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A note on minimal resolutions of vector–spread
Borel ideals

Marilena Crupi and Antonino Ficarra

Abstract

We consider vector–spread Borel ideals. We show that these ide-
als have linear quotients and thereby we determine the graded Betti
numbers and the bigraded Poincaré series. A characterization of the
extremal Betti numbers of such a class of ideals is given. Finally, we
classify all Cohen–Macaulay vector–spread Borel ideals.

Introduction

In this article we study the class of vector–spread Borel ideals introduced
in [15] as a generalization of the class of t–spread ideals, where t is a non
negative integer [13] (see, also, [4, 5, 12] and the reference therein). Let S =
K[x1, . . . , xn] be the standard graded polynomial ring over a fixed field K and
let t = (t1, t2, . . . , td−1) ∈ Zd−1≥0 , with d ≥ 2, a (d− 1)–tuple whose entries are
non negative integers. A monomial u = xj1xj2 · · ·xj` (1 ≤ j1 ≤ j2 ≤ · · · ≤
j` ≤ n) of degree ` ≤ d of S is called a vector–spread monomial of type t or
simply a t–spread monomial if ji+1 − ji ≥ ti, for i = 0, . . . , `− 1. A t–spread
monomial ideal is a monomial ideal generated by t–spread monomials. For
instance, I = (x1x

2
3x5, x1x

2
3x6, x1x4x5) is a (2, 0, 1)–spread monomial ideal

of the polynomial ring S = K[x1, . . . , x5], but it is not (2, 1, 1)–spread as
x1x

2
3x5 ∈ G(I) is not (2, 1, 1)–spread. One can note that any monomial (ideal)

is 0–spread, where 0 = (0, 0, . . . , 0). If ti ≥ 1, for all i, a t–spread monomial
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(ideal) is a squarefree monomial (ideal). A t–spread monomial ideal I of S
is said vector–spread Borel ideal of type t or simply a t–spread strongly stable
ideal if for any t–spread monomial u ∈ I, and all j < i such that xi divides
u and xj(u/xi) is t–spread, then xj(u/xi) ∈ I. For t = 0 = (0, 0, . . . , 0) (t =
1 = (1, 1, . . . , 1)) one obtains the classical notion of strongly stable (squarefree
strongly stable) ideal [16].
In this article we study the graded Betti numbers of a t–spread strongly stable
ideal I by combinatorial tools and therefore we obtain a formula for their
computation. As a consequence we are able to give a characterization of the
extremal Betti numbers of such an ideal I. Finally, the Cohen–Macaulay t–
spread strongly stable ideals are classified. Our approach is similar to the one
of [13].
In this paper we discuss a unified concept to deal with the classes of monomial
ideals which are among the most important in Combinatorics (stable, strongly
stable ideals) in order to get more general results. Section 1 contains some
preliminaries and notions that will be used in the article. In Section 2, we
review a result on the graded Betti numbers of a t–spread strongly stable
ideal stated in [15]. We propose a simpler method for determining a formula
for the graded Betti numbers of such a class of monomial ideals (Corollary
2.4). A key result is Theorem 2.2 which states that a t–spread strongly stable
ideal has linear quotients. The notion of vector–spread support (Subsection
1.2) plays an essential role in this context. Indeed, the linear quotients of
vector–spread Borel ideals can be expressed in terms of vector–spread supports
(Corollary 2.3). Moreover, the bigraded Poincaré series of such ideals is also
determined (Corollary 2.5). In Section 3, we obtain a characterization of the
extremal Betti numbers of t–spread strongly stable ideals (Proposition 3.3) by
the results in Section 2. Finally, Section 4 contains one of the main result in
the article. We analyze the Cohen–Macauleyness of t–spread strongly stable
ideals via the formula of the graded Betti numbers described in Section 2.
Indeed, we obtain a classification (Theorem 4.3) by investigating the height
and the projective dimension of such ideals.

1 Preliminaries

Throughout the article, we denote by S = K[x1, . . . , xn] the standard graded
polynomial ring over a field K and by Mon(S) (Mond(S)) the set of all mono-
mials (of degree d) in S.
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1.1 A glimpse to graded Betti numbers.

