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Codes parameterized by the edges of a
bipartite graph with a perfect matching

Manuel González Sarabia and Rafael H. Villarreal

Abstract

In this paper we study the main characteristics of some evaluation
codes parameterized by the edges of a bipartite graph with a perfect
matching.

1 Introduction

This work aims to study certain classes of linear codes, known as parameterized
codes (see Definition 2.6). As our main goal is to relate these codes with
bipartite graphs with a perfect matching (see Definitions 2.1 and 2.2), the
codes are parameterized by the edges of a graph G. The procedure is as
follows: given a graph G, we define its toric set X parameterized by its edges
(see Definition 2.4), and then we associate an evaluation code, CX(d), to this
set X. Our primary purpose is the description of the main characteristics
of these codes. This article is an interesting generalization of [6], where the
authors study the case of an even cycle G = Cn. Furthermore, this work
generalizes the case where G = Km,m, a specific complete bipartite graph. In
both instances, G is a bipartite graph with a perfect matching.

As far as we know, the first approach to this topic is given in [5], where
the authors study the codes CX(d) when X is the toric set parameterized by
the edges of a complete bipartite graph Km,n. The results they obtain come
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from the fact that this code is the tensor product (as linear spaces) of codes
associated with the projective torus (see Definition 2.3). The case of the
codes CX(d) when X is the projective torus Ts−1 is studied in [4], although
the dimension and the regularity index (see Definition 2.8) are found in [2]
because X is a complete intersection (see Definition 2.9). However, the formula
for the minimum distance is given until 2011, in [14]. Actually, in 2018 and
2020, in [1] and [3], the authors found the generalized Hamming weights and
the relative generalized Hamming weights, respectively, of the affine cartesian
codes, which are introduced in [10]. These weights are a generalization of
the minimum distance, and since the codes arising from the projective torus
are equal to some particular affine cartesian codes, their value is known when
X = Ts−1. Furthermore, the study of the generalized Hamming weights in the
case of the cycle C4 and some complete bipartite graphs of the form K2,m is
given in [9].

The only parameter known for any simple graph, connected or not, is the
length of the code. In 2015, [11, Theorem 3.2], the authors found an explicit
formula for the cardinality of the set X, which is the length of CX(d). Also,
in the same article, they found the regularity index when G is an even cycle,
[11, Theorem 6.2], and an upper bound for the case of bipartite graphs with
subgraphs isomorphic to even cycles that have disjoint edge sets, [11, Theorem
6.3]. This upper bound is attained if the graph is connected, [11, Corollary
6.5]. Moreover, the case when G is an odd cycle is completely solved because
its toric set is the projective torus.

If G = Kn is a complete graph, its regularity index is shown in [7, Remark
3]. Moreover, some bounds for the minimum distance of these codes are given
in [7, Corollaries 8 and 9]. Also, the regularity index when G is a complete
multipartite graph is computed in [12, Theorem 4.3]. Finally, in [8], there are
some general bounds for the main parameters of the code CX(d) when X is the
toric set parameterized by the edges of any simple graph G.

The contents of this paper are as follows. In Section 2, we introduce
the main concepts about graphs and linear codes that will be useful to the
development of the article. We define the code CX(d) when X is the toric
set parameterized by the edges of a bipartite graph with a perfect matching,
which is the fundamental structure of this work. In Section 3, we give, in
Theorem 3.1, some bounds for the dimension and the minimum distance of
CX(d), and also for the regularity index of the vanishing ideal IX. In Section
4, we define the set Y, which plays a significant role studying the dimension
of CX(d). We prove, in Theorem 4.1, that Y is a complete intersection, and
find a set of generators for its vanishing ideal IY. Moreover, we give a formula
relating IX and IY in Proposition 4.3. In Section 5, we find, in Theorem 5.2,
a formula for the dimension of the code CX(d) in terms of the dimension of
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the codes associated with the projective torus, and the Hilbert function of
IY/IX. It allows us to give a tight lower bound for the regularity index of the
vanishing ideal IX, which is attained in the cases of even cycles and complete
bipartite graphs of the form Km,m. This bound is also attained in the case of
graphs such that all of their connected components are even cycles (Corollary
5.5). Finally, in Section 6, we give an example of a graph with two connected
components, each of them a square, and describe the main characteristics of
the code CX(d) that were obtained in this work.

