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Regular and Boolean elements in hoops and
constructing Boolean algebras using regular

filters

M. Aaly Kologani, Y.B. Jun and R.A. Borzooei

Abstract

We study hoops in order to give some new characterizations for reg-
ular and Boolean elements in hoops and we study the relationship be-
tween them. Specially, we prove that any bounded Y-hoop is a Stone
algebra if and only if MV -center set and Boolean elements set are
equal. Then we define the concept of regular filter in hoops and Y-
hoops with RF-property and peruse some properties of them. In addi-
tion, we show that each Y-hoop with RF-property, is a Boolean algebra
and any hoop A with RF-property such that B(A) = {0, 1}, is a local
hoop. Finally, we prove that any hoop A has RF-property if and only
if Spec(A) = Max(A) and if and only if A is a hyperarchimedean.

1 Introduction

The residuated is a basic concept of arranged structures and categories and
have been studied by many mathematicians. In Idziak (1984) showed that the
family of residuated lattices is equational which are called BCK-lattices and
full BCK-algebras, FLew-algebras in Ono and Komori (1985), and integral,
residuated, commutative `-monoids in Höhle (1995). Ward (1940), Ward and
Dilworth (1939) were the first who introduced the concept of a residuated
lattice as an extension of ideal lattices of a ring. In their original definition, a
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residuated lattice is what we would call it an integral commutative one. Over
the last ten years, with the computers and information in science developing
rapidly, the residuated lattice theory made great progress. Many experts and
scholars had carried out thorough systematical research into it, they studied it
from different points of view. For example, Blount and Tsinakis (2003) took it
as an expansion of `-groups, they discussed it from the view of `-groups; Kühr
(2008), van Altene et al. investigated it from the view of variety; Galatos et al.
(2007) investigated it from the view of semiring. Residual lattice theory was
used to develop the algebraic counterparts of fuzzy logics in Turunen (1999)
and infrastructure logic, in Ono (2003). Hájek (1998) defined the concept of
BL-algebras, filters and prime filters in it for proving the completeness theorem
of Basic Logic, Turunen (1999) studied on BL-algebras and their filters. MTL-
logic is a weaker logic that BL-logic, and it was defined by Esteva and Godo
(2001) and they showed by Jenei and Montagna (2002) that MTL-logic is
the logic of left continuous t-norms and their residua. Algebra corresponding
to MTL-logic is an MTL-algebra. Also, a residuated lattice such as L is
said to be an MTL-algebra if the prelinearity condition holds in L. Cignoli
(2008) investigated the structure of free algebras in the subvarieties of Stonean
residuated lattices and proved that each algebra in a variety V of bounded
residuated lattices can be represented as a weak Boolean product of directly
indecomposable algebras in V over the Stone space of it’s Boolean skeleton
(Theorem 1.3). In fact, free algebras are weak Boolean products of directly
indecomposable algebras. In order to obtain his characterization the steps
were to consider the sets of regular and dense elements (Reg(L) = {k ∈ L |
k′′ = k}, D(L) = {k ∈ L | k′ = 0}) and characterize the Boolean skeleton of
residuated lattices. Based on the importance of regular, dense and Boolean
elements in constructing free algebras, we realize that it will be interesting to
investigate different notions of regular substructures of hoop (B(L) in Kowalski
and Ono (2002), Reg(L) in Cignoli (2008), R(L) and MV (L) in D. Busneag
et al.(2013)).

Hoops are introduced by Bosbach in [7, 8]. In recent years, many math-
ematicians have studied this algebraic structure from different perspectives
such as ideals, filters, relationships with other algebraic structures, etc., and
good results have been achieved in this regard which can be found in [3, 4, 5,
6, 20, 21, 22, 25]. Given the importance of the above notions, such as Boolean
element and regular, and the results obtained in this field on other algebraic
structures, we decided to examine this concept on hoop.

Now, we study hoops in order to give new characterizations for regular
and Boolean elements in hoops. Also, we introduce regular filters of hoop and
Y-hoop with RF-property and study some properties of them.
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2 Preliminaries

Next, we will mention some of the features that we use in this article.

Definition 2.1. [2] An algebraic structure (L,o,#, 1) is a hoop if for every
k, s, p ∈ L we have:
(HP1) (L,o, 1) is a commutative monoid,
(HP2) k# k = 1,
(HP3) (ko s)# p = k# (s# p),
(HP4) ko (k# s) = so (s# k).

From now on, L is a hoop.
We define a binary order 5 on L where k 5 s iff k# s = 1. Easily 〈L,5〉

is a Poset. L is bounded if it has a least element 0 ∈ L where 0 5 k, for each
k ∈ L. Consider k0 = 1, kn = kn−1o k, for every n ∈ N. Assume L is bounded.
Define an operation ” ′ ” on L as, k′ = k # 0, for each k ∈ L. If (k′)′ = k, for
all k ∈ L, then L has (DNP) property.

Proposition 2.2. [7, 8] For all k, s, p ∈ L, we have:
(i) (L,5) is a [-semilattice with k [ s = ko (k# s),
(ii) ko s 5 p iff k 5 s# p,
(iii) ko s 5 k, s,
(iv) k 5 s# k,
(v) k# 1 = 1,
(vi) 1# k = k,
(vii) ko (k# s) 5 s,
(viii) k 5 s implies ko p 5 so p, p# k 5 p# s and s# p 5 k# p,
(ix) k# (s [ p) = (k# s) [ (k# p),
(x) ((k# s)# s)# s = k# s,
(xi) (k# s) o (s# p) 5 k# p.