Given a monomial u = xa11 x
a2
2 · · ·xann of S, the support of u is the set supp(u) =

{i : ai > 0} = {i : xi divides u}. We denote by max(u) (min(u)) the maximal
(minimal) integer i ∈ supp(u).
For a monomial ideal I of S, G(I) denotes the unique minimal set of monomial
generators of I and we set G(I)j = {u ∈ G(I) : deg(u) = j}. It is known that
a monomial ideal I of S has a unique minimal graded free S–resolution

F : 0→ Fp
dp−−−→ Fp−1

dp−1−−−−→ · · · d1−−→ F0
d0−−→ I → 0,

where Fi =
⊕

j S(−j)βi,j(I). The numbers βi,j(I) = dimK Tor(K, I)j are
called the graded Betti numbers of I. For all i, βi(I) =

∑
j βi,j(I) is the

ith total Betti number of I. One defines the projective dimension and the
regularity of I as follows

pd(I) = max{i : βi,j(I) 6= 0, for some j} = max{i : βi(I) 6= 0},
reg(I) = max{j − i : βi,j(I) 6= 0} = max{j : βi,i+j(I) 6= 0 for some i}.

These algebraic invariants have been refined in [7] by the notion of extremal
Betti number. A graded Betti number βk,k+`(I) 6= 0 of a monomial ideal I of
S is called extremal if βi,i+j(I) = 0 for all i ≥ k, j ≥ ` such that (i, j) 6= (k, `).

Let I be a monomial ideal. It is known that depth(S/I) ≤ dim(S/I).
If the equality holds, we say that S/I is a Cohen–Macaulay ring and I is a
Cohen–Macaulay ideal.

1.2 A glimpse to vector–spread monomial ideals.

Let t = (t1, t2, . . . , td−1) ∈ Zd−1≥0 , d ≥ 2, a (d − 1)–tuple whose entries are
non negative integers. Let us write a monomial u ∈ S as u = xj1xj2 · · ·xj` ,
1 ≤ j1 ≤ j2 ≤ · · · ≤ j` ≤ n. We will maintain this convention throughout
the article. Let T = K[x1, x2, . . . , xn, . . . ] be the polynomial ring in infinitely
many variables. Denote by Mon(T ; t) the set of all t–spread monomials of T
and by Mon(S; t) the set of all t–spread monomials of S. Furthermore, for all
0 ≤ ` ≤ d, we define the following sets

Mon`(T ; t) =
{
u ∈ Mon(T ; t) : deg(u) = `

}
,

Mon`(S; t) =
{
u ∈ Mon(S; t) : deg(u) = `

}
.

Let us denote by Mn,`,t the set of all t–spread monomials of S having degree
`. One may observe that Mn,`,t = ∅ for ` > d. In order to compute the
cardinality of the set Mn,`,t, one can consider a special shifting operator (see



A NOTE ON MINIMAL RESOLUTIONS OF VECTOR–SPREAD BOREL IDEALS 74

[6, 13]). More in detail, one defines the map σ0,t : Mon(T ;0) → Mon(T ; t),
by setting σ0,t(1) = 1, σ0,t(xi) = xi and

σ0,t(xj1xj2 · · ·xj`) =
∏̀
k=1

xjk+
∑k−1

s=1 ts
,

for all monomials u = xj1xj2 · · ·xj` ∈ Mon(T ;0) with 2 ≤ ` ≤ d. The map σ0,t

is bijective and its inverse is the map σt,0 : Mon(T ; t) → Mon(T ;0) defined
as follows: σt,0(1) = 1, σt,0(xi) = xi, for all i ∈ N, and σt,0(xj1xj2 · · ·xj`)
=
∏`
k=1 xjk−