2 Preliminaries

Let G = (V,E) be a simple graph with vertex set V = {v1, . . . , vn} and edge
set E = {e1, . . . , es}.

Definition 2.1. A graph G = (V,E) is called bipartite if there is a partition
of V into two disjoint subsets V = U ∪W, such that every edge e ∈ E joins a
vertex in U to a vertex in W.

Definition 2.2. A matching M in G is a subset of the edge set E such that for
every e, e′ ∈M there is no vertex v ∈ V such that e and e′ are both incidents
on v. The matching M is called perfect if, for every v ∈ V, there is e ∈ M

which is incident on v.

It is immediate that if G has a perfect matching, then |V| is an even number.
If G is bipartite, then |U| = |W|. From now on we assume that G is bipartite,
n = 2k, and M = {e1, e2, . . . , ek} is a perfect matching. Without loss of
generality we take ei = {v2i−1, v2i} for all i = 1, . . . , k. Therefore we set
U = {v1, v3, . . . , v2k−1} and W = {v2, v4, . . . , v2k}. Also, from now on, we
denote the degree of each vertex vi as ni for all i = 1, . . . , n. For this kind of
graphs we notice that n1 + n3 + · · ·+ n2k−1 = s.

Let K = Fq be a finite field with q elements. The set of non–zero elements
of K is denoted by K∗, and |X| denotes the cardinality of any set X.

Definition 2.3. The projective torus of dimension s − 1, which is a group
under componentwise multiplication, is given by

Ts−1 = {[t1, . . . , ts] ∈ Ps−1 : (t1, . . . , ts) ∈ (K∗)s},

where the projective space Ps−1 is the quotient space (Ks \ {0})/ ∼, where
for any ~x1, ~x2 ∈ Ks \ {0}, ~x1 ∼ ~x2 if and only if there is λ ∈ K∗ such that
~x1 = λ~x2.

Furthermore, we need to introduce some basic facts about linear codes and
how we define the linear codes parameterized by the edges of a graph G. We
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consider that G has no isolated vertices and it is not necessarily connected.
Also we assume that V = {v1, . . . , vn} is the vertex set, and E = {e1, . . . , es}
is the edge set of G. For each edge ei = {vj , vk}, where vj , vk ∈ V, let
(t1, . . . , tn)ei = tjtk for (t1, . . . , tn) ∈ (K∗)n.

Definition 2.4. The toric set X parameterized by the edges of the graph G

is the following subset of the projective torus Ts−1:

X = {[(t1, . . . , tn)e1 , . . . , (t1, . . . tn)es ] ∈ Ps−1 : ti ∈ K∗}. (1)

Equation (1) works for any simple graph. However, when we work with
the case where G is a bipartite graph with a perfect matching and with m
connected components, there is no loss of generality if we assume that the
toric set parameterized by its edges is given by

X = {[t1t2, . . . , t1t2i1 , t3t4, . . . , t3t2i3 , . . . , t2k−1t2k, . . . ,t2k−1t2i2k−1
]

∈ Ps−1 : ti ∈ K∗},

where the first n1 entries are the edges incident on v1 (starting with t1t2),
the second block has n3 entries which are the edges incident on v3 (starting
with t3t4), and so on until the last block of entries which are the n2k−1 edges
incident with v2k−1 (starting with t2k−1t2k). Each block of entries starts with
the elements of the perfect matching M.

