a^{2}, b^{2}\right)=(a, b)^{2} \in I$ and $A n n_{R}(a, b)=$ $(0,0)$. Then $a^{2} \in I_{1}, b^{2} \in I_{2}$ and clearly $\operatorname{Ann}_{R_{1}}(a)=A n n_{R_{2}}(b)=0$. Therefore, $a \in I_{1}, b \in I_{2}$ and so $(a, b) \in I$ as needed.
(2).Suppose $I=I_{1} \times I_{2}$ is a semi $r$-ideal of $R$ but $I_{1}$ and $I_{2}$ are not semi $r$-ideals of $R_{1}$ and $R_{2}$, respectively. Choose $a \in R_{1}$ and $b \in R_{2}$ such that $a^{2} \in I_{1}, b^{2} \in I_{2}, A n n_{R 1}(a)=0$ and $A n n_{R_{2}}(b)=0$ but $a \notin I_{1}$ and $b \notin I_{2}$. Then $(a, b)^{2} \in I$ and clearly, $A n n_{R}(a, b)=(0,0)$. By assumption, we have $(a, b) \in I$ which is a contradiction. Therefore, either $I_{1}$ is a semi $r$-ideal of $R_{1}$ or $I_{2}$ is a semi $r$-ideal of $R_{2}$.
(3) Suppose $a^{2} \in I_{1}$ for some $a \in R_{1}$ with $\operatorname{Ann}_{R_{1}}(a)=0$. Since $I_{2} \nsubseteq$ $Z\left(R_{2}\right)$, we can choose $b \in I_{2} \cap \operatorname{reg}\left(R_{2}\right)$. Then $(a, b)^{2} \in I$ and $A n n_{R}(a, b)=$ $(0,0)$. It follows that $(a, b) \in I$; and hence $a \in I_{1}$.
(4) is similar to (3).

The converse of Theorem $5(1)$ is not true in general. For example, $4 \mathbb{Z} \times 0$ is a semi $r$-ideal in $\mathbb{Z} \times \mathbb{Z}$ by Proposition 2 . On the other hand, the ideal $4 \mathbb{Z}$ is not a semi $r$-ideals of $\mathbb{Z}$.

The following corollary generalizes Theorem 5 to any finite direct product of rings. The proof is similar to that of Theorem 5 .

Corollary 5. Let $R_{1}, R_{2}, \cdots, R_{n}$ be rings, $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ and $I_{i}$ be a proper ideal of $R_{i}$ for each $i=1,2, \cdots n$.

1. If $I_{i}$ is a semi $r$-ideals of $R_{i}$ for each $i=1,2, \cdots n$, then $I=I_{1} \times I_{2} \times$ $\cdots \times I_{n}$ is a semi $r$-ideal of $R$.
2. If $I=I_{1} \times I_{2} \times \cdots \times I_{n}$ is a semi $r$-ideal of $R$, then $I_{j}$ is a semi $r$-ideal of $R_{j}$ for at least one $j \in\{1,2, \cdots, n\}$.
3. If $I=I_{1} \times I_{2} \times \cdots \times I_{n}$ is a semi $r$-ideal of $R$ and $I_{j} \nsubseteq Z\left(R_{j}\right)$ for all $j \neq i$, then $I_{i}$ is a semi $r$-ideal of $R_{i}$.

Lemma 2. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ where $R_{i}$ 's are rings and $R_{j}$ is reduced ring for some $j=1, \ldots, n$. If $I_{i}$ is an ideal of $R_{i}$ for all $i \neq j$, then $I=I_{1} \times \cdots \times I_{j-1} \times 0 \times I_{j+1} \times \cdots \times I_{n}$ is a semi $r$-ideal of $R$.

Proof. Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R$ with $a^{2} \in I$. Then $a_{j}^{2}=0$ which implies $a_{j}=0$ as $R_{j}$ is reduced. Since $A n n_{R}(a)=A n n_{R}\left(a_{1}, \ldots, a_{j-1}, 0, a_{j+1}, \ldots, a_{n}\right) \neq$ $0, I$ is a semi $r$-ideal of $R$.

Next, we present a characterization for semi $r$-ideals of cartesian products of domains.

Theorem 6. Let $R_{1}, R_{2}, \cdots, R_{n}(n \geq 2)$ be domains, $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ and $I_{i}$ be an ideal of $R_{i}$ for each $i=1,2, \cdots n$. Then $I=I_{1} \times I_{2} \times \cdots \times I_{n}$ is a semi r-ideal of $R$ if and only if one of the following statements holds

1. $I_{j}=\{0\}$ for at least one $j \in\{1,2, \cdots, n\}$.
2. There exists $j \in\{1,2, \cdots n\}$ such that $I_{i}$ is a semi $r$-ideal of $R_{i}$ for all $i=1, \cdots, j$ and $I_{i}=R_{i}$ for all $i=j+1, \cdots, n$.
3. $I_{i}$ is a semi $r$-ideals of $R_{i}$ for each $i=1,2, \cdots n$.

Proof. Suppose $I=I_{1} \times I_{2} \times \cdots \times I_{n}$ is a semi $r$-ideal of $R$. Suppose that all $I_{i}$ 's are nonzero. If for all $i \in\{1,2, \cdots n\}, I_{i}$ is proper in $R_{i}$, then $I_{i}$ is a semi $r$-ideals of $R_{i}$ by Corollary $5(3)$. Without loss of generality assume that $I_{1}, \ldots, I_{j}$ are proper in $R_{1}, \cdots, R_{j}$, respectively and $I_{i}=R_{i}$ for all $i \in\{j+1, \ldots, n\}$. For each $i \in\{2, \ldots, j\}$, choose a nonzero element $b_{i} \in I_{i}$.

Let $a \in R_{1}$ such that $a^{2} \in I_{1}$. Since $\left(a, b_{2}, b_{3}, \ldots b_{j}, 1_{R_{j+1}}, \ldots, 1_{R_{n}}\right)^{2} \in I$ and $A n n_{R}\left(a, b_{2}, b_{3}, \ldots b_{j}, 1_{R_{j+1}}, \ldots, 1_{R_{n}}\right)=0$, we have $\left(a, b_{2}, b_{3}, \ldots b_{j}, 1_{R_{j+1}}, \ldots, 1_{R_{n}}\right) \in$ $I$ and so $a \in I_{1}$. Therefore, $I_{1}$ is a semi $r$-ideal of $R_{1}$. Similarly, $I_{i}$ is a semi $r$-ideals of $R_{i}$ for all $i \in\{1, \ldots, j\}$.

Conversely, if (1) holds, then $I$ is clearly a semi $r$-ideal of $R$. Suppose that $I_{1}, \ldots, I_{j}$ are semi $r$-ideals and $I_{k}=R_{k}$ for all $k \in\{j+1, \ldots, n\}$. Let $a=$ $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R$ with $a^{2} \in I$ and $\operatorname{Ann}_{R}(a)=0$. Then for each $i \in\{1, \ldots, j\}$, $a_{i}^{2} \in I$ and $A n n_{R_{i}}\left(a_{i}\right)=0$ as $R_{i}$ 's are domain. Thus, $a_{i} \in I_{i}$ and so $a \in I$. Finally, if (3) holds, then $I=I_{1} \times I_{2} \times \cdots \times I_{n}$ is a semi $r$-ideal of $R$ by Corollary 5(1).

Let $R$ and $S$ be two rings, $J$ be an ideal of $S$ and $f: R \rightarrow S$ be a ring homomorphism. As a subring of $R \times S$, the amalgamation of $R$ and $S$ along $J$ with respect to $f$ is defined by $R \bowtie^{f} J=(a, f(a)+j): a \in R$, $j \in J\}$. If $f$ is the identity homomorphism on $R$, then we get the amalgamated duplication of $R$ along an ideal $J, R \bowtie J=\{(a, a+j): a \in R, j \in J\}$. For more related definitions and several properties of this kind of rings, one can see [6]. If $I$ is an ideal of $R$ and $K$ is an ideal of $f(R)+J$, then $I \bowtie^{f}$ $J=\{(i, f(i)+j): i \in I, j \in J\}$ and $\bar{K}^{f}=\{(a, f(a)+j): a \in R, j \in J$, $f(a)+j \in K\}$ are ideals of $R \bowtie^{f} J,[7]$.

Lemma 3. [3] Let $R, S$, $J$ and $f$ be as above. Let $A=\{(r, f(r)+j) \mid r \in$ $z d(R)\}$ and $B=\left\{(r, f(r)+j) \mid j^{\prime}(f(r)+j)=0\right.$ for some $\left.j^{\prime} \in J \backslash\{0\}\right\}$. Then $z d\left(R \bowtie^{f} J\right) \subseteq A \cup B$.

Next, we determine conditions under which $I \bowtie^{f} J$ and $\bar{K}^{f}$ are semi $r$ ideals of $R \bowtie^{f} J$.