∑k−1
s=1 ts

, for all monomials u = xj1xj2 · · ·xj` ∈ Mon(T ; t) with

2 ≤ ` ≤ d.
In particular, the restriction σt,0|Mn,`,t

is a injective map and its image is equal
to the set Mn−(t1+t2+...+t`−1),`,0 = Mon`(K[x1, . . . , xn−(t1+t2+...+t`−1)]). Thus

|Mn,`,t| =
(
n+ (`− 1)−

∑`−1
j=1 tj

`

)
, for 0 ≤ ` ≤ d. (1)

For more details on this topic see [15].
If u1, . . . , um are t–spread monomials of S, we denote by Bt(u1, . . . , um)

the smallest t–spread strongly stable ideal of S containing u1, . . . , um with
respect to the inclusion. The monomials u1, . . . , um are called the t–spread
Borel generators of Bt(u1, . . . , um). If m = 1, Bt(u1) = Bt(u) is called a
principal t–spread Borel ideal. It is clear that for each t–spread strongly sta-
ble monomial ideal I of S, one can uniquely determine t–spread monomials
u1, . . . , um ∈ S such that I = Bt(u1, . . . , um).
Observe that for u = xn−(t1+t2+...+t`−1)xn−(t2+...+t`−1) · · ·xn−t`−1

xn, the ideal
Bt(u) contains all t–spread monomials of degree ` ≤ d. Bt(u) is called the
t–spread Veronese ideal of degree ` and will be denoted by In,`,t. Note that

In,`,t 6= (0) if and only if n ≥ 1 +
∑`−1
j=1 tj .

Now let us recall the pivotal notion of t–spread support of a t–spread
monomial [15, Definition 2.1].

If n is a positive integer n, [n] denotes the set {1, 2, . . . , n}. For j ≤ k
positive integers, we define [j, k] = {` ∈ N : j ≤ ` ≤ k}. We set [j, k] = ∅ if
j > k.
Let u = xj1xj2 · · ·xj` ∈ Mn,`,t be a t–spread monomial of S. The t–spread
support of u is the subset of [n] defined as follows

suppt(u) =
`−1⋃
i=1

[
ji, ji + (ti − 1)

]
.

Note that supp0(u) = ∅. Furthermore, if u is squarefree,

supp1(u) = supp(u/xmax(u)) =
{
j1, j2, . . . , j`−1

}
,
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where 1 = (1, 1, . . . , 1) ∈ Zd−1≥0 .
The notion vector–spread support has been introduced in [11] in order to

classify Cohen–Macaulay t–spread lexsegment ideals.

2 The graded Betti numbers

In [15], the graded Betti numbers of vector–spread strongly stable ideals have
been determined by means of the Koszul homology. More precisely, if I is a
t–spread strongly stable ideal of S, then the graded Betti numbers of I are
given by

βi,i+j(I) =
∑

u∈G(I)j

(
max(u)− 1−

∑j−1
`=1 t`

i

)
, for all i, j.

The purpose of this section is to quickly obtain this formula using a different
and easier method than the one used in [15]. The vector–spread support will
be a key tool.

We need to fix some notations and recall some results from [17]. Let
u = xa11 x

a2
2 · · ·xann and v = xb11 x

b2
2 · · ·xbnn be monomials of S, not necessarily

having the same degree. Then u > v with respect to the pure lexicographic
order if a1 = b1, . . . , as−1 = bs−1, as > bs for some s [16]. Let I be a t–
spread strongly stable ideal of S. Let G(I) = {u1 > u2 > · · · > um} be the
minimal generating set of I ordered with respect to the order introduced. For
k = 1, . . . ,m, we set Jk = (u1, . . . , uk) and

set(uk) =
{
i ∈ [n] : xi ∈ (u1, . . . , uk−1) : uk

}
.

Note that set(u1) = ∅. Our aim is to prove that I has linear quotients, i.e.,

Jk−1 : uk = (u1, u2, . . . , uk−1) : uk,

is generated by variables, for all k = 2, . . . ,m. By [17, Lemma 1.5], one has

βi,i+j(I) =
∑

u∈G(I)j

(
|set(u)|

i

)
, for all i, j ≥ 0. (2)

We quote the next crucial lemma from [15] (see also [13, Lemma 1.3]). It
provides the existence of a standard decomposition for a t–spread monomial
belonging to a t–spread strongly stable ideal.