Definition 2.5. A linear code C is a subspace of Kl, where l is a positive
integer. This integer l is known as its length. Its dimension as a linear space
over K is called its dimension, and it is denoted by dimK C. Finally, the
minimum distance of a code C, δC , is defined as follows:

δC = min{wH(v) : v ∈ C, v 6= 0},

where wH(v) is the Hamming weight of v, that is, the number of non–zero
entries of v. These three numbers (length, dimension, and minimum distance)
are called the main parameters of a code C, and they are related by the
Singleton bound:

δC ≤ l − dimK C + 1.

Moreover, let S = K[X1, . . . , Xs] = ⊕d≥0Sd be a polynomial ring and
X = {P1, . . . , P|X|} be the toric set parameterized by the edges of the graph G.

Definition 2.6. The code of order d parameterized by the edges of the graph
G, which is denoted by CX(d), is the following subspace of K |X|:

CX(d) =

{(
f(P1)

Xd
1 (P1)

, . . . ,
f(P|X|)

Xd
1 (P|X|)

)
: f ∈ Sd

}
,
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that is, CX(d) is the image of the following surjective linear transformation:

Sd −→ K |X|,

f 7→
(
f(P1)

Xd
1 (P1)

, . . . ,
f(P|X|)

Xd
1 (P|X|)

)
.

Definition 2.7. The ideal of S that is spanned by the homogeneous polyno-
mials that vanish on X is called the vanishing ideal of X, and it is denoted by
IX. It is a graded ideal, IX = ⊕d≥0IX(d), and its main characteristics can be
seen in [13].

In the case of the code CX(d), its length is |X|, its dimension is given by the
Hilbert function dimK CX(d) = HX(d) = dimK(Sd/IX(d)), and its minimum
distance is denoted by δX(d). It is known that the Hilbert function is a strictly
increasing function until it stabilizes.

Definition 2.8. The regularity index of S/IX is the least integer d such that
HX(d) = |X|. It is denoted by reg (S/IX). Actually, HX(d) = |X| for all
d ≥ reg (S/IX). For these cases, CX(d) = K |X|, and then δX(d) = 1. Therefore
the only interesting codes CX(d) are those for which d < reg (S/IX).

Finally, we need to introduce the concept of a complete intersection.

Definition 2.9. A set of points X ⊆ Ps−1 is called a complete intersection
if its vanishing ideal IX is generated by a regular sequence of s − 1 elements,
that is, IX = (f1, . . . , fs−1), such that f1 is not a zero divisor of S, and fi is
not a zero divisor of S/(f1, . . . , fi−1) for i = 2, . . . , s− 1.

3 Some bounds

In the following theorem, we give the length of the code CX(d) parameterized
by the edges of a bipartite graph with m connected components and with
a perfect matching, and also we give some bounds for the regularity index
of S/IX, the dimension, and the minimum distance. It is worth mentioning
that the bounds for the minimum distance of CX(d) depend on the value of
the minimum distance when the toric set is the projective torus, which was
computed in [14, Theorem 3.5].

Theorem 3.1. If G is a bipartite graph with a perfect matching, with m co-
nnected components, and X is the toric set parameterized by its edges, then:

1. The length of the code CX(d) is given by:

|X| = (q − 1)n−m−1.
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2. The regularity index of S/IX is bounded by:⌈
(q − 2)(n− 1)

2(q − 1)m

⌉
≤ reg (S/IX) ≤ (q − 2)(k − 1) + (q − 1)k−m − 1,

where n = 2k.

3. The dimension of the code CX(d) is bounded by:

dimK(CX(d)) ≥
bd/(q−1)c∑

j=0

(−1)j
(
k − 1

j

)(
k − 1 + d− j(q − 1)

k − 1

)
.

4. The minimum distance of the code CX(d) is bounded by:⌈
δTn−1

(2d)

(q − 1)m

⌉
≤ δX(d) ≤ (q − 1)k−mδTk−1

(d).

Proof. Assertion (1) follows directly from [11, Theorem 3.2]. Moreover, the
lower bounds for the regularity index and the minimum distance given in (2)
and (4) follow from [8, Theorem 2], because γ, the number on non–bipartite
components of G, is equal to zero.