Theorem 7. Let $R, S$, $J$ and $f$ be as above. If $I$ is a semi $r$-ideal of $R$, then $I \bowtie^{f} J$ is a semi $r$-ideal of $R \bowtie^{f} J$. The converse is true if $f(\operatorname{reg}(R)) \cap Z(J)=$ $\emptyset$

Proof. Suppose $I$ is a semi $r$-ideal of $R$. Let $(a, f(a)+j) \in R \bowtie^{f} J$ such that $(a, f(a)+j)^{2}=\left(a^{2}, f\left(a^{2}\right)+2 j f(a)+j^{2}\right) \in I \bowtie^{f} J$ and $(a, f(a)+j) \notin$ $z d\left(R \bowtie^{f} J\right)$. Then $a^{2} \in I$ and $a \notin z d(R)$ by Lemma 3. Therefore, $a \in I$ and so $(a, f(a)+j) \in I \bowtie^{f} J$ as needed. Now, suppose $f(\operatorname{reg}(R)) \cap Z(J)=\emptyset$ and $I \bowtie^{f} J$ is a semi $r$-ideal of $R \bowtie^{f} J$. Let $a^{2} \in I$ for $a \in R$ and $a \notin z d(R)$. Then $(a, f(a)) \in R \bowtie^{f} J$ with $(a, f(a))^{2}=\left(a^{2}, f\left(a^{2}\right)\right) \in I \bowtie^{f} J$. If $(a, f(a)) \in$ $z d\left(R \bowtie^{f} J\right)$, then Lemma 3 implies $f(a) \in Z(J)$ which is a contradiction. Therefore, $(a, f(a)) \notin z d\left(R \bowtie^{f} J\right)$ and so $(a, f(a)) \in I \bowtie^{f} J$ as $I \bowtie^{f} J$ is a semi $r$-ideal of $R \bowtie^{f} J$. Thus, $a \in I$ as required.

Theorem 8. Let $f: R \rightarrow S$ be a ring homomorphism and $J, K$ be ideals of $S$. If $K$ is a semi r-ideal of $f(R)+J$, then $\bar{K}^{f}$ is a semi r-ideal of $R \bowtie^{f} J$.

1. If $K$ is a semi $r$-ideal of $f(R)+J$ and $z d(f(R)+J)=Z(J)$, then $\bar{K}^{f}$ is a semi $r$-ideal of $R \bowtie^{f} J$.
2. If $\bar{K}^{f}$ is a semi $r$-ideal of $R \bowtie^{f} J, f(z d(R)) \subseteq z d(f(R)+J)$ and $f(z d(R)) J=0$, then $K$ is a semi $r$-ideal of $f(R)+J$.

Proof. (1) Suppose $K$ is a semi $r$-ideal of $f(R)+J$. Let $(a, f(a)+j) \in R \bowtie^{f} J$ such that $(a, f(a)+j)^{2}=\left(a^{2},(f(a)+j)^{2}\right) \in \bar{K}^{f}$ and $(a, f(a)+j) \notin z d\left(R \bowtie^{f} J\right)$. Then $(f(a)+j)^{2} \in K$ and by Lemma $3, f(a)+j \notin Z(J)=z d(f(R)+J)$. Therefore, $f(a)+j \in K$ and $(a, f(a)+j) \in \bar{K}^{f}$ as needed.
(2) Suppose $\bar{K}^{f}$ is a semi $r$-ideal of $R \bowtie^{f} J$ and $f(z d(R)) J=0$. Let $f(a)+j \in f(R)+J$ such that $(f(a)+j)^{2} \in K$ and $f(a)+j \notin z d(f(R)+J)$. Then $(a, f(a)+j) \in R \bowtie^{f} J$ with $(a, f(a)+j)^{2} \in \bar{K}^{f}$. Suppose $(a, f(a)+j) \in$ $z d\left(R \bowtie^{f} J\right)$. Then as $Z(J) \subseteq z d(f(R)+J)$ and by Lemma 3, we conclude that $a \in z d(R)$. Since $f(a) \in z d(f(R)+J)$, then $f(a) f(b)=0$ for some $0 \neq f(b) \in f(R)$. Thus, $(f(a)+j) f(b)=0$ as $f(z d(R)) J=0$ which contradicts that $f(a)+j \notin z d(f(R)+J)$. Therefore, $(a, f(a)+j) \notin z d\left(R \bowtie^{f} J\right)$ and so $(a, f(a)+j) \in \bar{K}^{f}$. It follows that $f(a)+j \in K$ and $K$ is a semi $r$-ideal of $f(R)+J$.

## 3 Semi $r$-submodules of modules over commutative rings

The aim of this section is to extend semi $r$-ideals of commutative rings to semi $r$-submodules of modules over commutative rings. Recall that a module $M$ is said to be faithful if $A n n_{R}(M)=\left(0:_{R} M\right)=0_{R}$.

Definition 3. Let $M$ be an $R$-module and $N$ a proper submodule of $M$.

1. $N$ is called a semiprime submodule if whenever $r^{2} m \in N$, then $r m \in N$. [16]
2. $N$ is called a $r$-submodule if whenever $r m \in N$ and $A n n_{M}(r)=0_{M}$, then $m \in N$. [13]
3. $N$ is called a $s r$-submodule if whenever $r m \in N$ and $A n n_{R}(m)=0$, then $m \in N .[13]$

Definition 4. Let $M$ be an $R$-module and $N$ a proper submodule of $M$. We call $N$ a semi $r$-submodule if whenever $r \in R, m \in M$ with $r^{2} m \in N$, $A n n_{M}(r)=0_{M}$ and $A n n_{R}(m)=0$, then $r m \in N$.

The reader clearly observe that any semi $r$-submodule of an $R$-module $R$ is a semi $r$-ideal of $R$. The zero submodule is always a semi $r$-submodule of M. Also, see the implications:
$r$-submodule
$s r$-submodule $\quad \begin{array}{ll} & \\ & \\ & \text { semi } r \text {-submodule }\end{array}$
semiprime submodule

However, the next examples show that these arrows are irreversible.

## Example 4.

1. Consider the submodule $N=6 \mathbb{Z} \times\langle 0\rangle$ of the $\mathbb{Z}$-module $M=\mathbb{Z} \times \mathbb{Z}$. Let $r \in \mathbb{Z}$ and $m=\left(m_{1}, m_{2}\right) \in M$ such that $r^{2} \cdot\left(m_{1}, m_{2}\right) \in N$. Then $r^{2} m_{1} \in 6 \mathbb{Z}, r^{2} m_{2}=0$ and $A n n_{\mathbb{Z}}(r)=A n n_{\mathbb{Z}}\left(m_{1}\right)=A n n_{\mathbb{Z}}\left(m_{2}\right)=0$ as $\mathbb{Z}$ is a domain. Since $6 \mathbb{Z}$ and $\langle 0\rangle$ are semi $r$-ideals of $\mathbb{Z}$, then $r \cdot\left(m_{1}, m_{2}\right) \in N$ and so $N$ is a semi $r$-submodule of $M$. On the other hand, we have $2 \cdot(3,0) \in N$ with $A n n_{M}(2)=0_{M}$ and $A n n_{\mathbb{Z}}((3,0))=0$ but $(3,0) \notin N$ and so $N$ is neither $r$-submodule nor $s r$-submodule of $M$.
2. Consider the submodule $N=\langle\overline{4}\rangle \times\langle 0\rangle$ of the $\mathbb{Z}$-module $M=\mathbb{Z}_{8} \times \mathbb{Z}$. Let $r \in \mathbb{Z}$ and $m=\left(m_{1}, m_{2}\right) \in M$ such that $r^{2} \cdot\left(m_{1}, m_{2}\right) \in N$. Then it is clear to observe that $A n n_{\mathbb{Z}}(r)=A n n_{\mathbb{Z}}\left(m_{1}\right)=A n n_{\mathbb{Z}}\left(m_{2}\right)=0$. Since again $N$ is a semi $r$-submodule of $M$ as $\langle\overline{4}\rangle$ is a semi $r$-ideal of $\mathbb{Z}_{8}$ and $\langle 0\rangle$ is a semi $r$-ideals of $\mathbb{Z}$. However, $2^{2} \cdot(\overline{1}, 0) \in N$ but $2 \cdot(\overline{1}, 0) \notin N$ and so $N$ is not a semiprime submodule of $M$.

Proposition 6. Let $M$ be an $R$-module, $N$ a proper submodule of $M$ and $k$ any positive integer. Then $N$ is a semi $r$-submodule of $M$ if and only if whenever $r \in R, m \in M$ with $r^{k} m \in N, A n n_{M}(r)=0_{M}$ and $A n n_{R}(m)=0$, then $r m \in N$.

Proof. The proof follows by mathematical induction on $k$ in a similar way to that of Theorem 1 (3).

We recall that a module $M$ is torsion (resp. torsion-free) if $T(M)=M$ (resp. $T(M)=\{0\}$ ) where $T(M)=\{m \in M$ : there exists $0 \neq r \in R$ such that $r m=0\}$. It is clear that any torsion-free module is faithful.