Lemma 2.1. Let I be a t–spread strongly stable ideal of S, and w ∈ I a
t–spread monomial. Then, there exist u ∈ G(I) and v ∈ Mon(S) such that
w = uv and max(u) ≤ min(v).
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Now we are in position to prove the main result of this section.

Theorem 2.2. Let I be a t–spread strongly stable ideal of S. Then I has
linear quotients, in particular it is componentwise linear.

Proof. Let G(I) = {u1 > u2 > · · · > um} ordered with respect to the pure
lexicographic order. Fix k ∈ {2, . . . ,m}. A set of generators for Jk−1 : uk =
(u1, . . . , uk−1) : uk is {us/gcd(uk, us) : s = 1, . . . , k−1} [16, Proposition 1.2.2].
Hence, it suffices to show that for each s, there exists a variable xi ∈ Jk−1 : uk
with xi dividing us/gcd(uk, us). Let us = xi1xi2 · · ·xip , uk = xj1xj2 · · ·xjq ,
with us >lex uk. Hence, there exists an integer ` ∈ [q] such that

i1 = j1, i2 = j2, . . . , i`−1 = j`−1, i` < j`. (3)

Set v = xi`(uk/xj`). Then v = xj1xj2 · · ·xj`−1
xi`xj`+1

· · ·xjq . We need to
show that v is t–spread. This is the case, as i` − j`−1 = i` − i`−1 ≥ t`−1
and j`+1 − i` > j`+1 − j` ≥ t`. On the other hand, I is a t–spread strongly
stable ideal. Therefore v ∈ I and, furthermore, v >lex uk. Now we show
that v ∈ Jk−1. By Lemma 2.1, v = urw with ur ∈ G(I) and w ∈ Mon(S)
such that max(ur) ≤ min(w). If v /∈ Jk−1 = (u1, . . . , uk−1), then ur ∈
G(I) \ {u1, . . . , uk−1}, and consequently ur ≤lex uk. As v = urw, then
v ≤lex uk, a contradiction. Therefore, v ∈ Jk−1 and xi`uk = vxj` ∈ Jk−1.
Thus xi` ∈ Jk−1 : uk and, by (3), xi` divides us/gcd(uk, us). It follows that I
has linear quotients. Finally, it is well known that ideals with linear quotients
are componentwise linear [16, Theorem 8.2.15].

The following corollary highlights the role of the vector–spread supports.

Corollary 2.3. In the previous setting, for all k = 2, . . . ,m, we have

set(uk) = [max(uk)− 1] \ suppt(uk).

Proof. Let uk = xj1xj2 · · ·xjd . We have suppt(uk) =
⋃d−1
i=1

(⋃ti−1
q=0 {ji + q}

)
.

Let ` ∈ [n]. To determine if ` ∈ set(uk), we consider two cases.
Case 1. Let max(uk) ≤ ` ≤ n, then x`uk = xj1xj2 · · ·xjdx`. First, observe
that the ideal Jk−1 = (u1, u2, . . . , uk−1) is t–spread strongly stable. If for
absurd ` ∈ set(uk), then x`uk ∈ Jk−1. Hence ur divides x`uk, for some
r ∈ {1, . . . , k − 1}. Since deg(ur) ≤ deg(uk), then ur divides uk. An absurd,
since uk is a minimal generator of I.
Case 2. Let ` ∈ suppt(uk), then ` = jr + s, for some r ∈ {1, . . . , d − 1},
0 ≤ s ≤ tr − 1, tr ≥ 1. If x`uk ∈ Jk = (u1, u2, . . . , uk), then up divides x`uk,
for some p ∈ {1, . . . , k − 1}. As jr + s − jr = s < tr, and up is t–spread,
necessarily up divides uk. An absurd, since uk is a minimal generator of I.
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The above cases imply that if ` ∈ set(uk), then ` /∈ [max(uk), n] and
` /∈ suppt(uk).