Proposition 2.3. [12] Suppose L is bounded. Then for all k, s ∈ L, we get:
(i) k 5 k′′,
(ii) ko k′ = 0 and k′′′ = k′,
(iii) k 5 k′ # s,
(iv) if k = k′′, then k# s = s′ # k′.

Proposition 2.4. [12] For every k, s ∈ L define, kYs = ((k# s)# s)[ ((s#
k)# k). Then the next conditions are equivalent:
(i) Y is an associative operation on L,
(ii) k 5 s implies k Y p 5 s Y p,
(iii) k Y (s [ p) 5 (k Y s) [ (k Y p),
(iv) Y is the join operation on L.
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Definition 2.5. L is a Y-hoop, if Y satisfies in one of the conditions in
Proposition 2.4.

Remark 2.6. [12, Remark 2.4] Y-hoop (L,Y,[) is a distributive lattice.

Proposition 2.7. [12] Assume L is a Y-hoop. Then, for all k, s, p ∈ L, we
have:
(i) (k Y s)# p = (k# p) [ (s# p),
(ii) ko (s Y p) = (ko s) Y (ko p).

Definition 2.8. [12] Consider ∅ 6= G ⊆ L. Then G is said to be a filter of L
if, for any k, s ∈ L,
(F1) k, s ∈ G implies ko s ∈ G,
(F2) k 5 s and k ∈ G imply s ∈ G.
The set F(L) contains all filters of L. Clearly, 1 ∈ G, for each G ∈ F(L).
G ∈ F(L) is proper if G 6= L. Obviously, 0 /∈ G if L is bounded.

Assume ∅ 6= U ⊆ L. The symbol 〈U〉 is the filter generated by U which
is the smallest filter of L that containing U. If U = {k}, then 〈k〉 where
〈k〉 = {f ∈ L | kn 5 f, for some n ∈ N}. Furthermore, if G ∈ F(L) and k ∈ L,
then

〈G ∪ {k}〉 = {f ∈ L | so kn 5 f, for some n ∈ N and s ∈ G}.

Moreover, a proper filter G of L is prime, if for any W,V ∈ F(L) such that
W ∩ V ⊆ G, then W ⊆ G or V ⊆ G, or equivalently if L is a Y-hoop, then
k Y s ∈ G, for some k, s ∈ L, then k ∈ G or s ∈ G. Also, a proper filter G of L is
maximal if it is not properly contained in the any other proper filters of L.
Moreover, all prime filters of L and maximal filters of L is shown by Spec(L)
and Max(L), respectively. L is called local iff it has just a unique maximal
filter such as Q, and easily prove Q = {k ∈ L | kn 6= 0, for any n ∈ N}. (See
[4]).

Definition 2.9. [1] Suppose L is a Y-hoop and ∅ 6= U ⊆ L. The set U‡ =
{f ∈ L | f Y k = 1, for all k ∈ U} is said to be a co-annihilator of X.

Proposition 2.10. [1] Consider ∅ 6= U ⊆ L. Then U‡ ∈ F(L) and U ∩ U‡ =
{1}.

Proposition 2.11. [4] Assume L is bounded, Q ∈ Max(L) iff k /∈ Q implies
n ∈ N where (kn)′ ∈ Q.

Theorem 2.12. [4] Suppose L is a Y-hoop. Then every maximal filter of L

is prime.

Remark 2.13. [4] Clearly by using Zorns Lemma, we get that for each proper
filter G, there exists V ∈ Spec(L) such that G ⊆ V.



Regular and Boolean elements in hoops and constructing Boolean algebras
using regular filters 9

Theorem 2.14. [1] Consider L is a bounded Y-hoop. Then (F(L),⊆,[,Y, {1},L)
is a bounded distributive lattice, where G [V = G∩V and G YV = 〈G∪V〉, for
any G,V ∈ F(L).

Theorem 2.15. [1] Assume L is a bounded Y-hoop. Then structure (F(L),⊆
,[,Y, {1},L) is a pseudo-complement and for each G ∈ F(L), it is pseudo-
complement of G‡.

Notation. From now on, (L,o,#, 1) or L, for short, is a bounded hoop.

3 Regular and Boolean elements in hoops

We define the notions of regular and Boolean elements in hoops and investigate
the equivalence definitions and some properties of them.

Note. Define an operator � by k� s = k′ # s, for every k, s ∈ L.

Proposition 3.1. For any k, s, p ∈ L, we have:
(i) k� 0 = k′′, k� 1 = 1 and k� k′ = 1,
(ii) if L has (DNP), then k� s = s� k,
(iii) if L has (DNP), then (k� s)� p = k� (s� p),
(iv) if k 5 s, then k� p 5 s� p.

Proof. The proof is straightforward.

Proposition 3.2. Consider L is a bounded Y-hoop. Then for any k, s, p ∈ L,
we get:
(i) if k Y s = 1, then k� s = 1,
(ii) k� (s Y p)′ = (k� s′) [ (k� p′),
(iii) k� (s [ p) = (k� s) [ (k� p),
(iv) if L has (DNP), then k� (s′ Y p′)′ = (k� s) [ (k� p).

Proof. (i) By Proposition 2.2(iv), s 5 k′ # s and by Proposition 2.3(iii),
k 5 k′ # s. Then

1 = k Y s 5 k′ # s = k� s.