Proposition 7. Semi r-submodules and semiprime submodules are coincide in any torsion-free module.

Proof. Since every semiprime submodule is semi $r$-submodule, we need to show the converse. Let $N$ be a semi $r$-submodule of an $R$-module $M, r \in R$, $m \in M$ with $r^{2} m \in N$. Keeping in mind that $M$ is torsion-free, we have
$A n n_{R}(m)=0$. Now, suppose that $m^{\prime} \in A n n_{M}(r)$. Then $r m^{\prime}=0$ and if $r=0$, then clearly $r m \in N$. If $r \neq 0$, then $m^{\prime}=0$ again as $M$ is torsion-free. Since $N$ is a semi $r$-submodule, we conclude $r m \in N$, as required.

Definition 5. A proper submodule $N$ of an $R$-module $M$ is said to satisfy the $D$-annihilator condition if whenever $K$ is a submodule of $M$ and $r \in R$ such that $r K \subseteq N$ and $A n n_{M}(r)=0_{M}$, then either $K \subseteq N$ or $K \cap T(M)=\left\{0_{M}\right\}$.

Obviously, any $r$-submodule satisfies the $D$-annihilator condition. The converse is not true in general. For example the submodule $N=6 \mathbb{Z} \times\langle 0\rangle$ of the $\mathbb{Z}$-module $M=\mathbb{Z} \times \mathbb{Z}$ clearly satisfies the $D$-annihilator condition. On the other hand, $N$ is not an $r$-submodule of $M$, (see Example $4(1)$ ). It is clear that any proper submodule of a torsion-free module satisfies the $D$-annihilator condition. However, we may find a submodule satisfying the $D$-annihilator condition in a torsion module. For example, for any positive integer $n$, every proper submodule of the $\mathbb{Z}$-module $\mathbb{Z}_{n}$ satisfies the $D$-annihilator condition. Indeed, suppose that $r m \in\langle\bar{d}\rangle$ for some integer $d$ dividing $n$. Put $n=c d$ then $c r \bar{m}=0$. Since $A n n_{M}(r)=0_{M}$, we get $c \bar{m}=0$ and so $\bar{m} \in\langle\bar{d}\rangle$.

Proposition 8. Let $N$ be a proper submodule of an $R$-module $M$ satisfying the $D$-annihilator condition. Then the following are equivalent.

1. $N$ is a semi $r$-submodule of $M$.
2. For $r \in R$ and a submodule $K$ of $M$ with $r^{2} K \subseteq N$ and $A n n_{M}(r)=0_{M}$, then $r K \subseteq N$.

Proof. (1) $\Rightarrow(2)$. Suppose that $r^{2} K \subseteq N$ and $A n n_{M}(r)=0_{M}=A n n_{M}\left(r^{2}\right)$. If $K \subseteq N$, then we are done. If $K \nsubseteq N$, then $A n n_{R}(k)=0_{R}$ for each $k \in K$ since by assumption $K \cap T(M)=\left\{0_{M}\right\}$. Since $N$ is a semi $r$-submodule, we conclude that $r k \in N$. Therefore, $r k \in N$ for all $k \in K$ and the result follows.
$(2) \Rightarrow(1)$. is straightforward.
Recall that an $R$-module $M$ is called a multiplication module if every submodule $N$ of $M$ has the form $I M$ for some ideal $I$ of $R$. Moreover, we have $N=\left(N:_{R} M\right) M$. Next, we conclude a useful characterization for semi $r$-submodules. First, recall the following lemmas.

Lemma 4. [17] Let $N$ be a submodule of a finitely generated faithful multiplication $R$-module $M$. For an ideal $I$ of $R,\left(I N:_{R} M\right)=I\left(N:_{R} M\right)$, and in particular, $\left(I M:_{R} M\right)=I$.

Lemma 5. [1] Let $N$ is a submodule of faithful multiplication $R$-module $M$. If $I$ is a finitely generated faithful multiplication ideal of $R$, then

1. $N=\left(I N:_{M} I\right)$.
2. If $N \subseteq I M$, then $\left(J N:_{M} I\right)=J\left(N:_{M} I\right)$ for any ideal $J$ of $R$.

Theorem 9. Let $M$ be a finitely generated faithful multiplication $R$-module. Then a submodule $N=I M$ satisfying the $D$-annihilator condition is a semi $r$-submodule of $M$ if and only if $I$ is a semi $r$-ideal of $R$.

Proof. Suppose $N=I M$ is a semi $r$-submodule of $M$ and let $r \in R$ such that $r^{2} \in I$ with $A n n_{R}(r)=0$. We claim that $A n n_{M}(r)=0_{M}$. Indeed, if there is $0_{M} \neq m \in M$ such that $r m=0_{M}$, then $\langle r\rangle\left(\langle m\rangle:_{R} M\right)=\left(\langle r m\rangle:_{R}\right.$ $M)=\left(0_{M}:_{R} M\right)=0$ by Lemma 4. Thus, $\left(\langle m\rangle:_{R} M\right)=0$ as $A n n_{R}(r)=0$ and then $\langle m\rangle=\left(\langle m\rangle:_{R} M\right) M=0_{M}$, a contradiction. Since $N$ satisfies the $D$-annihilator condition and $r^{2} M \subseteq I M$, then $r M \subseteq I M$ by Proposition 8 . Thus, $r \in\left(r M:_{R} M\right) \subseteq\left(I M:_{R} M\right)=I$, as needed.

Conversely, suppose that $I$ is a semi $r$-ideal of $R$. Let $r \in R$ and $K=J M$ be a submodule of $M$ such that $r^{2} J M=r^{2} K \subseteq I M$ and $A n n_{M}(r)=0_{M}$. Take $A=r J$ and note that $A^{2} \subseteq r^{2} J M: M \subseteq\left(I M:_{R} M\right)=I$ by Lemma 4 . Now, we claim that $A \cap z d(R)=\{0\}$. Suppose on contrary that there exists $0 \neq a=r j \in A$ such that $A n n_{R}(a) \neq 0$. Choose $0 \neq b \in R$ with $a b=r j b=0$. Then $r j b M=0_{M}$ and so $j b M=0_{M}$ as $A n n_{M}(r)=0_{M}$. Since $b \neq 0, j M \subseteq K$ and $N$ satisfies the $D$-annihilator condition, then $j M=0$ and we conclude $j=$ 0 as $M$ is faithful, which is a contradiction. Therefore, $A \cap z d(R)=\{0\}$ and $A \subseteq I$ by Corollary 1. Thus, $r K=r J M=A M \subseteq I M=N$ as needed.

In view of Theorem 9 we give the following characterization.
Corollary 6. Let $R$ be a ring and $M$ be a finitely generated faithful multiplication $R$-module. For a submodule $N$ of $M$ satisfying the $D$-annihilator condition, the following statements are equivalent.

1. $N$ is a semi $r$-submodule of $M$.
2. $\left(N:_{R} M\right)$ is semi $r$-ideal of $R$.
3. $N=I M$ for some semi r-ideal $I$ of $R$.

Let $N$ be a submodule of an $R$-module $M$ and $I$ be an ideal of $R$. The residual of $N$ by $I$ is the set $\left(N:_{M} I\right)=\{m \in M: I m \subseteq N\}$. It is clear that $\left(N:_{M} I\right)$ is a submodule of $M$ containing $N$. More generally, for any subset $S \subseteq R,\left(N:_{M} S\right)$ is a submodule of $M$ containing $N$. We recall that $M-\operatorname{rad}(N)$ denotes the intersection of all prime submodules of $M$ containing $N$. Moreover, if $M$ is finitely generated faithful multiplication, then $M-\operatorname{rad}(N)=\sqrt{\left(N:_{R} M\right)} M,[17]$.

Proposition 9. Let $M$ be a finitely generated multiplication $R$-module and $N$ be a semi r-submodule of $M$ satisfying the $D$-annihilator condition.

1. For any ideal $I$ of $R$ with $\left(N:_{M} I\right) \neq M,\left(N:_{M} I\right)$ is a semi $r$-submodule of $M$.
2. If $M$ is faithful, then $\left(M-r a d(N):_{R} M\right) \subseteq z d(R) \cup \sqrt{\left(N:_{R} M\right)}$.

Proof. (1) First, we show that $\left(N:_{M} I\right)$ satisfies the $D$-annihilator condition. Let $K$ be a submodule of $M$ and $r \in R$ such that $r K \subseteq\left(N:_{M} I\right), K \nsubseteq$ $\left(N:_{M} I\right)$ and $A n n_{M}(r)=0_{M}$. Then $r I K \subseteq N$ and so $I K \cap T(M)=\left\{0_{M}\right\}$. It follows clearly that $K \cap T(M)=\left\{0_{M}\right\}$ as needed. Suppose $N$ is a semi $r$ submodule of $M$. Let $K$ be a submodule of $M$ such that $r^{2} K \subseteq\left(N:_{M} I\right)$ and $A n n_{M}(r)=0_{M}$. Then $r^{2} I K \subseteq N$ which implies that $r I K \subseteq N$ by Proposition 8 and thus, $r K \subseteq\left(N:_{M} I\right)$. Therefore, $\left(N:_{M} I\right)$ is a semi $r$-submodule of $M$ again by Proposition 8.
(2) Since $N$ be a semi $r$-submodule, $\left(N:_{R} M\right)$ is a semi $r$-ideal of $R$ by Corollary 6. Then the claim follows as $M-\operatorname{rad}(N)=\sqrt{\left(N:_{R} M\right)} M$ and by using Theorem 1(4).