Now assume ` ∈ [max(uk) − 1] \ suppt(uk). Then ` = jr + s, for some
r ∈ {1, . . . , d − 1} and s ≥ tr. Let jq = min

{
j ∈ supp(uk) : j > `

}
. Then

x`(uk/xjq ) is a t–spread monomial that belongs to the ideal (Jk−1, uk) =
(u1, u2, . . . , uk−1, uk) = Jk, as ` < jq and (Jk−1, uk) is a t–spread strongly
stable ideal. By Lemma 2.1, x`(uk/xjq ) = upw with p ∈ {1, . . . , k} and
w ∈ Mon(S) such that max(up) ≤ min(w). Clearly, p 6= k and so x`(uk/xjq ) ∈
Jk−1 = (u1, u2, . . . , uk−1). Finally x`uk = x`(uk/xjq )xjq ∈ Jk−1 and ` ∈
set(uk). The assertion follows.

As a consequence of the above result, one has

Jk−1 : uk =
(
xi : i ∈ [max(uk)− 1] \ suppt(uk)

)
, for k = 2, . . . ,m.

On the other hand, for each k

∣∣[max(uk)− 1] \ suppt(uk)
∣∣ = max(uk)− 1−

deg(uk)−1∑
`=1

t`.

Thus, formula (2) yields the result we are looking for.

Corollary 2.4. Let I be a t–spread strongly stable ideal of S. Then,

βi,i+j(I) =
∑

u∈G(I)j

(
max(u)− 1−

∑j−1
`=1 t`

i

)
, for all i, j ≥ 0.

As a consequence, we obtain:

Corollary 2.5. Let I be a t–spread strongly stable ideal of S. Then

PS/I(y, z) = 1 +
∑

u∈G(I)

(1 + y)max(u)−1−
∑deg(u)−1

s=1 tsyzdeg(u).

Proof. Let PS/I(y, z) =
∑
i,j βi,j(I)yizj be the bigraded Poincaré series of

S/I. From [17, Corollary 1.6], for an ideal I with linear quotients, one has

PS/I(y, z) = 1 +
∑

u∈G(I)

(1 + y)|set(u)|yzdeg(u).

The assertion follows from Corollary 2.4.
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3 Extremal Betti numbers

In this section we characterize the extremal Betti numbers of the class of t–
spread Borel ideals. Our results generalizes some statements in [1] (see also
[2, 3, 9, 10] and the reference therein).

First, one can note that Corollary 2.4 implies

reg(I) = max
{

deg(u) : u ∈ G(I)
}
, (4)

pd(I) = max
{

max(u)− 1−
∑deg(u)−1
j=1 tj : u ∈ G(I)

}
. (5)

For our aim, the next lemma will play a crucial role.

Lemma 3.1. Let I be a t–spread strongly stable ideal of S. If βi,i+j(I) 6= 0,
then βk,k+j(I) 6= 0 for all k = 0, . . . , i.

Proof. Let βi,i+j(I) 6= 0. From Corollary 2.4, there exists a monomial u ∈
G(I)j such that max(u)− 1−

∑j−1
`=1 t` ≥ i. Hence, max(u)− 1−

∑j−1
`=1 t` ≥ k,

for all k = 0, . . . , i. This implies that βk,k+j(I) 6= 0, for all k = 0, . . . , i.

The previous lemma and the definition of extremal Betti number imply
the next result.

Corollary 3.2. Let I be a t–spread strongly stable ideal of S. The following
conditions are equivalent:

(i) βk,k+`(I) is extremal;

(ii) βk,k+`(I) 6= 0, and βi,i+`(I), βk,k+j(I) = 0, for all i > k and all j > `.

The following characterization generalizes a result in [1, Theorem 1].

Proposition 3.3. Let I be a t–spread strongly stable ideal of S. The following
conditions are equivalent:

(i) βk,k+`(I) is extremal;

(ii) max
{

max(u) : u ∈ G(I)`
}

= k +
∑`−1
j=1 tj + 1, and max(u) < k +∑j−1

r=1 tr + 1, for all u ∈ G(I)j and all j > `.