Hence, k� s = 1.
(ii) Let k, s, p ∈ L. Then by definition of � and Proposition 2.7(i), we have

k� (s Y p)′ = k′ # (s Y p)′ = (s Y p)# k′′ = (s# k′′) [ (p# k′′)

= (k′ # s′) [ (k′ # p′) = (k� s′) [ (k� p′).

(iii) Let k, s, p ∈ L. Then by definition of � and Proposition 2.2(ix), we get

k� (s [ p) = k′ # (s [ p) = (k′ # s) [ (k′ # p) = (k� s) [ (k� p).

(iv) According to (iii), the proof is straightforward.
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Definition 3.3. Assume L is a bounded Y-hoop. Then e ∈ L is called a
Boolean element if e Y e′ = 1. The set B(L) contains all Boolean elements
of L.

Example 3.4. Suppose L = {0, f, v, i, o, 1} such that 0 5 f 5 v 5 1, 0 5 f 5
o 5 1 and 0 5 i 5 o 5 1. Define the operations # and o on L by:

# 0 f v i o 1
0 1 1 1 1 1 1
f o 1 1 o 1 1
v i o 1 i o 1
i v v v 1 1 1
o f v v o 1 1
1 0 f v i o 1

o 0 f v i o 1
0 0 0 0 0 0 0
f 0 0 f 0 0 f
v 0 f v 0 f v
i 0 0 0 i i i
o 0 0 f i i o
1 0 f v i o 1

Then (L,#,o, 0, 1) is a bounded Y-hoop. Obviously, B(L) = {0, v, i, 1}.

Proposition 3.5. If L is a bounded Y-hoop and e ∈ B(L), then e = e2, e = e′′

and e′ # e = e.

Proof. Let e ∈ B(L). Then by Proposition 2.2(ii), e2 5 e. Since e ∈ B(L), we
have e Y e′ = 1. Then

e# e2 = (1 o e)# e2 = ((e Y e′) o e)# e2.

By Propositions 2.7(ii) and 2.3(ii),

((e Y e′) o e)# e2 = ((eo e) Y (e′ o e))# e2 = e2 # e2 = 1.

Hence, e 5 e2, and so e = e2. Now, we prove that e = e′′. For this, by
Proposition 2.3(i), e 5 e′′. Since e ∈ B(L), we have e Y e′ = 1, then by
Propositions 2.7(ii) and 2.3(ii),

e′′ # e = ((e Y e′) o e′′)# e = ((eo e′′) Y (e′ o e′′))# e = (eo e′′)# e.

Thus, by Proposition 2.2(iii), (e o e′′) # e = 1. Hence, e′′ # e = 1, and
so e = e′′. Finally, for proving e′ # e = e, by Proposition 2.2(iv), we have
e 5 e′ # e. Sufficiently, we have to show e′ # e 5 e. For this, since e ∈ B(L),
we get e′ ∈ B(L), moreover, e = e′′ and e2 = e, so we consequence that,

(e′ # e)# e = (e′ # e′′)# e′′ = (e′ o e′)′ # e′′ = e′′ # e′′ = 1.

Thus, e′ # e = e.
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Proposition 3.6. If L is a bounded Y-hoop and for each k, s ∈ L, k Y s = 1,
then k, s ∈ B(L).

Proof. By Proposition 2.2(vii) and (iv),

k 5 (k# s)# s and s 5 (k# s)# s.

Then 1 = k Y s 5 (k # s) # s. Thus, (k # s) # s = 1, and so k # s 5 s.
Also, by Proposition 2.2(iv), s 5 k # s. Hence, k # s = s. By the similar
way, s# k = k. According to definition of Y, we get

k Y k′ = ((k# k′)# k′) [ ((k′ # k)# k) = (k′ # k′) [ (k# k) = 1.

Similarly, s Y s′ = 1. Therefore, k, s ∈ B(L).

Proposition 3.7. Suppose L is a bounded Y-hoop. Then k ∈ B(L) iff k�k = k,
k′′ = k, k2 = k and (k# k′)′ Y (k′ # k)′ = 1.

Proof. (⇒) Let k ∈ B(L). Then by Proposition 3.5, k′′ = k, k2 = k and since
k′ # k = k, we get that k� k = k. Also, from k ∈ B(L),

(k# k′)′ Y (k′ # k)′ = (ko k)′′ Y (k� k)′ = k′′ Y k′ = k Y k′ = 1.

(⇐) Let k ∈ L. Then by assumptions, we obtain that

1 = (k# k′)′ Y (k′ # k)′ = (ko k)′′ Y (k� k)′ = k′′ Y k′ = k Y k′.

Hence, k ∈ B(A).

Corollary 3.8. If L is a bounded Y-hoop and local, then B(L) = {0, 1}.

Proof. Let k ∈ B(L) − {0, 1}. Since k Y k′ = 1, we have k′ ∈ B(L) − {0, 1}.
Moreover, L is a local hoop, then it has just one maximal filter such as Q, then
〈k〉 ⊆ Q and 〈k′〉 ⊆ Q. Hence, k, k′ ∈ Q, and so 0 ∈ Q, which is a contradiction.
Therefore, B(L) = {0, 1}.

Next example shows that the converse of Corollary 3.8 does not hold.