Next, we discuss when $I N$ is a semi $r$-submodule of a finitely generated multiplication module $M$ where $I$ is an ideal of $R$ and $N$ is a submodule of $M$. Recall that a submodule $N$ of an $R$-module $M$ is said to be pure if $J N=J M \cap N$ for every ideal $J$ of $R$.

Theorem 10. Let $I$ be an ideal of a ring $R, M$ be a finitely generated faithful multiplication $R$-module and $N$ be a submodule of $M$ such that $I N$ satisfies the $D$-annihilator condition.

1. If $I$ is a semi $r$-ideal of $R$ and $N$ is a pure semi $r$-submodule of $M$, then $I N$ is a semi $r$-submodule of $M$.
2. Let $I$ be a finitely generated faithful multiplication ideal of $R$. If $I N$ is semi $r$-submodule of $M$, then either $I$ is a semi $r$-ideal of $R$ or $N$ is a semi $r$-submodule of $M$.

Proof. (1) Suppose that $r^{2} K \subseteq I N$ and $A n n_{M}(r)=0_{M}$ for some $r \in R$ and a submodule $K=J M$ of $M$. If we take $A=r J$, then $A^{2} \subseteq r^{2} J M: M \subseteq(I N$ : $M)=I(N: M) \subseteq I \cap(N: M)$. By Theorem $9,\left(N:_{R} M\right)$ is a semi $r$-ideal. We show that $A \cap z d(R)=\{0\}$. Let $x \in A \cap z d(R)$, say, $x=r y$ for some $y \in J$. Choose a nonzero $z \in R$ such that $x z=r y z=0$. Then $r y z M=0_{M}$ and since $A n n_{M}(r)=0_{M}$, we have $y z M=0_{M}$. Since $M$ is faithful and $z \neq 0$, we conclude that $y M=0_{M}$ and so $y=0$. Thus $x=0$, as required. Since $\left(N:_{R} M\right)$ is a semi $r$-ideal, then $A \subseteq\left(N:_{R} M\right)$ by Corollary 1. Therefore,
$r K=A M \subseteq\left(N:_{R} M\right) M=N$. On the other hand, since $I$ is also a semi $r$-ideal, we have $A \subseteq I$ and so $r K=A M \subseteq I M$. Since $N$ is pure, we conclude that $r K \subseteq I M \cap N=I N$ and we are done.
(2) First, by using Lemma 5, we note clearly that $N$ satisfies the $D$ annihilator condition. We have two cases.

Case I. Let $N=M$. Then $I=I\left(N:_{R} M\right)=\left(I N:_{R} M\right)$ is a semi $r$-ideal of $R$ by Corollary 6.

Case II. Let $N$ be proper. Observe that by Lemma 5 , we have the equality $\left(N:_{R} M\right)=\left(\left(I N:_{M} I\right):_{R} M\right)=\left(I\left(N:_{R} M\right):_{M} I\right)$. Suppose that $r^{2} \in$ $\left(N:_{R} M\right)$ and $r \notin z d(R)$. Then $(r I)^{2} \subseteq r^{2} I \subseteq I\left(N:_{R} M\right)=\left(I N:_{R} M\right)$ by Lemma 4 . Here, similar to the proof of Theorem 9 , it can be easily verify that $r I \cap z d(R)=\{0\}$. Since $\left(I N:_{R} M\right)$ is a semi $r$-ideal, $r I \subseteq\left(I N:_{R} M\right)=$ $I\left(N:_{R} M\right)$ which means $r \in\left(I\left(N:_{R} M\right):_{M} I\right)=\left(N:_{R} M\right)$ by Lemma 5. Thus, $\left(N:_{R} M\right)$ is a semi $r$-ideal of $R$ and Corollary 6 implies that $N$ is a semi $r$-submodule of $M$.

Next, we study the behavior of the semi $r$-submodule property under module homomorphisms.

Proposition 10. Let $M$ and $M^{\prime}$ be $R$-modules and $f: M \rightarrow M^{\prime}$ be an $R$ module homomorphism.

1. If $f$ is an epimorphism and $N$ is a semi $r$-submodule of $M$ such that $\operatorname{Ker}(f) \subseteq N$ and $N \cap T(M)=\left\{0_{M}\right\}$, then $f(N)$ is a semi $r$-submodule of $M^{\prime}$.
2. If $f$ is an isomorphism and $N^{\prime}$ is a semi $r$-submodule of $M^{\prime}$, then $f^{-1}\left(N^{\prime}\right)$ is a semi $r$-submodule of $M$.

Proof. (1). Let $N$ be a semi $r$-submodule of $M$ and $r \in R, m^{\prime}:=f(m) \in M^{\prime}$ $(m \in M)$ such that $r^{2} m^{\prime} \in f(N), A n n_{M^{\prime}}(r)=0_{M}$, and $A n n_{R}(f(m))=0_{M}$. Then $r^{2} m \in N$ as $\operatorname{Ker}(f) \subseteq N$. We show that $A n n_{M}(r)=0_{M}$. If $r=0$, then the claim is obvious. Suppose $r \neq 0$ and there is $m_{1} \in M$ such that $r m_{1}=0_{M}$. Then $r f\left(m_{1}\right)=0_{M^{\prime}}$ and so $f\left(m_{1}\right)=0_{M^{\prime}}$ as $A n n_{M^{\prime}}(r)=0_{M}{ }^{\prime}$. Thus, $m_{1} \in \operatorname{Ker}(f) \cap T(M) \subseteq N \cap T(M)=\left\{0_{M}\right\}$ as needed. Also, it is clear that $A n n_{R}(m)=0_{M}$. Therefore, $r m \in N$ and so $r m^{\prime} \in f(N)$ as required.
(2). Let $N^{\prime}$ is a semi $r$-submodule of $M^{\prime}$. Suppose that $r^{2} m \in f^{-1}\left(N^{\prime}\right)$, $A n n_{M}(r)=0_{M}$ and $A n n_{R}(m)=0$ for some $r \in R$ and $m \in M$. Then $r^{2} f(m)=f\left(r^{2} m\right) \in N^{\prime}, A n n_{M^{\prime}}(r)=0_{M^{\prime}}$ and $A n n_{R}(f(m))=0$. Indeed, if $r m^{\prime}=0$ for some $0 \neq m^{\prime}=f\left(m_{1}\right) \in M^{\prime}$, then $r m_{1} \in K$ erf $=\left\{0_{M}\right\}$ and clearly $0 \neq m_{1} \in M$, a contradiction. Similarly, if there exists $0 \neq c \in R$ such that $c f(m)=0_{M^{\prime}}$, then $c m=0_{M}$ which is also a contradiction. Since $N^{\prime}$ is a semi $R$-submodule, then $r f(m) \in N^{\prime}$ and so $r m \in f^{-1}\left(N^{\prime}\right)$. Thus, $f^{-1}\left(N^{\prime}\right)$ is a semi $r$-submodule of $M$.

In the following, we discuss semi $r$-submodules of localizations of modules. Here, the notation $Z_{N}(R)$ denotes the set $\{r \in R: r m \in N$ for some $m \in$ $M \backslash N\}$.

Theorem 11. Let $S$ be a multiplicatively closed subset of a ring $R$ and $M$ be an $R$-module such that $S \cap Z(M)=\emptyset$.

1. If $N$ is a semi $r$-submodule of $M$ such that $\left(N:_{R} M\right) \cap S=\emptyset$, then $S^{-1} N$ is a semi $r$-submodule of $S^{-1} M$.
2. If $S^{-1} N$ is a semi $r$-submodule of $S^{-1} R$ and $S \cap Z_{N}(R)=\emptyset$, then $N$ is a semi $r$-submodule of $M$.