Furthermore, let G′ = (V,E′) be the subgraph of G with the same vertex
set, but with E′ = M. Let X and X′ be the toric sets associated with the edges
of G and G′, respectively. Thus

X′ = {[t1t2, t3t4, · · · , t2k−1t2k] ∈ Pk−1 : ti ∈ K∗}, (2)

and therefore X′ = Tk−1. Then |X′| = (q − 1)k−1, and we notice that

|X| = (q − 1)n−m−1 = |X′|(q − 1)k−m.

Inequality (3) and the upper bounds for the regularity index and the mi-
nimum distance given in (2) y (4) follow easily from [8, Theorem 3].

4 Vanishing ideals

We continue using the notation of the last sections. Let ni = deg vi for
i = 1, . . . , n. Of course, n1 + n3 + · · · + n2k−1 = s, the number of edges
of the graph G. Moreover, let S = K[X1, . . . , Xs], as in Section 2, and
R = K[Y1, Y3, . . . , Y2k−1] be two polynomial rings. From now on, let Y be
the following subset of the projective space Ps−1:

Y = {[t1, . . . , t1, t3, . . . , t3, . . . , t2k−1, . . . , t2k−1] ∈ Ps−1 : ti ∈ K∗}, (3)

where ti appears ni times, for all i = 1, 3, . . . , 2k−1. Clearly, Y ⊆ X. Actually,
we get the following result:
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Theorem 4.1. Y is a complete intersection. In fact, IY is spanned by the
union of the following sets:

1. W0 = {Xq−1
n1+1−X

q−1
1 , Xq−1

n1+n3+1−X
q−1
1 , . . . , Xq−1

n1+n3+···+n2k−3+1−X
q−1
1 }.

2. W1 =

 ∅ if n1 = 1,

{Xi −X1}n1
i=2 if n1 ≥ 2.

3. W3 =


∅ if n3 = 1,

{Xi −X3}n1+n3
i=n1+2 if n3 ≥ 2.

...
...

...
...

...

4. W2k−1 =


∅ if n2k−1 = 1,

{Xi −X2k−1}si=n1+n3+···+n2k−3+2 if n2k−1 ≥ 2.

Proof. We want to show that (W) = IY, where W := W0 ∪W1 ∪W3 ∪ · · · ∪
W2k−1. At first, we notice that the number of polynomials in W is given by

|W| = |W0|+ |W1|+ |W3|+ · · ·+ |W2k−1|
= (k − 1) + (n1 − 1) + (n3 − 1) + · · ·+ (n2k−1 − 1)

= k − 1 + s− k = s− 1,

because n1 + n3 + · · · + n2k−1 = s. On the other hand, it is easy to see
that W ⊆ IY. Furthermore, let f ∈ IY. We use the lexicographic ordering
Xs > Xs−1 > · · · > X1. By the division algorithm, f can be written as:

f =

n1∑
i=2

fi(Xi −X1) +

n1+n3∑
i=n1+2

gi(Xi −X3) + · · ·+

s∑
i=n1+n3+···+n2k−3+2

hi(Xi −X2k−1) + r,

where fi, gi . . . , hi, r ∈ S, and r = 0 (in this case f ∈ (W), and IY ⊆ (W)) or r
is a K–linear combination of monomials, none of which is divisible by any of

X2, . . . , Xn1
, Xn1+2, . . . , Xn1+n3

, . . . , Xn1+n3+···+n2k−3+2, . . . , Xs.
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Therefore,

r(X1, . . . , Xs) = r(X1, Xn1+1, Xn1+n3+1, . . . , Xn1+n3+···+n2k−3+1).

Also, we observe that the projective torus Tk−1 can be written as

Tk−1 = {[t1, tn1+1, tn1+n3+1, . . . , tn1+n3+···+n2k−3+1] : ti ∈ K∗},

and thus ([4, Theorem 1])

ITk−1
= (Xq−1

n1+1 −X
q−1
1 , Xq−1

n1+n3+1 −X
q−1
1 , (4)

. . . , Xq−1
n1+n3+···+n2k−3+1 −X

q−1
1 ).