Example 3.9. Assume A = {0, f, v, i, 1} where 0 5 f 5 i 5 1 and 0 5 v 5 i 5
1. Define the operations # and o on L by:

# 0 f v i 1
0 1 1 1 1 1
f v 1 v 1 1
v f f 1 1 1
i 0 f v 1 1
1 0 f v i 1

o 0 f v i 1
0 0 0 0 0 0
f 0 f 0 f f
v 0 0 v v v
i 0 f v i i
1 0 f v i 1
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Then (L,#,o, 0, 1) is a bounded Y-hoop. Obviously B(L) = {0, 1}. But
G1 = {f, i, 1} and G2 = {v, i, 1} are maximal.

Definition 3.10. The element k ∈ L is said to be a regular element if for
each s ∈ L, (k# s)# k = k. The set R(L) contains all regular elements of L.

Example 3.11. Let L be a hoop as in Example 3.4. Then R(L) = {0, v, i, 1}.

Theorem 3.12. For any k, s ∈ L, the next statements are equivalents:
(i) k ∈ R(L),
(ii) k′ # k = k,
(iii) k = k′′ and k [ k′ = 0.

Proof. (i)⇒ (ii) Consider k ∈ R(L). Then, for any s ∈ L, (k# s)# k = k. It
is enough to choose s = 0. Thus, k′ # k = k.
(ii) ⇒ (i) By Proposition 2.2(iv), k 5 (k # s) # k. Also, by Proposition
2.3(iii), k′ 5 k# s, then by Proposition 2.2(viii), (k# s)# k 5 k′ # k. Thus,
by (ii), (k # s) # k 5 k. Hence, for any s ∈ L, (k # s) # k = k. Therefore,
k ∈ R(L).
(ii)⇒ (iii) Suppose k ∈ L. Then by Proposition 2.3(i), k 5 k′′. Also, by (ii),

k′′ # k = k′′ # (k′ # k) = (k′′ o k′)# k.

By Proposition 2.3(ii), (k′′ o k′) # k = 0 # k = 1. Then k′′ # k = 1, and so
k′′ = k. Moreover,

k [ k′ = k′ o (k′ # k) = k′ o k = 0.

(iii)⇒ (ii) Assume k ∈ L. Then by Proposition 2.3(iii), k 5 k′ # k. Thus, by
(iii),

(k′ # k)# k = (k′ # k)# k′′ = (k′ o (k′ # k))# 0 = (k′ [ k)# 0 = 1.

Hence, k′ # k = k.

All elements of k ∈ L that k′′ = k is called an MV-center of L and showed
by MV(L).

Corollary 3.13. Let L be a bounded Y-hoop. Then:
(i) k ∈ R(L) iff k� k = k.
(ii) if k, s ∈ R(L), then k� s ∈MV(L).
(iii) B(L) ⊆ R(L).
(iv) R(L) ⊆MV(L).
(v) R(L) = MV(L) iff k [ k′ = 0, for each k ∈ L.
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Proof. (i) Consider k ∈ R(L). Then by Theorem 3.12, k � k = k′ # k = k.
Proof of converse is straightforward.
(ii) Assume k, s ∈ R(L). Then by Theorem 3.12, s′′ = s. Thus,

(k� s)′′ = (k′ # s)′′ = (k′ # s′′)′′.

By (HP3),
(k′ # s′′)′′ = ((k′ o s′)# 0)′′ = (k′ o s′)′′′.

By Proposition 2.3(ii),

(k′ o s′)′′′ = (k′ o s′)′ = k′ # s′′ = k′ # s = k� s.

Hence, (k� s)′′ = k� s. Therefore, k� s ∈MV(L).
(iii) Suppose k ∈ B(L). Then by Proposition 3.5, k′ # k = k. Thus, by
Theorem 3.12, k ∈ R(L). Hence, B(L) ⊆ R(L).
(iv) Let k ∈ R(L). Then by Theorem 3.12, k = k′′, so k ∈ MV(L). Hence,
R(L) ⊆MV(L).
(v) By (iv), R(L) ⊆MV(L). If k ∈MV(L) and k [ k′ = 0, then by Theorem
3.12, k ∈ R(L). Hence, R(L) = MV(L). The proof of other side is clear.

Converse of Corollary 3.13(iii) and (iv) do not hold.

Example 3.14. (i) Assume L = {0, f, v, i, o, 1} is a set. Define the operations
o and # on L as follows:

# 0 f v i o 1
0 1 1 1 1 1 1
f f 1 1 1 1 1
v 0 f 1 1 1 1
i 0 f o 1 o 1
o 0 f i i 1 1
1 0 f v i o 1

o 0 f v i o 1
0 0 0 0 0 0 0
f 0 0 f f f f
v 0 f v v v v
i 0 f v i v i
o 0 f v v o o
1 0 f v i o 1

Clearly (L,o,#, 0, 1) is a bounded hoop, MV(L) = {0, f, 1} and R(L) =
{0, 1}. Hence, MV(L) * R(L).
(ii) According to Example 3.9, obviously R(L) = {0, f, v, 1} and B(L) =
{0, 1}, because f Y f′ = v Y v′ = i 6= 1. Hence, R(L) * B(L).

Proposition 3.15. Let k ∈ L. Then:
(i) if k2 = k, then R(L) = MV(L).
(ii) if L is a bounded Y-hoop and for any k ∈ L,

k2 = k and (k# k′)′ Y (k′ # k)′ = 1,

then R(L) = B(L).
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Proof. (i) By Corollary 3.13(iv), we prove that R(L) ⊆ MV(L). Now, let
k ∈MV(L). Then k = k′′. By assumption and Proposition 2.2(vii), we have

k [ k′ = k′ o (k′ # k) = (k′)2 o (k′ # k) = k′ o k′ o (k′ # k) 5 k′ o k = 0.