Proof. (1) Let $\frac{r}{s} \in S^{-1} R, \frac{m}{t} \in S^{-1} M$ with $\left(\frac{r}{s}\right)^{2}\left(\frac{m}{t}\right) \in S^{-1} N, A n n_{S^{-1} M}\left(\frac{r}{s}\right)=$ $0_{S^{-1} M}$ and $A n n_{S^{-1} R}\left(\frac{m}{t}\right)=0_{S^{-1} R}$. Choose $u \in S$ such that $r^{2}(u m) \in N$. We show that $A n n_{M}(r)=0_{M}$ and $A n n_{R}(u m)=0$. First, assume that $r m^{\prime}=$ $0_{M}$ for some $m^{\prime} \in M$. Then $\left(\frac{r}{s}\right)\left(\frac{m^{\prime}}{1}\right)=0_{S^{-1} M}$ and so $\frac{m^{\prime}}{1}=0_{S^{-1} M}$ as $A n n_{S^{-1} M}\left(\frac{r}{s}\right)=0_{S^{-1} M}$. Hence, there exists $v \in S$ such that $v m^{\prime}=0_{M}$. Since $S \cap Z(M)=\emptyset$, then $m^{\prime}=0_{M}$ and so $A n n_{M}(r)=0_{M}$. Secondly, assume that $r^{\prime} u m=0$ for some $r^{\prime} \in R$. Then $\frac{r^{\prime} u}{1} \frac{m}{t}=0_{S^{-1} M}$ and $A n n_{S^{-1} R}\left(\frac{m}{t}\right)=$ $0_{S^{-1} R}$ imply that $r^{\prime} u s=0$ for some $s \in S$. But, clearly, $u m \neq 0_{M}$ and so $u s \in S \cap Z(M)=\emptyset$, a contradiction. Hence, $A n n_{R}(u m)=0$. Therefore, $r^{2}(u m) \in N$ implies that $r u m \in N$ and so $\frac{r}{s} \frac{m}{t}=\frac{r u m}{s u t} \in S^{-1} N$.
(2) Suppose that $r^{2} m \in N$ with $A n n_{M}(r)=0_{M}$ and $A n n_{R}(m)=0$ for some $r \in R$ and $m \in M$. Now, $\left(\frac{r}{1}\right)^{2} \frac{m}{1} \in S^{-1} N$. If $A n n_{S^{-1} M}\left(\frac{r}{1}\right) \neq 0_{S^{-1} M}$, then there exists $0_{S^{-1} M} \neq \frac{m^{\prime}}{t} \in S^{-1} M$ such that $\frac{r}{1} \frac{m^{\prime}}{t}=0_{S^{-1} M}$ which implies $u r m^{\prime}=0_{M}$ for some $u \in S$. Since $\operatorname{Ann}_{M}(r)=0_{M}$, we have $u m^{\prime}=0_{M}$ and $\frac{m^{\prime}}{t}=\frac{u m^{\prime}}{u t}=0_{S^{-1} M}$, a contradiction. Now, assume that $A n n_{S^{-1} R}\left(\frac{m}{1}\right) \neq$ $0_{S^{-1} R}$. Then $\frac{r^{\prime}}{s^{\prime}} \frac{m}{1}=0_{S^{-1} M}$ for some $0_{S^{-1} R} \neq \frac{r^{\prime}}{s^{\prime}} \in S^{-1} R$. Thus, $r^{\prime} v m=0$ for some $v \in S$ and clearly $r^{\prime} m \neq 0_{M}$. Hence, again $v \in S \cap Z(M)=\emptyset$, a contradiction. Thus, $A n n_{S^{-1} M}\left(\frac{r}{1}\right)=0_{S^{-1} M}$ and $A n n_{S^{-1} R}\left(\frac{m}{1}\right)=0_{S^{-1} R}$ imply that $\frac{r}{1} \frac{m}{1} \in S^{-1} N$ and so $w r m \in N$ for some $w \in S$. Since $S \cap Z_{N}(M)=\emptyset$, we conclude that $r m \in N$, as desired.

We recall from [2] that for an $R$-module $M$, we have

$$
z d(R(+) M)=\{(r, m) \mid r \in z d(R) \cup Z(M), m \in M\}
$$

where $Z(M)=\left\{r \in R: r m=0\right.$ for some $\left.0_{M} \neq m \in M\right\}$. In the following proposition, we justify the relation between semi $r$-ideals of $R$ and those of the idealization ring $R(+) M$.

Proposition 11. Let $M$ be an $R$-module and $I$ be a proper ideal of $R$.

1. If $I$ is a semi $r$-ideal of $R$, then $I(+) M$ is a semi $r$-ideal of $R(+) M$. Moreover, the converse is true if $Z(M) \subseteq z d(R)$.
2. If $I$ is a semi $r$-ideal of $R$ and $N$ is an r-submodule of $M$, then $I(+) N$ is a semi $r$-ideal of $R(+) M$. Moreover, the converse is true if $Z(M) \subseteq$ $z d(R)$.

Proof. (1). Suppose that $(a, m)^{2} \in I(+) M$ and $(a, m) \notin z d(R(+) M)$. Then $a^{2} \in I$ and $a \notin z d(R)$. Since $I$ is a semi $r$-ideal, we conclude that $a \in I$ and so $(a, m) \in I(+) M$. Now, assume that $Z(M) \subseteq z d(R)$ and $I(+) M$ is a semi $r$-ideal of $R(+) M$. Let $a \in R$ such that $a^{2} \in I$ but $a \notin I$. Then $(a, 0)^{2} \in I(+) M$ and $(a, 0) \notin I(+) M$ which imply that $(a, 0) \in z d(R(+) M)$. Since $Z(M) \subseteq z d(R)$, we conclude that $a \in z d(R)$ and we are done.
(2). Suppose that $(a, m)^{2} \in I(+) N$ and $(a, m) \notin z d(R(+) M)$. Then $a \in I$ as in (1). Moreover, $a . m \in N$ as $I M \subseteq N$. Since also, $a \notin Z(M)$, then $\operatorname{Ann}_{M}(a)=0$. Therefore, $m \in N$ as $N$ is an $r$-submodule of $M$ and $(a, m) \in I(+) N$ as needed. If $Z(M) \subseteq z d(R)$, then similar to the proof of (1), the converse holds.

Remark 1. In general, if $Z(M) \nsubseteq z d(R)$, then the converse of Proposition 11 need not be true. For example, consider the idealization ring $R=\mathbb{Z}(+) \mathbb{Z}_{4}$ and the ideal $4 \mathbb{Z}(+) \mathbb{Z}_{4}$ of $R$. Let $(a, m)^{2} \in 4 \mathbb{Z}(+) \mathbb{Z}_{4}$ for $(a, m) \in R$. Then $a^{2} \in 4 \mathbb{Z}$ and so $(a, m) \in 2 \mathbb{Z} \times \mathbb{Z}_{4}=z d(R)$. Thus, $4 \mathbb{Z}(+) \mathbb{Z}_{4}$ is a (semi) r-ideal of $R$. On the other hand, $4 \mathbb{Z}$ is not a semi r-ideal of $\mathbb{Z}$.

## 4 Semi $r$-submodules of amalgamated modules

Let $R$ be a ring, $J$ an ideal of $R$ and $M$ an $R$-module. Recently, in [5], the duplication of the $R$-module $M$ along the ideal $J$ (denoted by $M \bowtie J$ ) is defined as

$$
M \bowtie J=\left\{\left(m, m^{\prime}\right) \in M \times M: m-m^{\prime} \in J M\right\}
$$

which is an $(R \bowtie J)$-module with scaler multiplication defined by $(r, r+j)$. $\left(m, m^{\prime}\right)=\left(r m,(r+j) m^{\prime}\right)$ for $r \in R, j \in J$ and $\left(m, m^{\prime}\right) \in M \bowtie J$. For various properties and results concerning this kind of modules, one may see [5].

Let $J$ be an ideal of a ring $R$ and $N$ be a submodule of an $R$-module $M$. Then

$$
N \bowtie J=\{(n, m) \in N \times M: n-m \in J M\}
$$

and

$$
\bar{N}=\{(m, n) \in M \times N: m-n \in J M\}
$$

are clearly submodules of $M \bowtie J$. Moreover,
$A n n_{R \bowtie J}(M \bowtie J)=(r, r+j) \in R \bowtie I \mid r \in A n n_{R}(M)$ and $\left.j \in A n n_{R}(M) \cap J\right\}$
and so $M \bowtie J$ is a faithful $R \bowtie J$-module if and only if $M$ is a faithful $R$-module, [5, Lemma 3.6].