Let P := [t1, . . . , t1, t3, . . . , t3, . . . , t2k−1, . . . , t2k−1] ∈ Y. Then

0 = f(P ) = r(P ) = r(t1, tn1+1, tn1+n3+1, . . . , tn1+n2+···+n2k−3+1),

for all ti ∈ K∗. Therefore r ∈ ITk−1
, and by Equation (4), r ∈ (W0), and thus

f ∈ (W). That is, IY = (W), and the claim follows

On the other hand, let θ be the map

θ : S → R,

f(X1, . . . , Xs) 7→ f(Y1, . . . , Y1, Y3, . . . , Y3, . . . Y2k−1, . . . , Y2k−1),

where Yi appears ni times, for all i = 1, 3, . . . , 2k− 1. We notice that θ(Xi) =
Y1 for all i = 1, . . . , n1, θ(Xi) = Y3 for all i = n1 + 1, . . . , n1 + n3, and so on
until θ(Xi) = Y2k−1 for all i = n1 + n3 + · · ·+ n2k−3 + 1, . . . , s. Moreover, the
following result relates the vanishing ideals of X and Tk−1.

Proposition 4.2. With the notation introduced above, θ is a ring epimor-
phism and

θ(IX) = ITk−1
.

Proof. The fact that θ is a ring epimorphism follows directly from the de-
finitions. Let f ∈ IX and Q = [t1, t3, . . . , t2k−1] ∈ Tk−1. Also let P =
[t1, . . . , t1, t3, . . . , t3, . . . , t2k−1, . . . , t2k−1] ∈ Y ⊆ X. Therefore

θ(f)(Q) = f(P ) = 0.

Thus θ(f) ∈ ITk−1
and then θ(IX) ⊆ ITk−1

. On the other hand, as X ⊆ Ts−1,
we get that ITs−1

⊆ IX. Furthermore, ITk−1
can be written as

ITk−1
= (Y q−13 − Y q−11 , . . . , Y q−12k−1 − Y

q−1
1 ).
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But

Y q−13 − Y q−11 = θ(Xq−1
n1+1 −X

q−1
1 ), . . . , Y q−12k−1 − Y

q−1
1

= θ(Xq−1
n1+n3+···+n2k−3+1 −X

q−1
1 ).

Moreover,

{Xq−1
n1+1 −X

q−1
1 , . . . , Xq−1

n1+n3+···+n2k−3+1 −X
q−1
1 } ⊆ ITs−1 ⊆ IX.

Therefore ITk−1
⊆ θ(IX), and the claim follows.

Since Y ⊆ X we obtain that IX ⊆ IY. The following result relates the
vanishing ideals of X, Y, and the map θ.

Proposition 4.3. The vanishing ideal of Y is given by

IY = IX + ker θ.

Proof. We notice that W0 ⊆ ITs−1
⊆ IX and W2i−1 ⊆ ker θ for all i = 1, . . . , k.

Therefore, by using Theorem 3.1, we conclude that

IY ⊆ IX + ker θ. (5)

Furthermore, let f ∈ IX, g ∈ ker θ, and

P := [t1, . . . , t1, t3, . . . , t3, . . . , t2k−1, . . . , t2k−1] ∈ Y.

Thus, because P ∈ Y ⊆ X, f(P ) = 0. Moreover, because g ∈ ker θ,

0 = θ(g)(t1, t3, . . . , t2k−1) = g(P ),

and then (f + g)(P ) = 0. That is,

IX + ker θ ⊆ IY. (6)

The claim follows from (5) and (6).

5 Dimension and the regularity index

Now, our goal is to compute the dimension of the code CX(d) parameterized
by the edges of a bipartite graph G with a perfect matching. To do this, we
need the following lemma.
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Lemma 5.1. Let ψ the following map:

ψ : S/IX → R/ITk−1
,

f + IX → θ(f) + ITk−1
.