Thus, k [ k′ = k′ o (k′ # k) = 0. Since k = k′′, by Theorem 3.12, k ∈ R(L).
Therefore, R(L) = MV(L).
(ii) By Proposition 3.7, Theorem 3.12 and Corollary 3.13, proof is complete.

Notation. In any bounded hoop L, we consider the subset

Q1(L) = {p ∈ L \ {0, 1} | p = k� s, for some k, s ∈ L \ {0, 1}},

and we denote by M(L) = M1(L) ∪ {0, 1}. According to Corollary 3.13(i),
clearly R(L) ⊆M(L).

Example 3.16. According to Example 3.4, we obtain M(L) = {0, v, i, o, 1},
where v = f� v, o = f� i, i = i� i.

Next example shows that MV(L) * M(L) and M(L) * MV(L).

Example 3.17. (i) By Example 3.4, MV(L) = L but M(L) = {0, v, i, o, 1}.
It proves MV(L) * M(L).
(ii) Suppose L = {0, f, v, i, o, 1} where 0 5 f 5 i 5 1, 0 5 v 5 o 5 1 and
0 5 v 5 i 5 1. Define the operations # and o by

# 0 f v i o 1
0 1 1 1 1 1 1
f o 1 o 1 o 1
v f f 1 1 1 1
i 0 f o 1 o 1
o f f i i 1 1
1 0 f v i o 1

o 0 f v i o 1
0 0 0 0 0 0 0
f 0 f 0 f 0 f
v 0 0 v v v v
i 0 f v i v i
o 0 0 v v o o
1 0 f v i o 1

Then (L,#,o, 0, 1) is a bounded hoop, MV(L) = {0, f, o, 1} and M(L) =
{0, f, i, o, 1}, where f = f� f, i = f� v, o = o� v. Clearly, M(L) * MV(L).

Theorem 3.18. If L is a bounded Y-hoop, then the next statements are equiv-
alent:
(i) k ∈ B(L),
(ii) k ∈MV(L) and k Y k′ = 1,
(iii) k ∈ R(L) and k2 = k, (k# k′) Y (k′ # k) = 1,
(iv) k ∈M(L) and k� k = k, k2 = k, k′′ = k, (k# k′)′ Y (k′ # k)′ = 1.
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Proof. According to Propositions 3.15 and 3.7 and Corollary 3.13, the proof
is clear.

Proposition 3.19. Let L be a bounded Y-hoop. Then the following statements
are equivalent:
(i) k′ = 0, for any k ∈ L \ {0},
(ii) B(L) = R(L) = MV(L) = {0, 1}.

Proof. (i)⇒ (ii) By Corollary 3.13, obviously,

{0, 1} ⊆ B(L) ⊆ R(L) ⊆MV(L).

So, we prove MV(L) ⊆ {0, 1}. Let k ∈ L \ {0, 1}. Then by (i), k′ = 0, so
k′′ = 1. Thus, k /∈MV(L). Hence, MV(L) ⊆ {0, 1}, and so

B(L) = R(L) = MV(L) = {0, 1}.

(ii)⇒ (i) Let k ∈ L\{0}. By Proposition 2.3(ii), k′ = (k′)′′ and so k′ ∈MV(L).
Thus, k′ = 0 or k′ = 1. If k′ = 1, then k′′ = 0, and so k = 0, a contradiction.
Hence, k′ = 0.

By an example we show that a hoop, satisfing in condition (i) of Proposition
3.19, exists.

Example 3.20. Suppose L = {0, f, v, 1} is a chain we have o and # on L as
follows,

# 0 f v 1
0 1 1 1 1
f 0 1 1 1
v 0 v 1 1
1 0 f v 1

o 0 f v 1
0 0 0 0 0
f 0 f f f
v 0 f f v
1 0 f v 1

Then (L,o,#, 0, 1) is a bounded Y-hoop and easily, for any k ∈ L − {0},
k′ = 0.

Definition 3.21. [11] A Stone algebra is an algebraic structure S = (S,Y,[,′ , 0, 1)
such that for any k ∈ S, it satisfies in the following conditions:
(S1) S = (S,Y,[, 0, 1) is a bounded distributive lattice.
(S2) k [ k′ = 0.
(S3) k′′ Y k′ = 1.

Theorem 3.22. Let L be a bounded Y-hoop. Then L is a Stone algebra iff
B(L) = MV(L).
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Proof. (⇒) Since L is a bounded Y-hoop, by Remark 2.6, L is a bounded
distributive lattice. If B(L) = MV(L) = {0, 1}, then by Proposition 3.19, for
any k ∈ L \ {0}, k′ = 0. Thus, k [ k′ = 0, for any k ∈ L. Now, assume k ∈ L

where k = 0, then k′ = 1, and so k′ Y k′′ = 1. If k 6= 0, then by Proposition
3.19, k′ = 0, thus, k′′ = 1, and so k′ Y k′′ = 1. Hence, for any k ∈ L, k′′ Y k′ = 1.
If B(L) = MV(L) 6= {0, 1}, then for an element k ∈ L \ {0, 1}, there are two
possibilities: k ∈ B(L) or k /∈ B(L). If k ∈ B(L), then k [ k′ = 0 and since
B(L) = MV(L), we obtain k′′ Y k′ = k′ Y k = 1. If k /∈ B(L) = MV(L), then
k′′ 6= k. By Proposition 2.3(ii), k′ = k′′′ = (k′)′′. Thus, k′ ∈ B(L) = MV(L).
So, k′ Y k′′ = 1. Moreover, by Propositions 2.7(i) and 2.3(i), we have k[ k′ = 0.
Hence, for any k ∈ L, k′[k = 0 and k′Yk′′ = 1. Therefore, L is a Stone algebra.