In general, let $f: R_{1} \rightarrow R_{2}$ be a ring homomorphism, $J$ be an ideal of $R_{2}$, $M_{1}$ be an $R_{1}$-module, $M_{2}$ be an $R_{2}$-module (which is an $R_{1}$-module induced naturally by $f$ ) and $\varphi: M_{1} \rightarrow M_{2}$ be an $R_{1}$-module homomorphism. The subring

$$
R_{1} \bowtie^{f} J=\left\{(r, f(r)+j): r \in R_{1}, j \in J\right\}
$$

of $R_{1} \times R_{2}$ is called the amalgamation of $R_{1}$ and $R_{2}$ along $J$ with respect to $f$. In [8], the amalgamation of $M_{1}$ and $M_{2}$ along $J$ with respect to $\varphi$ is defined as

$$
M_{1} \bowtie^{\varphi} J M_{2}=\left\{\left(m_{1}, \varphi\left(m_{1}\right)+m_{2}\right): m_{1} \in M_{1} \text { and } m_{2} \in J M_{2}\right\}
$$

which is an $\left(R_{1} \bowtie^{f} J\right)$-module with the scaler product defined as

$$
(r, f(r)+j)\left(m_{1}, \varphi\left(m_{1}\right)+m_{2}\right)=\left(r m_{1}, \varphi\left(r m_{1}\right)+f(r) m_{2}+j \varphi\left(m_{1}\right)+j m_{2}\right)
$$

For submodules $N_{1}$ and $N_{2}$ of $M_{1}$ and $M_{2}$, respectively, one can easily justify that the sets

$$
N_{1} \bowtie^{\varphi} J M_{2}=\left\{\left(m_{1}, \varphi\left(m_{1}\right)+m_{2}\right) \in M_{1} \bowtie^{\varphi} J M_{2}: m_{1} \in N_{1}\right\}
$$

and

$$
{\overline{N_{2}}}^{\varphi}=\left\{\left(m_{1}, \varphi\left(m_{1}\right)+m_{2}\right) \in M_{1} \bowtie^{\varphi} J M_{2}: \varphi\left(m_{1}\right)+m_{2} \in N_{2}\right\}
$$

are submodules of $M_{1} \bowtie^{\varphi} J M_{2}$.
Note that if $R=R_{1}=R_{2}, M=M_{1}=M_{2}, f=I d_{R}$ and $\varphi=I d_{M}$, then the amalgamation of $M_{1}$ and $M_{2}$ along $J$ with respect to $\varphi$ is exactly the duplication of the $R$-module $M$ along the ideal $J$. Moreover, in this case, we have $N_{1} \bowtie^{\varphi} J M_{2}=N \bowtie J$ and ${\overline{N_{2}}}^{\varphi}=\bar{N}$.

Theorem 12. Consider the $\left(R_{1} \bowtie^{f} J\right)$-module $M_{1} \bowtie^{\varphi} J M_{2}$ defined as above. Assume $J M_{2}=\left\{0_{M_{2}}\right\}$ and let $N_{1}$ be submodule of $M_{1}$. Then

1. $N_{1}$ is an $r$-submodule of $M_{1}$ if and only if $N_{1} \bowtie^{\varphi} J M_{2}$ is an $r$-submodule of $M_{1} \bowtie^{\varphi} J M_{2}$.
2. If $N_{1}$ is a semi $r$-submodule of $M_{1}$, then $N_{1} \bowtie^{\varphi} J M_{2}$ is a semi $r$ submodule of $M_{1} \bowtie^{\varphi} J M_{2}$.
3. If $M_{2}$ is faithful and $N_{1} \bowtie^{\varphi} J M_{2}$ is a semi $r$-submodule of $M_{1} \bowtie^{\varphi} J M_{2}$, then $N_{1}$ is a semi $r$-submodule of $M_{1}$.

Proof. (1) Let $N_{1}$ be an $r$-submodule of $M_{1}$ and let $\left(r_{1}, f\left(r_{1}\right)+j\right) \in R_{1} \bowtie^{f} J$, $\left(m_{1}, \varphi\left(m_{1}\right)\right) \in M_{1} \bowtie^{\varphi} J M_{2}$ such that $\left(r_{1}, f\left(r_{1}\right)+j\right)\left(m_{1}, \varphi\left(m_{1}\right)\right) \in N_{1} \bowtie^{\varphi} J M_{2}$ and $\operatorname{Ann}_{M_{1} \bowtie \varphi J M_{2}}\left(\left(r_{1}, f\left(r_{1}\right)+j\right)\right)=0_{M_{1} \bowtie^{\varphi} J M_{2}}$. Then $r_{1} m_{1} \in N_{1}$ and we prove that $\operatorname{Ann}_{M_{1}}\left(r_{1}\right)=0_{M_{1}}$. Suppose $r_{1} m_{1}^{\prime}=0_{M_{1}}$ for some $m_{1}^{\prime} \in M_{1}$. Then $\left(r_{1}, f\left(r_{1}\right)+j\right)\left(m_{1}^{\prime}, \varphi\left(m_{1}^{\prime}\right)\right)=\left(0_{M_{1}}, j \varphi\left(m_{1}^{\prime}\right)\right)=\left(0_{M_{1}}, 0_{M_{2}}\right)$ as $J M_{2}=\left\{0_{M_{2}}\right\}$. Thus, $\left(m_{1}^{\prime}, \varphi\left(m_{1}^{\prime}\right)\right) \in A n n_{M_{1} \bowtie \varphi}{ }_{J M_{2}}\left(\left(r_{1}, f\left(r_{1}\right)+j\right)\right)=0_{M_{1} \bowtie^{\varphi} J M_{2}}$. Hence, $m_{1}^{\prime}=$ $0_{M_{1}}$ and $A n n_{M_{1}}\left(r_{1}\right)=0_{M_{1}}$. By assumption, $m_{1} \in N_{1}$ and then $\left(m_{1}, \varphi\left(m_{1}\right)\right) \in$ $N_{1} \bowtie^{\varphi} J M_{2}$, as needed.

Conversely, let $r_{1} \in R_{1}$ and $m_{1} \in M_{1}$ such that $r_{1} m_{1} \in N_{1}$ and $A n n_{M_{1}}\left(r_{1}\right)=$ $0_{M_{1}}$. Then $\left(r_{1}, f\left(r_{1}\right)\right) \in R_{1} \bowtie^{f} J,\left(m_{1}, \varphi\left(m_{1}\right)\right) \in M_{1} \bowtie^{\varphi} J M_{2}$ and $\left(r_{1}, f\left(r_{1}\right)\right)$ $\left(m_{1}, \varphi\left(m_{1}\right)\right)=\left(r_{1} m_{1}, \varphi\left(r_{1} m_{1}\right)\right) \in N_{1} \bowtie^{\varphi} J M_{2}$.
Moreover, $A n n_{M_{1} \bowtie^{\varphi} J M_{2}}\left(\left(r_{1}, f\left(r_{1}\right)\right)\right)=0_{M_{1} \bowtie^{\varphi} J M_{2}}$. Indeed, suppose that there $\left(m_{1}^{\prime}, \varphi\left(m_{1}^{\prime}\right)\right) \in M_{1} \bowtie^{\varphi} J M_{2}$ such that $\left(r_{1}, f\left(r_{1}\right)\right)\left(m_{1}^{\prime}, \varphi\left(m_{1}^{\prime}\right)\right)=0_{M_{1} \bowtie^{\varphi} J M_{2}}$. Then $\left(m_{1}^{\prime}, \varphi\left(m_{1}^{\prime}\right)\right)=\left(0_{M_{1}}, 0_{M_{2}}\right)$ as $A n n_{M_{1}}\left(r_{1}\right)=0_{M_{1}}$. Since $N_{1} \bowtie^{\varphi} J M_{2}$ is an $r$-submodule of $M_{1} \bowtie^{\varphi} J M_{2}$, then $\left(m_{1}, \varphi\left(m_{1}\right)\right) \in N_{1} \bowtie^{\varphi} J M_{2}$ so that $m_{1} \in N_{1}$ and we are done.
(2) Let $\left(r_{1}, f\left(r_{1}\right)+j\right) \in R_{1} \bowtie^{f} J$ and $\left(m_{1}, \varphi\left(m_{1}\right)\right) \in M_{1} \bowtie^{\varphi} J M_{2}$ such that $\left(r_{1}, f\left(r_{1}\right)+j\right)^{2}\left(m_{1}, \varphi\left(m_{1}\right)\right) \in N_{1} \bowtie^{\varphi} J M_{2}, A n n_{M_{1} \bowtie \varphi}{ }^{\varphi} M_{2}\left(\left(r_{1}, f\left(r_{1}\right)+\right.\right.$ $j))=0_{M_{1} \bowtie \varphi J M_{2}}$ and $\operatorname{Ann}_{R_{1} \bowtie^{f} J}\left(\left(m_{1}, \varphi\left(m_{1}\right)\right)\right)=0_{R_{1} \bowtie_{J}}$. Then $r_{1}^{2} m_{1} \in N_{1}$ and similar to the proof of (1), we have $A n n_{M_{1}}\left(r_{1}\right)=0_{M_{1}}$. We show that $A n n_{R_{1}}\left(m_{1}\right)=0_{R_{1}}$. Assume on the contrary that there is nonzero element $r_{1} \in R_{1}$ such that $r_{1} m_{1}=0_{R_{1}}$. Then, $\left(r_{1}, f\left(r_{1}\right)\right)\left(m_{1}, \varphi\left(m_{1}\right)\right)=0_{M_{1} \bowtie \varphi J M_{2}}$, but our assumption $A n n_{R_{1} \bowtie^{f} J}\left(\left(m_{1}, \varphi\left(m_{1}\right)\right)\right)=0_{R_{1} \bowtie^{f} J}$ implies that $\left(r_{1}, f\left(r_{1}\right)\right)=$ $0_{R_{1} \bowtie f J}$; i.e. $r_{1}=0_{R_{1}}$, a contradiction. Thus $A n n_{R_{1}}\left(m_{1}\right)=0_{R_{1}}$, and it follows that $r_{1} m_{1} \in N_{1}$ and so $\left(r_{1}, f\left(r_{1}\right)+j\right)\left(m_{1}, \varphi\left(m_{1}\right)+m_{2}\right) \in N_{1} \bowtie^{\varphi} J M_{2}$.
(3) Since $M_{2}$ is faithful, then clearly $J=\left\{0_{R_{2}}\right\}$. Let $r_{1} \in R_{1}$ and $m_{1} \in M_{1}$ such that $r_{1}^{2} m_{1} \in N_{1}, A n n_{M_{1}}\left(r_{1}\right)=0_{M_{1}}$ and $A n n_{R_{1}}\left(m_{1}\right)=0_{R_{1}}$. Then $\left(r_{1}, f\left(r_{1}\right)\right)^{2}\left(m_{1}, \varphi\left(m_{1}\right)\right) \in N_{1} \bowtie^{\varphi} J M_{2}$ where $\left(r_{1}, f\left(r_{1}\right)\right) \in R_{1} \bowtie^{f} J$ and $\left(m_{1}, \varphi\left(m_{1}\right)\right) \in M_{1} \bowtie^{\varphi} J M_{2}$. Again, similar to the proof of (1), we have $A n n_{M_{1} \bowtie^{\varphi} J M_{2}}\left(\left(r_{1}, f\left(r_{1}\right)\right)\right)=0_{M_{1} \bowtie^{\varphi} J M_{2}}$. Moreover, suppose there is $\left(r_{1}^{\prime}, f\left(r_{1}^{\prime}\right)\right) \in R_{1} \bowtie^{f} J$ such that $\left(r_{1}^{\prime} m_{1}, \varphi\left(r_{1}^{\prime} m_{1}\right)\right)=\left(r_{1}^{\prime}, f\left(r_{1}^{\prime}\right)+j\right)\left(m_{1}, \varphi\left(m_{1}\right)\right)=$ $0_{M_{1} \bowtie^{\varphi} J M_{2}}$. Then $\left(r_{1}^{\prime}, f\left(r_{1}^{\prime}\right)\right)=\left(0_{R_{1}}, 0_{R_{2}}\right)$ as $\operatorname{Ann}_{R_{1}}\left(m_{1}\right)=0_{R_{1}}$. Therefore, $A n n_{R_{1} \bowtie f J}\left(\left(m_{1}, \varphi\left(m_{1}\right)\right)\right)=0_{M_{1} \bowtie^{\varphi} J M_{2}}$. By assumption, $\left(r_{1}, f\left(r_{1}\right)\right)\left(m_{1}, \varphi\left(m_{1}\right)\right)$ $\in N_{1} \bowtie^{\varphi} J M_{2}$. It follows that $r_{1} m_{1} \in N_{1}$ and $N_{1}$ is a semi $r$-submodule of $M_{1}$.