Proof. (i) =⇒ (ii). Since I is t–spread strongly stable, Corollary 2.4 implies
that βk,k+`(I) is non zero if and only if there exists a monomial u0 ∈ G(I)`
such that max(u0) ≥ k +

∑`−1
j=1 tj + 1. Therefore,

max
{

max(u) : u ∈ G(I)`
}
≥ max(u0) ≥ k +

∑`−1
j=1 tj + 1. (6)
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Suppose that for a monomial u1 ∈ G(I)`, max(u1) = j +
∑`−1
j=1 tj + 1 >

k +
∑`−1
j=1 tj + 1, for some j > k. Then βj,j+`(I) 6= 0, which contradicts the

fact that βk,k+`(I) is extremal (Corollary 3.2). Hence, k +
∑`−1
j=1 tj + 1 =

max
{

max(u) : u ∈ G(I)`
}

. Assume there exists a monomial v ∈ G(I)j such

that max(v) ≥ k +
∑j−1
r=1 tr + 1, for some j > `. Then βk,k+j(I) 6= 0. A

contradiction, since βk,k+`(I) is extremal (Corollary 3.2). Hence, condition
(ii) holds.

(ii) =⇒ (i). Since max
{

max(u) : u ∈ G(I)`
}

= k +
∑`−1
j=1 tj + 1, then

βk,k+`(I) 6= 0 and βj,j+`(I) = 0, for all j > k. Moreover, max(u) < k +∑j−1
r=1 tr + 1, for all u ∈ G(I)j and all j > `, implies that βk,k+j(I) = 0, for all

j > `. Finally, by Corollary 3.2, βk,k+`(I) is extremal.

The previous result yields the following useful corollary.

Corollary 3.4. Let I be a t–spread strongly stable ideal of S, and let βk,k+`(I)
be an extremal Betti number of I. Then

βk,k+`(I) =
∣∣{u ∈ G(I)` : max(u) = k +

∑`−1
j=1 tj + 1

}∣∣ ≤ (
k+`−1
`−1

)
.

Proof. The equality follows immediately from Proposition 3.3. For the in-
equality, it suffices to observe that

∣∣{u ∈Mn,`,t : max(u) = k +

`−1∑
j=1

tj + 1
}∣∣ =

=

(
k +

∑`−1
j=1 tj + 1 + (`− 1)−

∑`−1
j=1 tj − 1

`− 1

)
=

(
k + `− 1

`− 1

)
.

Example 3.5. Let I = (x1x2, x1x3, x1x
2
4) be a (1, 0)–spread strongly stable

ideal of S = K[x1, x2, x3, x4]
The Betti table of I is [14]:

0 1 2
total: 3 3 1

2: 2 1 -
3: 1 2 1

Hence, pd(I) = 2, reg(I) = 3. Moreover, β2,2+3(I) is the unique extremal
Betti number of I and by Corollary 3.4,

β2,2+3(I) =
∣∣{u ∈ G(I)3 : max(u) = 2 +

∑3−1
j=1 tj + 1 = 4

}∣∣ =
∣∣{x1x24}∣∣ = 1.
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4 Cohen–Macaulay vector–spread Borel ideals

In this section we investigate the Cohen–Macaulayness of vector–spread Borel
ideals by tools from [11, 13]. To obtain a characterization, we only need to
investigate the height of a vector–spread Borel ideal. Indeed, from Corollary
2.4 and the Auslander–Buchsbaum formula, one has that

depth(I) = n−max
{

max(u)− 1−
∑deg(u)−1
j=1 tj : u ∈ G(I)

}
.

Proposition 4.1. Let In,d,t be the t–spread Veronese ideal of degree d of S.
Then

height(In,d,t) = n−
∑d−1
j=1 tj .