(⇐) Suppose L is a Stone algebra. By Corollary 3.13(iii) and (iv), B(L) ⊆
MV(L). Let k ∈MV(L). Then k = k′′. Since k′ Y k′′ = 1, we consequence that
k′ Y k = 1. Thus, k ∈ B(L). Hence, B(L) = MV(L).

Theorem 3.23. Consider L is a bounded Y-hoop where for any k ∈ L, k2 = k.
Then L is a Boolean algebra iff L is a Stone algebra with (DNP).

Proof. If L is a Boolean algebra, then by Proposition 3.15, B(L) = MV(L),
and so by Theorem 3.22, L is a Stone algebra with (DNP). Conversely, since
L is a Stone algebra with (DNP), then, for any k ∈ L, k′ Y k′′ = k′ Y k = 1 and
k′ [ k = 0. Thus, k ∈ B(L). Therefore, L is a Boolean algebra.

4 Regular filters in hoops

Now, we define regular filters of hoop and Y-hoop with RF-property and study
some properties of them. Also, we show that every Y-hoop with RF-property,
is a Boolean algebra and L with RF-property such that B(L) = {0, 1}, is a
local hoop.

Notation. From now, L is a bounded Y-hoop.

Definition 4.1. A filter G ∈ F(L) is regular if G‡‡ = G. The set of all regular
filters is denoted by R‡(F(A)).

Example 4.2. By Example 3.4, G = {1, o} is a regular filter of L and
R‡(F(L)) = {{1}, {1, o}}.

Definition 4.3. L has regular filter property, RF-property for short, if
every proper filter G ∈ F(L), is regular.

Example 4.4. According to Example 3.14, L has RF-property.

Theorem 4.5. Consider G ∈ F(L) is proper. Then G is regular iff GYG‡ = L.
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Proof. Assume G ∈ F(L) is regular. By Proposition 2.10, G∩G‡ = {1}. Thus,
by Theorems 2.14 and 2.15, we consequence that

L = {1}‡ = (G [ G‡)‡ = (G ∩ G‡)‡ = G‡ ∪ G‡‡ = G‡ Y G‡‡ = G‡ Y G.

Hence, G Y G‡ = L.
Conversely, let G Y G‡ = L. Then by Theorem 2.14,

{1} = L‡ = G‡‡ [ G‡ = G‡‡ ∩ G‡.

So {1} = G‡‡ [ G‡. Moreover, by Theorem 2.15, G is pseudocomplement of G
and G ∩ G‡ = {1}. Then G = G‡‡. Hence, G is regular.

Theorem 4.6. If L has RF-property, then the set (R‡(F(L)),⊆,[,Y, {1},L)
is a Boolean algebra, where G [ V = G ∩ V, G Y V = 〈G ∪ V〉 and G‡ is pseudo-
complement of G, for any G,V ∈ F(L).

Proof. Using Theorems 2.14, 2.15 and 4.5.

Proposition 4.7. The next assertions are equivalent:
(i) e ∈ B(L),
(ii) 〈e〉‡ = 〈e′〉,
(iii) 〈e〉‡‡ = 〈e〉.

Proof. (i) ⇒ (ii) Let e ∈ B(L). Since e Y e′ = 1, and by Definition 2.9,
〈e〉‡ = {k ∈ L | e Y k = 1}, we consequence that e′ ∈ 〈e〉‡, and so 〈e′〉 ⊆ 〈e〉‡.
If k ∈ 〈e〉‡, since e Y k = 1 and e ∈ B(L), by Remark 2.6, and by Proposition
2.7(i) we have

e′ = e′ [ 1 = e′ [ (e Y k) = (e′ [ e) Y (e′ [ k) = e′ [ k.

Then e′ 5 k, and so k ∈ 〈e′〉. Hence, 〈e〉‡ ⊆ 〈e′〉. Therefore, 〈e〉‡ = 〈e′〉.
(ii) ⇒ (i) Since 〈e〉‡ = 〈e′〉, we have e′ ∈ 〈e〉‡. Then, e′ Y e = 1. Also,

by Proposition 2.7(i), 0 = (e′ Y e)′ = e′′ [ e′. Then by Proposition 2.3(i),
e [ e′ 5 e′ [ e′′ = 0, thus, e [ e′ = 0. Hence, e ∈ B(L).

(i) ⇒ (iii) Let e ∈ B(L). Then by Proposition 3.5, e = e′′, and so 〈e〉 =
〈e′′〉. Also, by (ii), 〈e〉‡ = 〈e′〉, and so 〈e〉‡‡ = 〈e′〉‡ = 〈e′′〉 = 〈e〉. Hence,
〈e〉‡‡ = 〈e〉.

(iii)⇒ (i) By Definition 2.9,

〈e〉‡‡ = {k ∈ L | k Y s = 1, for any s ∈ 〈e〉‡}.