Corollary 7. Let $N$ be a submodule of an $R$-module $M$ and $J$ be an ideal of R. Then

1. If $N \bowtie J$ is an $r$-submodule of $M \bowtie J$, then $N$ is an $r$-submodule of $M$. The converse is true if $J M=0_{M}$.
2. If $N \bowtie J$ is a semi $r$-submodule of $M \bowtie J$, then $N$ is a semi $r$-submodule of $M$. The converse is true if $J M=0_{M}$.

Proof. (1) Let $r \in R$ and $m \in M$ such that $r m \in N$ and $\operatorname{Ann}_{M}(r)=0_{M}$. Then $(r, r)(m, m) \in N \bowtie J$ and clearly, $A n n_{M \bowtie J}((r, r))=0_{M \bowtie J}$. Thus, $(m, m) \in N \bowtie J$ and so $m \in N$ as needed. Conversely, suppose $J M=0_{M}$ and let $(r, r+j) \in R \bowtie J,\left(m, m+m^{\prime}\right) \in M \bowtie J$ such that $(r, r+j)\left(m, m+m^{\prime}\right) \in$ $N \bowtie J$ and $A n n_{M \bowtie J}((r, r+j))=0_{M \bowtie J}$. If $r m^{\prime \prime}=0_{M}$ for some $m^{\prime \prime} \in M$, then $(r, r+j)\left(m^{\prime \prime}, m^{\prime \prime}\right)=\left(0, j m^{\prime \prime}\right)=\left(0_{M}, 0_{M}\right)$ as $J M=0_{M}$. Thus, $m^{\prime \prime}=0_{M}$ and $A n n_{M}(r)=0_{M}$. Since $r m \in N$, then $m \in N$ and so $\left(m, m+m^{\prime}\right) \in N \bowtie J$.
(2) Let $r \in R$ and $m \in M$ such that $r^{2} m \in N, A n n_{M}(r)=0_{M}$ and $A n n_{R}(m)=0_{R}$. Then $(r, r)^{2}(m, m) \in N \bowtie J$. If there exists an element $\left(m^{\prime}, m^{\prime \prime}\right)$ of $M \bowtie J,(r, r)\left(m^{\prime}, m^{\prime \prime}\right)=\left(0_{M}, 0_{M}\right)$, then clearly $\left(m^{\prime}, m^{\prime \prime}\right)=$ $\left(0_{M}, 0_{M}\right)$ as $A n n_{M}(r)=0_{M}$; and so $A n n_{M \bowtie J}((r, r))=0_{M \bowtie J}$. Also, if for $\left(r^{\prime}, r^{\prime}+j\right) \in R \bowtie J,\left(r^{\prime}, r^{\prime}+j\right)(m, m)=\left(0_{M}, 0_{M}\right)$, then $\left(r^{\prime}, r^{\prime}+j\right)=\left(0_{R}, 0_{R}\right)$ and $A n n_{R \bowtie J}((m, m))=0_{R \bowtie J}$. By assumption, $(r, r)(m, m) \in N \bowtie J$ and so $r m \in N$. The proof of the converse part is similar to that of the converse of (1).

Theorem 13. Consider the $\left(R_{1} \bowtie^{f} J\right)$-module $M_{1} \bowtie^{\varphi} J M_{2}$ defined as in Theorem 12 and let $N_{2}$ be a submodule of $M_{2}$.

1. If $N_{2}$ is an $r$-submodule of $M_{2}, J M_{2} \neq\left\{0_{M_{2}}\right\}$ and $T\left(M_{2}\right) \subseteq J M_{2}$, then ${\overline{N_{2}}}^{\varphi}$ is an $r$-submodule of $M_{1} \bowtie^{\varphi} J M_{2}$. Moreover, if $f$ is an epimorphism and $\varphi$ is an isomorphism, then the converse holds.
2. If $f$ and $\varphi$ are isomorphisms and ${\overline{N_{2}}}^{\varphi}$ is a semi $r$-submodule of $M_{1} \bowtie^{\varphi}$ $J M_{2}$, then $N_{2}$ is a semi $r$-submodule of $M_{2}$.

Proof. (1). Suppose $N_{2}$ is an $r$-submodule of $M_{2}$. Let $\left(r_{1}, f\left(r_{1}\right)+j\right) \in R_{1} \bowtie^{f} J$ and $\left(m_{1}, \varphi\left(m_{1}\right)+m_{2}\right) \in M_{1} \bowtie J M_{2}$ such that $\left(r_{1}, f\left(r_{1}\right)+j\right)\left(m_{1}, \varphi\left(m_{1}\right)+m_{2}\right) \in$
 $\left.m_{2}\right) \in N_{2}$ and $\operatorname{Ann}_{M_{2}}\left(\left(f\left(r_{1}\right)+j\right)\right)=0_{M_{2}}$. Indeed, suppose $\left(f\left(r_{1}\right)+j\right) m_{2}^{\prime}=$ $0_{M_{2}}$ for some $0_{M_{2}} \neq m_{2}^{\prime} \in M_{2}$. If $m_{2}^{\prime} \in J M_{2}$, then $\left(r_{1}, f\left(r_{1}\right)+j\right)\left(0_{M_{1}}, 0_{M_{2}}+\right.$ $\left.m_{2}^{\prime}\right)=0_{M_{1} \bowtie J M_{2}}$ where $\left(0_{M_{1}}, 0_{M_{2}}+m_{2}^{\prime}\right) \neq 0_{M_{1} \bowtie J M_{2}}$, a contradiction. If $m_{2}^{\prime} \notin$ $J M_{2}$, then $m_{2}^{\prime} \notin T\left(M_{2}\right)$ and so $\left(f\left(r_{1}\right)+j\right)=0_{R_{2}}$. If we choose $0 \neq m_{2}^{\prime \prime} \in J M_{2}$, then $\left(r_{1}, f\left(r_{1}\right)+j\right)\left(0_{M_{1}}, m_{2}^{\prime \prime}\right)=0_{M_{1} \bowtie J M_{2}}$ which is also a contradiction. By assumption, $\left.\varphi\left(m_{1}\right)+m_{2}\right) \in N_{2}$ and so $\left(m_{1}, \varphi\left(m_{1}\right)+m_{2}\right) \in{\overline{N_{2}}}^{\varphi}$.