Proof. First, observe that In,d,t 6= (0) if and only if n ≥ 1 +
∑d−1
j=1 tj . The

monomial prime ideal p = (xi : i = 1, 2, . . . , n −
∑d−1
j=1 tj) is a minimal prime

of In,d,t, as each monomial generator u ∈ G(In,d,t) = Mn,d,t has minimum

belonging to the set
{

1, 2, . . . , n−
∑d−1
j=1 tj

}
. Therefore

height(In,d,t) ≤ n−
∑d−1
j=1 tj .

Suppose height(In,d,t) = k < n −
∑d−1
j=1 tj . Then, there would be a minimal

prime q = (xij : j = 1, . . . , k) of In,d,t of height k ≤ n−
∑d−1
j=1 tj − 1, with all

ij distinct. The set A = [n] \ {ij : j = 1, . . . , k} has cardinality

|A| = n− k ≥ n−
(
n−

∑d−1
j=1 tj − 1

)
= 1 +

∑d−1
j=1 tj .

We set `1 = min(A) and `j = min{` ∈ A : ` ≥ `j−1 + tj}, for all j ≥ 2.
The sequence `1 ≤ `2 ≤ · · · ≤ `k has at least d terms, otherwise |A| <
1 +

∑d−1
j=1 tj . So, the monomial w = x`1x`2 · · ·x`d is t–spread of degree d, but

w ∈ G(In,d,t) \ q, an absurd. Finally, we have height(In,d,t) = n−
∑d−1
j=1 tj , as

desired.

Theorem 4.2. Let I be a t–spread strongly stable ideal of S. Then

height(I) = max
{

min(u) : u ∈ G(I)
}
.

Proof. First we prove that height(I) ≤ max{min(u) : u ∈ G(I)}. Indeed,
let u0 ∈ G(I) such that min(u0) = max{min(u) : u ∈ G(I)}. In such a
case the monomial prime ideal p[min(u0)] = (x1, x2, . . . , xmin(u0)) is a minimal
prime of I, thus proving the inequality. For the other inequality, write u0 =
xj1xj2 · · ·xjd and consider the monomial v0 = xj1xj1+t1 · · ·xj1+(t1+t2+...+td−1).
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Then v0 ∈ Bt(u0) ⊆ I. Moreover, I ′ = Bt(v0) = Ij1+t1+t2+...+td−1,d,t. Hence,
by Proposition 4.1

height(I) ≥ height(I ′) = j1 +

d−1∑
`=1

t` −
d−1∑
`=1

t` = j1 = min(v0) = min(u0).

Using what we have shown thus far, we are able to classify all Cohen–
Macaulay vector–spread strongly stable ideals of S.

Theorem 4.3. Let I ⊆ S be a t–spread strongly stable ideal of S, t =
(t1, t2, . . . , td−1). Then S/I is a Cohen–Macaulay ring if and only if there
exists u ∈ G(I) of degree ` ≤ d such that

u = xn−(t1+t2+...+t`−1)xn−(t2+t3+...+t`−1) · · ·xn−t`−1
xn ∈ G(I).

In particular, if I is equigenerated in degree ` then S/I is Cohen–Macaulay if
and only if I = In,`,t is a vector–spread Veronese ideal.

Proof. Firstly, we may suppose n ∈
⋃
u∈G(I) supp(u). On the contrary, setting

ñ = max
⋃
u∈G(I) supp(u), we may replace S with S̃ = K[x1, . . . , xñ] and

consider I ∩ S̃, instead. Since pd(S/I) = pd(I) + 1, by (5), we have

pd(S/I) = max
{

max(u)−
∑deg(u)−1
j=1 tj : u ∈ G(I)

}
.

On the other hand, by Theorem 4.2,

dim(S/I) = n−max
{

min(u) : u ∈ G(I)
}
.