Then by (ii),

〈e〉‡‡ = {k ∈ L | kYs = 1, for any s ∈ 〈e′〉} = {k ∈ L | kYs = 1, for any s = e′}.

Since e ∈ 〈e〉 = 〈e〉‡‡, we consequence that e Y e′ = 1. Thus, by Remark 2.6,
Propositions 2.7(i) and 2.3(i), we have e [ e′ = 0. Hence, e ∈ B(L).
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Corollary 4.8. If e ∈ B(L), then 〈e〉 ∈ R‡(F(L)).

Proposition 4.9. Consider G ∈ F(L). Then G ∈ R‡(F(L)) iff there exists
e ∈ B(L) such that G = 〈e〉.

Proof. (⇒) Assume G ∈ R‡(F(L)), f ∈ G‡ and e ∈ G. Then f Y e = 1. By
Proposition 2.4, 1 = f Y e 5 (f # e) # e. Thus, by Proposition 2.2(iv),
e 5 f# e 5 e, and so f# e = e. Hence, by Theorem 4.6,

f [ e = fo (f# e) = fo e = 0.

Let k ∈ G. Then by Remark 2.6,

e [ k = 0 Y (e [ k) = (f [ e) Y (k [ e) = (f Y k) [ e = e.

Thus, e 5 k, and so G = 〈e〉.
(⇐) Let e ∈ B(L). By Proposition 4.7, G‡‡ = 〈e〉‡‡ = 〈e〉 = G. Hence,

G ∈ R‡(F(L)).

Corollary 4.10. L has RF-property iff, for any proper filter G ∈ F(L), there
is e ∈ B(L) wheret G = 〈e〉.

Proposition 4.11. Any prime filter of L with RF-property is included in a
unique maximal filter.

Proof. Assume P ∈ Spec(L). By Zorn’s Lemma, obviously there is Q ∈
Max(L) where P ⊆ Q. Now, suppose Q1 ∈ Max(L) and Q2 ∈ Max(L)
such that P ⊆ Q1 ∩ Q2 and Q1 6= Q2. Since Q1 6= Q2, there exists f ∈ Q1 such
that f /∈ Q2. By Proposition 2.11, there exists n ∈ N such that (fn)′ ∈ Q2. If
(fn)′ ∈ Q1, then by Proposition 2.3(ii), 0 = fn o (fn)′ ∈ Q1, a contradiction.
So, (fn)′ /∈ Q1. Since f /∈ Q2 and (fn)′ /∈ Q1, we consequence f, (fn)′ /∈ P.
Moreover, from Q1 ∈ F(L) and L has RF-property, then by Corollary 4.10,
there is e ∈ B(L) such that Q1 = 〈e〉. Since eoe′ = 0, obviously, e′ /∈ Q1. Also,
if f ∈ Q1 = 〈e〉, then there exists n ∈ N such that en 5 f, also, from e ∈ B(L),
e Y e′ = 1 ∈ P. From P ∈ Spec(L), we obtain e ∈ P or e′ ∈ P. If e ∈ P, since
en 5 f, then f ∈ P, a contradiction. If e′ ∈ P, since P ⊆ Q1 ∩ Q2, then e′ ∈ Q1,
a contradiction. Hence, e, e′ /∈ P, a contradiction.

Proposition 4.12. If L has RF-property and B(L) = {0, 1}, then L is local.

Proof. Suppose L has RF-property and Q ∈Max(L). Then by Corollary 4.10,
there exists e ∈ B(L) such that Q = 〈e〉. Thus, Q = 〈0〉 = L or Q = 〈1〉 = {1}.
So, L has just one maximal filter. Hence, L is local.
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Definition 4.13. f ∈ L is an archimedean element if there exists n ∈ N
such that fn ∈ B(L). L is an archimedean hoop, if all its elements are
archimedean.

Example 4.14. According to Example 3.4, B(L) = {0, v, i, 1}. From f2 = 0
and o2 = i and f2, o2 ∈ B(L), we consequence that every elements of L is
archimedean, and so L is an archimedean hoop.

Proposition 4.15. L is an archimedean hoop iff, for any k ∈ L, there is
n ∈ N where k Y (kn)′ = 1.

Proof. (⇒) Since L is an archimedean hoop, for any k ∈ L, there exists n ∈ N
such that kn ∈ B(L). Then kn Y (kn)′ = 1. Since kn 5 k, we have

1 = kn Y (kn)′ 5 k Y (kn)′

Thus, k Y (kn)′ = 1.
(⇐) Consider k ∈ L and for some n ∈ N, k Y (kn)′ = 1. In order to prove that
kn ∈ B(L), we have to prove that kn Y (kn)′ = 1 and kn [ (kn)′ = 0. For this,
by Proposition 2.7(ii), we have

1 = 1 o 1

= (k Y (kn)′) o (k Y (kn)′)

= (ko (k Y (kn)′)) Y ((kn)′ o (k Y (kn)′))

= k2 Y (ko (kn)′) Y ((kn)′)2 5 k2 Y (kn)′

So, k2Y(kn)′ = 1. By continuing this method, we consequence that knY(kn)′ =
1. Moreover, by Propositions 2.7(i) and 2.3(i), we have kn [ (kn)′ = 0. Hence,
kn ∈ B(L). Therefore, L is an archimedean hoop.