Conversely, suppose $\varphi$ is an isomorphism and ${\overline{N_{2}}}^{\varphi}$ is an $r$-submodule of $M_{1} \bowtie^{\varphi} J M_{2}$. Let $r_{2}=f\left(r_{1}\right) \in R_{2}$ and $m_{2}=\varphi\left(m_{1}\right) \in M_{2}$ such that $r_{2} m_{2} \in$
$N_{2}$ and $A n n_{M_{2}}\left(r_{2}\right)=0_{M_{2}}$. Then $\left(r_{1}, r_{2}\right) \in R_{1} \bowtie^{f} J,\left(m_{1}, m_{2}\right) \in M_{1} \bowtie^{\varphi} J M_{2}$ and $\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right) \in \bar{N}_{2}{ }^{\varphi}$. Suppose on contrary that there is $\left(m_{1}^{\prime}, \varphi\left(m_{1}^{\prime}\right)+\right.$ $\left.m_{2}^{\prime}\right) \neq 0_{M_{1} \bowtie^{\varphi} J M_{2}}$ such that $\left(r_{1}, r_{2}\right)\left(m_{1}^{\prime}, \varphi\left(m_{1}^{\prime}\right)+m_{2}^{\prime}\right)=0_{M_{1} \bowtie^{\varphi} J M_{2}}$. If $\varphi\left(m_{1}^{\prime}\right)+$ $m_{2}^{\prime} \neq 0_{M_{2}}$, we get a contradiction. If $\varphi\left(m_{1}^{\prime}\right)+m_{2}^{\prime}=0_{M_{2}}$ ( and so $m_{1}^{\prime} \neq 0_{M_{1}}$ ), then clearly $r_{2} m_{2}^{\prime}=0_{M_{2}}$ and then $m_{2}^{\prime}=0_{M_{2}}$. It follows that $\varphi\left(m_{1}^{\prime}\right)=0_{M_{2}}$ and so $m_{1}^{\prime}=0_{M_{1}}$, a contradiction. Since ${\overline{N_{2}}}^{\varphi}$ is an $r$-submodule of $M_{1} \bowtie^{\varphi} J M_{2}$, then $\left(m_{1}, m_{2}\right) \in{\overline{N_{2}}}^{\varphi}$ and so $m_{2} \in N_{2}$ as required.
(3) Let $r_{2}=f\left(r_{1}\right) \in R_{2}$ and $m_{2}=\varphi\left(m_{1}\right) \in M_{2}$ such that $r_{2}^{2} m_{2} \in N_{2}$, $A n n_{M_{2}}\left(r_{2}\right)=0_{M_{2}}$ and $A n n_{R_{2}}\left(m_{2}\right)=0_{R_{2}}$. Then $\left.\left(r_{1}, r_{2}\right)\right)^{2}\left(m_{1}, m_{2}\right) \in{\overline{N_{2}}}^{\varphi}$ where $\left(r_{1}, f\left(r_{1}\right)\right) \in R_{1} \bowtie^{f} J$ and $\left(m_{1}, \varphi\left(m_{1}\right)\right) \in M_{1} \bowtie^{\varphi} J M_{2}$. Similar to the proof of the converse part of (1), we have $A n n_{M_{1} \bowtie \varphi}{ }^{\top} M_{2}\left(\left(r_{1}, r_{2}\right)\right)=0_{M_{1} \bowtie^{\varphi} J M_{2}}$. We prove that $\operatorname{Ann}_{R_{1} \bowtie^{f} J}\left(\left(m_{1}, m_{2}\right)\right)=0_{R_{1} \bowtie^{f} J}$. Let $\left(r_{1}^{\prime}, f\left(r_{1}^{\prime}\right)+j^{\prime}\right) \in R_{1} \bowtie^{f} J$ such that $\left(r_{1}^{\prime}, f\left(r_{1}^{\prime}\right)+j^{\prime}\right)\left(m_{1}, m_{2}\right)=0_{M_{1} \bowtie^{\varphi} J M_{2}}$. Then $f\left(r_{1}^{\prime}\right)+j^{\prime}=0_{R_{2}}$ and $r_{1}^{\prime} m_{1}=0_{M_{1}}$. Thus, $f\left(r_{1}^{\prime}\right) m_{2}=0$ and so $f\left(r_{1}^{\prime}\right)=0_{R_{2}}$. Since $f$ is one to one, then $r_{1}^{\prime}=0_{R_{1}}$ and so $\left(r_{1}^{\prime}, f\left(r_{1}^{\prime}\right)+j^{\prime}\right)=0_{R_{1} \bowtie^{f} J}$ as needed. By assumption, $\left.\left(r_{1}, r_{2}\right)\right)\left(m_{1}, m_{2}\right) \in{\overline{N_{2}}}^{\varphi}$ and so $r_{2} m_{2} \in N_{2}$.

Corollary 8. Let $N$ be a submodule of an $R$-module $M$ and $J$ be an ideal of R. Then

1. If $\bar{N}$ is an $r$-submodule of $M \bowtie J$, then $N$ is an $r$-submodule of $M$. The converse is true if $J M=0_{M}$.
2. If $\bar{N}$ is a semi $r$-submodule of $M \bowtie J$, then $N$ is a semi $r$-submodule of $M$. The converse is true if $J M=0_{M}$.

Proof. The proof is similar to that of Corollary 7 and left to the reader.

## Statements \& Declarations

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose. All authors read and approved the final manuscript.

## References

[1] M. M. Ali, Residual submodules of multiplication modules, Beitr"age zur Algebra und Geometrie, 46 (2005), 405-422.
[2] D. D. Anderson, M. Winders, Idealization of a module, J. Commut. Algebra, 1 (1) (2009), 3-56.
[3] Y. Azimi, P. Sahandi and N. Shirmohammadi, Prüfer conditions under the amalgamated algebras, Commun. Algebra, 47(5) (2019), 2251-2261.
[4] A. Badawi, On weakly semiprime ideals of commutative rings, Beitr. Algebra Geom., 57 (2016) 589-597.
[5] E. M. Bouba, N. Mahdou, and M. Tamekkante, Duplication of a module along an ideal, Acta Math. Hungar., 154(1) (2018), 29-42.
[6] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443-459.
[7] M. D'Anna, C.A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641.
[8] R. El Khalfaoui, N. Mahdou, P. Sahandi and N. Shirmohammadi, Amalgamated modules along an ideal, Commun. Korean Math. Soc., 36(1), (2021) 1-10.
[9] R. Gilmer, Multiplicative Ideal Theory. New York, NY, USA: Marcel Dekker, 1972.
[10] H. A. Khashan, A. B. Bani-Ata, $J$-ideals of commutative rings, International Electronic Journal of Algebra, 29 (2021), 148-164.
[11] H. A. Khashan, E. Yetkin Celikel, , Weakly $J$-ideals of commutative rings, Filomat, 36(2), (2022), 485-495.
[12] H. A. Khashan, E. Yetkin Celikel, Quasi $J$-ideals of commutative rings, Ricerche di Matematica, (2022), 1-13.
[13] S. Koc, U. Tekir, $r$-Submodules and $s r$-Submodules, Turkish Journal of Mathematics, 42(4) (2018),1863-1876.
[14] T. K. Lee and Y. Zhou, Reduced modules, Rings, Modules, Algebras and Abelian Groups, 236 (2004),365-377.
[15] R. Mohamadian, $r$-ideals in commutative rings, Turkish Journal of Mathematics, 39 (2015), 733-749.
[16] B. Saraç, On semiprime submodules, Communications in Algebra, 37(7) (2009), 2485-2495.
[17] P. Smith, Some remarks on multiplication modules, Arch. Math., 50 (1988), 223-235.
[18] U. Tekir, S. Koc and K. H. Oral, n-ideals of commutative rings, Filomat, 31(10) (2017), 2933-2941.
[19] E. Yetkin Celikel, Generalizations of $n$-ideals of Commutative Rings . Erzincan Universitesi Fen Bilimleri Enstitüsü Dergisi, 12(2) (2019), 650657.
[20] E. Yetkin Celikel, H. A. Khashan, Semi $n$-ideals of commutative rings, Czechoslovak Mathematical Journal, 72(147) (2022), 977988.

Hani A. KHASHAN,
Department of Mathematics,
Faculty of Science,
Al al-Bayt University,
Al Mafraq, Jordan.
Email: hakhashan@aabu.edu.jo
Ece YETKIN CELIKEL,
Department of Basic Sciences, Faculty of Engineering,
Hasan Kalyoncu University
Gaziantep, Turkey.
Email:ece.celikel@hku.edu.tr, yetkinece@gmail.com


[^0]:    Key Words: Semiprime ideal, semiprime submodule, semi $r$-ideal, semi $r$-submodule. 2010 Mathematics Subject Classification: Primary 13A15, 16P40; Secondary 16D60.
    Received: 22.07.2022
    Accepted: 29.12.2022