By the Auslander–Buchsbaum formula, n−pd(S/I) = depth(S/I). Since S/I
is Cohen–Macaulay if and only if depth(S/I) = dim(S/I), by the previous
formulas, S/I is Cohen–Macaulay if and only if

max
{

max(u)−
deg(u)−1∑
j=1

tj : u ∈ G(I)
}

= max
{

min(u) : u ∈ G(I)
}
. (7)

Let u0 ∈ G(I) such that min(u0) = max
{

min(u) : u ∈ G(I)
}

. Clearly, for all

u ∈ G(I), min(u) ≤ max(u) −
∑deg(u)−1
j=1 tj . Hence, equation (7) holds if and

only if

min(u0) = max(u0)−
∑deg(u)−1
j=1 tj .
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Thus, S/I is Cohen–Macaulay if and only if there exist a monomial u0 ∈ G(I)
and an integer ` ≤ d such that

min(u0) = max
{

min(u) : u ∈ G(I)
}
, u0 = xj1xj1+t1 · · ·xj1+(t1+t2+...+t`−1).

It remains to show that j1 = n −
∑`−1
r=1 tr. Since n ∈

⋃
u∈G(I) supp(u), it

follows the existence of a monomial u ∈ G(I) with max(u) = n. Moreover,
min(u) ≤ min(u0), as min(u0) = max{min(u) : u ∈ G(I)}. Note that

max(u)−
∑deg(u)−1
r=1 tr ≤ j1 = min(u0).

Hence, as max(u) = n, we have j1 ≥ n −
∑deg(u)−1
r=1 tr. If deg(u) ≤ deg(u0),

then j1 ≥ n −
∑deg(u)−1
r=1 tr ≥ n −

∑deg(u0)−1
r=1 tr. On the other hand, j1 ≤

n−
∑deg(u0)−1
r=1 tr. So, in such a case, j1 = n−

∑deg(u0)−1
r=1 tr, as desired.

Suppose now deg(u) > deg(u0). If u = xk1xk2 · · ·xk`xk`+1
· · ·xkdeg(u)

, where

` = deg(u0), we set u1 = xk1xk2 · · ·xk` . If k` ≤ j1 +
∑`−1
r=1 tr, then u1 is

t–spread and k1 ≤ j1, k2 ≤ j2, . . . , k` ≤ j`, where ji = j1 +
∑i−1
j=1 tj (i =

1, . . . , `). Since I is t–spread strongly stable, then u1 ∈ I. A contradiction,
as u1 divides u and u is a minimal generator. Therefore, we must have k` >
j1 +

∑`−1
r=1 tr and consequently

max(u)−
deg(u)−1∑
r=1

tr ≥ max(u1)−
deg(u1)−1∑

r=1

tr > j1,

which contradicts (7).

Consider the vector–spread ideal J = (x1, x2x
2
3, x2x3x4x6) ⊂ K[x1, . . . , x6]

of type t = (t1, t2, t3) = (1, 0, 2). Note that depth(S/J) = 3 < dim(S/I) = 4.
Hence S/J is not a Cohen–Macaulay ring. Let I = J + (x2x

2
4x6, x3x

2
4x6).

Then I is a t–spread strongly stable ideal and S/I is a Cohen–Macaulay ring.
Indeed, in degree d = 4, u = x6−(t1+t2+t3)x6−(t2+t3)x6−t3x6 = x3x

2
4x6 ∈ G(I)

and we can apply the previous theorem.

Remark 4.4. From Theorem 4.3, the vector–spread Veronese ideal In,d,t is

Cohen–Macaulay. Moreover, pd(S/In,d,t) = n−
∑d−1
j=1 tj . So In,d,t is a Cohen–

Macaulay ideal with pure resolution of type (d1, . . . , dp), with dj = d+ j − 1,
for j = 1, . . . , p. Therefore, by [8, Theorem 4.1.15], we have for all i ≥ 1,

βi(S/In,d,t) = (−1)i+1
∏
j 6=i

dj
dj − di

= (−1)i+1
i−1∏
j=1

d+ j − 1

j − i

p∏
j=i+1

d+ j − 1

j − i

=

(
d+ i− 2

d− 1

)(
n−

∑d−1
j=1 tj + d− 1

d+ i− 1

)
.
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Note that for i = 1, we obtain µ(In,d,t) = β1(S/In,d,t) =
(n−∑d−1

j=1 tj+d−1
d

)
=

|Mn,d,t| and we get again formula (1).
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