Theorem 4.16. Let L has RF-property, where every filter has just one gen-
erator. Then Spec(L) = Max(L).

Proof. By Theorem 2.12, clearly Max(L) ⊆ Spec(L). We have to show
Spec(L) ⊆ Max(L). For this, let Q ∈ Spec(L) and k /∈ Q. If G ∈ F(L) is
proper such that k ∈ G, since L has RF-property, by Corollary 4.10, there
exist e ∈ B(L) such that 〈k〉 = 〈e〉 = G. Thus, there is n ∈ N such that kn = e.
Since e ∈ B(L),

1 = e Y e′ 5 kn Y (kn)′

So, kn Y (kn)′ = 1. Moreover, Q ∈ Spec(L), k /∈ Q and kn Y (kn)′ = 1 ∈ Q,
then (kn)′ ∈ Q. Thus, by Proposition 2.11, Q ∈ Max(L). If there is not any
G ∈ F(L) such that k ∈ G, then let 〈k〉 = 〈0〉 = L. Thus, there is n ∈ N
such that kn = 0, and so (kn)′ = 1 ∈ Q. So, for any k ∈ L that k /∈ Q, there
exists n ∈ N such that (kn)′ ∈ Q. Hence, by Proposition 2.11, Q ∈ Max(L).
Therefore, Spec(L) = Max(L).
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Theorem 4.17. L is archimedean iff Spec(L) = Max(L).

Proof. (⇒) By Theorem 2.12, Max(L) ⊆ Spec(L). So, we show Spec(L) ⊆
Max(L). For this, let P ∈ Spec(L) and k /∈ P. Since L is archimedean,
we have n ∈ N such that kn ∈ B(L). By Proposition 4.15, k Y (kn)′ = 1.
Moreover, P ∈ Spec(L) and 1 ∈ P, we obtain (kn)′ ∈ P. By Proposition 2.11,
P ∈Max(L). Hence, Spec(L) = Max(L).
(⇐) First of all, since Spec(L) = Max(L), we prove P ∈ Spec(L) is a minimal
prime. For this, assume P,N ∈ Spec(L) such that P ⊆ N. Since P ∈Max(L),
we have P = N. Thus, P is minimal prime. Consider f ∈ L−{1}. We prove f is
an archimedean element. We denote G = 〈f〉‡, by Proposition 2.10, G ∈ F(L).
Since f 6= 1 and f Y f 6= 1, we have f /∈ G. Now, suppose G∗ = 〈G ∪ {f}〉. If we
suppose G∗ is a proper filter of L, then by Remark 2.12, there P ∈ Spec(L)
such that G∗ ⊆ P. Also, we show that since Spec(L) = Max(L), P is a minimal
prime. Suppose if there is k ∈ L− P such that f Y k = 1, then k ∈ G ⊆ G∗ ⊆ P,
and so k ∈ P, a contradiction. So, G∗ /∈ Spec(L). So, G∗ = L. Thus, 0 ∈ G∗.
Then there is n ∈ N and o ∈ G such that oo fn = 0, and so o 5 (fn)′. Hence,
1 = f Y o 5 f Y (fn)′. So, f Y (fn)′ = 1. Therefore, by Proposition 4.15, L is
archimedean.

Theorem 4.18. If L is archimedean, then L has RF-property.

Proof. For k ∈ L, there exists n ∈ N such that kn ∈ B(L). Thus, there is
e ∈ B(L) such that kn = e. Hence, 〈k〉 = 〈kn〉 = 〈e〉, and so 〈k〉‡‡ = 〈e〉‡‡.
By Proposition 4.7, 〈k〉‡‡ = 〈e〉‡‡ = 〈e〉 = 〈k〉. So, for any k ∈ L, 〈k〉‡‡ = 〈k〉.
Therefore, L has RF-property.

Corollary 4.19. The following statements are equivalent:
(i) L has RF-property,
(ii) Spec(L) = Max(L),
(iii) L is archimedean.

5 Conclusions and future works

We study hoops in order to give some new characterizations for regular and
Boolean elements in hoops and we investigate the relation between them.
Specially, we show that any bounded Y-hoop is a Stone algebra iff MV -center
set and Boolean elements set are equal. Then we introduce the concept of
regular filter in hoops and Y-hoops with RF-property and investigate some
properties of them. Moreover, we prove that every Y-hoop with RF-property,
is a Boolean algebra and any hoop L with RF-property such that B(L) =
{0, 1}, is a local hoop. Finally, we prove that any hoop L has RF-property iff
Spec(L) = Max(L) and iff L is a hyperarchimedean.
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[8] B. Bosbach, Komplementäre Halbgruppen. Kongruenzen and Quotienten,
Fundamenta Mathematicae, 69 (1970), 1–14.

[9] D. Busneag, D. Piciu, A. Jeea, Archimedean residuated lattices, Annals of
the Alexandru Ioan Cuza University - Mathematics, LVI (2010), 227-252.

[10] D. Busneag, D. Piciu, J. Paralescu, Divisible and semi-divisible residuated
lattices, Annals of the Alexandru Ioan Cuza University - Mathematics,
LXI (2015), 287–318.

[11] R. Cignoli, Free algebras in varieties of Stonean residuated lattices, Soft
Computing, 12 (2008), 315-320.

[12] G. Georgescu, L. Leustean, V. Preoteasa, Pseudo-hoops, Journal of
Multiple-Valued logic and Soft Computing, 11(1-2) (2005), 153–184.
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