Therefore, ψ is a ring epimorphism, and kerψ = IY/IX.

Proof. At first, we notice that the map ψ is well–defined because if f + IX =
g + IX then f − g ∈ IX. Thus, because of Proposition 4.2, θ(f) − θ(g) =
θ(f − g) ∈ θ(IX) = ITk−1

, and therefore θ(f) + ITk−1
= θ(g) + ITk−1

. Also,
that ψ is a ring epimorphism follows immediately from the fact that θ is a ring
epimorphism.

Let f + IX ∈ kerψ. Then θ(f) ∈ ITk−1
= θ(IX). Thus, there exists g ∈ IX

such that θ(f) = θ(g). That is, θ(f − g) = θ(f)− θ(g) = 0, and it implies that
f − g ∈ ker θ. Therefore, there exists h ∈ ker θ such that f − g = h, that is,
f = g + h. Then f ∈ IX + ker θ = IY, and we conclude that

kerψ ⊆ IY/IX. (7)

On the other hand, let f + IX ∈ IY/IX. As f ∈ IY = IX + ker θ, we get
that f = f1 + f2 for some f1 ∈ IX, f2 ∈ ker θ. Thus θ(f) = θ(f1) + θ(f2) =
θ(f1) ∈ θ(IX) = ITk−1

. Therefore ψ(f + IX) = θ(f) + ITk−1
= ITk−1

, and then
f + IX ∈ kerψ. It proves that

IY/IX ⊆ kerψ, (8)

and the result follows from (7) and (8).

From now on we set Hψ(d) := dimK(IY(d)/IX(d)) for all d ≥ 0. The
main result of this section gives the dimension of CX(d) in terms of Hψ(d) and
HTk−1

(d), where we know that ([4, Lemma 1] and [14, Corollary 2.2])

HTk−1
(d) =

b d
q−1 c∑
j=0

(−1)j
(
k − 1

j

)(
k − 1 + d− j(q − 1)

k − 1

)
.

Theorem 5.2. The dimension of the code CX(d) parameterized by the edges
of a bipartite graph G with a perfect matching is given by

dimK CX(d) = HX(d) = Hψ(d) +HTk−1
(d),

for all d ∈ Z, d ≥ 0.
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Proof. Let ψd be the following linear map

ψd : Sd/IX(d)→ Rd/ITk−1
(d),

f + IX(d)→ θ(f) + ITk−1
(d).

ψd is a surjective linear transformation and then (Sd/IX(d))/ kerψd is iso-
morphic, as a linear space, to Rd/ITk−1

(d). But kerψd = IY(d)/IX(d), and
thus

HX(d)− dimK IY(d)/IX(d) = Hψ(d),

and the result follows.

Although in Section 3 we gave some bounds for the regularity index of
S/IX, where X is the toric set parameterized by the edges of a bipartite graph
G with a perfect matching, in the following result we give a formula of this
number in terms of the corresponding regularity index associated with the
projective torus, which is given by ([4, Lemma 1])

reg (R/ITk−1
) = (q − 2)(k − 1), (9)

and the regularity of IY/IX.

Corollary 5.3. The regularity index of the quotient ring S/IX is given by

reg (S/IX) = max{reg (R/ITk−1
), reg (IY/IX)}.

Proof. Let ϕ the linear map

ϕ : IY(d)/IX(d)→ IY(d+ 1)/IX(d+ 1),

f + IX(d)→ X1f + IX(d+ 1).

If f + IX(d) = g + IX(d), with f, g ∈ IY(d), then

X1f −X1g = X1(f − g) ∈ IX(d+ 1),

and thus X1f+IX(d+1) = X1g+IX(d+1). It implies that ϕ is a well–defined
map. It suffices to show that this is an injective map because, in this case,
Hψ(d) ≤ Hψ(d+1) and Hψ is a non–decreasing function. Let f+IX(d) ∈ kerϕ.
Then X1f ∈ IX(d+ 1). Let

P = [t1t2, . . . , t1t2i1 , t3t4, . . . , t3t2i3 , . . . , t2k−1t2k, . . . , t2k−1t2i2k−1
] ∈ X.

Therefore, t1t2f(P ) = 0 for all t1, t2 ∈ K∗. That is, f(P ) = 0 for all P ∈ X.
Then f ∈ IX(d) and it implies that

kerϕ = IX(d).

Thus ϕ is an injective map, and the claim follows.
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Remark 5.4. From Corollary 5.3 and Equation (9), we get that

reg (S/IX) ≥ reg (R/ITk−1
) = (q − 2)(k − 1),

and this is a tight lower bound because it is attained in the case of even cycles
([11, Theorem 6.2]), and when the graph G is a complete bipartite graph of
the form Km,m ([5, Corollary 5.4]). Both graphs are bipartite graphs with a
perfect matching.

Corollary 5.5. Let G be a graph such that each of its m connected components
is an even cycle C2li and let X be the toric set parameterized by its edges. Then

reg (S/IX) = (q − 2)(n− 1).

Proof. We notice that in this case
∑m
i=1 li = k, where n = s = 2k. Further-

more, by [11, Theorem 6.3], we get that

reg (S/IX) ≤ (q − 2)(s−
m∑
i=1

li − 1) = (q − 2)(k − 1).

As G is a bipartite graph with a perfect matching, the claim follows by
Remark 5.4.

6 Example

Let G be the graph with two connected components, each of them a square (a
cycle with four vertices), and let X be the toric set parameterized by its edges.
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Figure 1: The graph G.

A bipartition of the vertex set is given by

U = {v1, v3, v5, v7}, and W = {v2, v4, v6, v8}.

Also, a perfect matching is M = {{v1, v2}, {v3, v4}, {v5, v6}, {v7, v8}}, and
its edges appear with dotted lines in Figure 1. The toric set parameterized by
the edges of G is given by

X = {[t1t2, t1t4, t3t4, t3t2, t5t6, t5t8, t7t8, t7t6] ∈ P7 : ti ∈ K∗},
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and the length of the code CX(d) is |X| = (q−1)5. Moreover, by using Corollary
5.5,

reg (S/IX) = 3q − 6, q > 2.

On the other hand, the set Y, defined in Equation (3), is given by

Y = {[t1, t1, t3, t3, t5, t5, t7, t7] ∈ P7 : ti ∈ K∗},

and its vanishing ideal, according with Theorem 3.1, is

IY = (Xq−1
3 −Xq−1

1 , Xq−1
5 −Xq−1

1 , Xq−1
7 −Xq−1

1 , X2 −X1,

X4 −X3, X6 −X5, X8 −X7).

Furthermore, if we take q = 5, then the Hilbert functions involved in
Theorem 5.2 are described in Table 1. Of course, we are interested in the
cases 1 ≤ d < reg (S/IX) = 9.

Table 1: The different Hilbert functions involved in Theorem 5.2 with q = 5,
and X being the toric set parameterized by the edges of the graph G of Figure
1.

d 1 2 3 4 5 6 7 8
HTk−1

(d) 4 10 20 32 44 54 60 63
Hψ(d) 4 24 84 208 396 616 796 912
HX(d) 8 34 104 240 440 670 856 975

Moreover, if we set ld =
⌈
δTn−1

(2d)

(q−1)m

⌉
=
⌈
δT7 (2d)

42

⌉
, ud = (q − 1)k−m ·

δTk−1
(d) = 42 · δT3(d) (both bounds appear in Theorem 3.1), and Bd =

(q − 1)n−m−1 − HX(d) + 1 = 45 − HX(d) + 1 is the Singleton bound, then
we get Table 2.

Table 2: Some bounds for the minimum distance of the code CX(d) parame-
terized by the edges of the graph G of Figure 1.

d 1 2 3 4 5 6 7 8
ld 512 192 64 32 12 4 2 1
ud 768 512 256 192 128 64 48 32
Bd 1017 991 921 785 585 355 169 50
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